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Abstract— Automated non-invasive diagnosis and localization
of the root cause of oscillations in process plants is a widely
held industry goal sought in order to stabilize product qualities
and reduce equipment problems and energy costs. As stiction
in control valves is one of the leading causes of oscillations in
plant variables, detection and localization of valve stiction is a
major part of any method for root cause diagnosis. Previous
contributions have introduced a number of techniques that seek
to achieve this objective, but most of the approaches presented
are only applicable for the case of single-input single-output
(SISO) processes. The current work seeks to extend one widely
used approach, Hammerstein-model-based stiction detection, to
the case of interacting plants. Because of the difficult nature
of the problem, we first consider the case where a nominal
linear plant model is known for the interacting system in
question. With these approximate linear dynamics, we introduce
an approach to identify in which loop the valve stiction is
originating from, under the assumption that only a single valve
in the interacting system is afflicted by stiction. The method
efficacy is explored using simulation studies. The feasibility of
extending the method to the case of unknown plant model via
multivariate time-series identification of the linear plant model
is then briefly discussed.

[. INTRODUCTION

In the process industries, oscillations in the values of
process variables can have immense economic costs due to
equipment wear and increased product variability. Previous
industrial surveys have indicated that a large percentage
of control loops are affected by oscillations [1], [2]. A
major cause for these oscillations is valve stiction (stiction
being a term meaning static friction). The control valve is
a weak link in the control loop, as it is often the only
moving component in many processes [3]. Stiction induced
oscillations caused by one control valve may propagate from
control loop to control loop until a large portion of the
entire plant is affected. Since large industrial processes may
have hundreds to thousands of control loops, reliable and
noninvasive automated stiction detection would serve as a
valuable resource in order to locate the original source of
oscillations so that the problem can be eliminated.

With this goal in mind, many valve stiction detection
algorithms have appeared in the literature in recent years.
Huang et al. [4] suggested that these methods could be
classified into (i) descriptive statistic, (ii) pattern recognition,
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and (iii) model-based approaches. Alternatively, Babji et al.
[5] have suggested to classify stiction detection approaches
into the categories of (i) shape-based, (ii) frequency-domain
based, and (iii) model-based. In each case, the model-based
methods referred to are those based on representing the
process as a Hammerstein model. This technique was first
introduced by [6], and many variants have been introduced
since [7], [8], [9], [10], [11].

With few exceptions, the available techniques are focused
on single-input single-output (SISO) processes. However,
many industrial control loops are interacting, wherein the
controlled or manipulated variables from one loop have direct
impact on the controlled variables of one or more other loops.
In this case, the nonlinear input-output behavior induced by
stiction can appear in several loops simultaneously. Choud-
hury et al. [12] provided several methods for confirmation
of valve stiction, two of which should be applicable to
interacting systems, and these are (1) putting the controller
for the suspected loop with stiction into manual control and
see if the stiction induced limit cycles die down or (2)
use valve positioner data and compare to the op (controller
output) data to check for stiction. A third method presented
in the same work was to change the controller gain and
observe whether the oscillatory plant signals exhibited a
change in frequency, with a change indicating the presence
of valve stiction. Haoli et al. [13] have demonstrated that
for interacting systems, this gain change method could fail
to give the correct indication. A change in any controller
gain within the interacting system could cause a shift in the
oscillation frequency of the plant signals. Therefore, they
proposed a modification of this technique, wherein for an
interacting system having several valves where the presence
of stiction has been detected but not isolated to a particular
valve, every controller gain in the interacting system was
changed from its original setting, in order to see in which
loop the controller gain change caused the largest magnitude
change in oscillation frequency. The valve within the loop
whose controller gain change caused the largest frequency
shift is deemed to be the source of the stiction induced
oscillations within the system.

All of the aforementioned methods that should correctly
isolate valve stiction within interacting systems are fairly
intrusive (unless a valve positioner was already installed).
For instance, the modification of the gain change method
presented in [13] requires 2 significant changes in gain for
every control loop within the interacting system. Putting the
loop in manual to complete the diagnosis is disruptive and
possible unsafe [12], so this should be done as rarely as



possible. An alternative to these methods is to use knowledge
of the process topology to create a plant adjacency matrix,
which can then be used to isolate the source of oscillation
based upon the additional knowledge of which combination
of process loops are exhibiting oscillations at the same
frequency [14]. This method was designed in order to isolate
the source of any type of oscillation whether due to poor
tuning, external disturbance, or equipment malfunction or
degradation, valve stiction included. However, in some in-
stances, it is possible that the necessary topology information
is not fully available or else possible that even with this
information, the specific fault and location cannot be resolved
completely. Therefore, other techniques for resolving the
location of valve stiction in interacting systems should still
be useful.

In this work we will explore the localization of stic-
tion detection on interacting systems using a Hammerstein-
model-based detection approach wherein the linear plant
model is assumed to be approximately known, and the
nonlinear stiction element uses a one-parameter valve model
during data-fitting. In the Section 2, the detection approach
is described. In Section 3 several simulation examples are
used to demonstrate the efficacy of the method as well
as to highlight possible pitfalls. Finally, Section 4 contains
discussion of the approach and conclusions are provided.

II. STICTION DETECTION APPROACH

This section introduces a stiction detection method for sys-
tems with internal interactions between control loops. First,
some data-based valve stiction models are introduced which
are useful for simulation and detection of stiction. Following
this, a Hammerstein model-based stiction detection approach
is proposed.

A. Valve stiction modeling

There are two types of valve stiction models, these being
(i) physics-based models and (ii) data-driven models. In
practical applications, a large number of the parameters
required for physics based modelling have unknown value,
and so data-driven models are used within stiction detection
techniques. The phase plot produced by the data driven
models of [15] and [16] is displayed in Fig. 1. These
authors used two parameters to characterize a valve’s stiction
behavior, combined deadband and stickband, denoted S, and
slip-jump J. A study by Garcia [17] comparing many types
of physics based and data-driven valve models found that the
model of [16] gave physically realistic input-output behavior
under the simulations performed, and therefore this model is
selected as the simulation model used in later sections.

For stiction detection however, a simpler data-driven
model is used, this being the one-parameter model, which
was used along with the original Hammerstein model-based
stiction detection technique [6]. Here valve position v(f) is
related to its previous value v(# — 1) and the controller output
u(tr) by the following simple expression,
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Fig. 1. Idealized phase plot for a valve with stiction

t) u(t), if lu(t)—v(t—1)|>d
\% =
v(t—1), otherwise
where d is the parameter describing the magnitude of
stiction present in the valve.

B. Hammerstein model for interacting system

A Hammerstein model is a block oriented model in which
a nonlinear system is broken into two parts: a block con-
taining a static nonlinearity, followed by a block containing
linear dynamics. Several of the previous proposed methods
for stiction detection rely upon this Hammerstein structure
for stiction quantification, with the nonlinear data-driven
stiction model contained in the first block, followed by a
linear plant model. Then an iterative search is undertaken
for identifying the parameters from each the linear and
nonlinear blocks, with an outer loop for selecting the valve
stiction parameters and an inner loop for identifying the
linear dynamics.

The previously introduced methods pertained to SISO
systems, which we now propose to extend to the case of
interacting multiple-input multiple-output (MIMO) systems.
Fig. 2 displays the assumed block form of the system under
the Hammerstein assumption for the case of a 2 x 2 MIMO
system. Controller outputs u#; and u, enter the nonlinear
element and are modified by data-driven valve models V| and
V, into valve positions v; and v,. The linear dynamics then
transform the valve position into measured outputs y; and
y2. Under the assumption of only one valve having stiction
at a time, either V| or V, will be a nonlinear transformation,
while the other simply acts as a pass-through of the controller
signal.

Previous works used several types of models to identify
the linear dynamics, including ARMAX (auto-regressive
moving average with exogenous input) ([6], [11], [10]),
extended ARMAX [9], and low-order model with time
delay [8]. Possible multivariate extensions of these mod-
els includle VARMAX (vector-rARMAX) or matrix transfer
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Fig. 2. Example Hammerstein stiction model for a 2 x 2 system

function models. In this work, we assume that a VARX
(vector auto-regressive) approximation of the continuous-
time multivariate system dynamics is available. Using the
same one parameter valve stiction model as [6], we propose
the following stiction location procedure for multivariate
interacting systems:

1) Obtain a positive detection of stiction within the in-
teracting system using one of the previously existing
techniques.

2) Assume the valve in Loop i has stiction and the other
valves do not. Perform steps 2-6 for each i=1...n
where 7 is the number of control loops in the system
considered.

3) Perform a grid search over estimated stiction parameter
af,- from O to d; e, Where d;pax is defined u; g —
Ui min, While holding (d; = 0, j # i).

4) At each value of d;, transform u; to linear plant input
v; using the one parameter valve model. Each of the
other inputs u;, j # i, enters the plant unaltered (v; =
u;j) since currently no stiction is assumed in the other
valves.

5) Transform the plant inputs by the approximate VARX
model to obtain plant output estimates y, k =1...n.
Calculate the mse (mean-squared error) for each plant
output, which is mse(;) = (yx — $x)> where y; is the
measurement signal of plant output k.

6) Calculate the MSE index, defined by Imse(aﬂ . ,dAn) =

n mse()’}\k)
Yi-1
var(yy)
i), where var(yy) is the variance of plant output signal
k.

7) After looping through steps 2-6 for i =1...n, select the
valve most likely to contain stiction and the estimated
severity based on the lowest value of I, (a?l, . ,cfn).
Since the search space consisted of having of only one
nonzero stiction parameter cfl at a time, the minimum
will correspond to stiction in a single valve.

for the current set d; >0 , d}zO Vj#

ITI. SIMULATION RESULTS

To test the efficacy of the proposed method, simulation
studies were carried out using Matlab and Simulink. For an
example 2 x 2 MIMO system, we considered the distillation
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Fig. 3. Simulated controller and process outputs for the Wood and Berry

system under the case (S7,J;) = (0.6,0.06)

column model of [18]. The original continuous time transfer
function model is used to simulate the plant, and two PI
controllers were added. To simulate valve stiction, the model
of [16] was used because of favorable characteristics of
the model discussed in [17]. Within one valve model, the
parameter set (S,J) was set to nonzero values to simulate
stiction, while for the other loop, the valve parameters
remained at (S,J) = (0,0). Simulations were run for 1000
seconds with sampling at a frequency of 1 Hz. In each case,
a set-point change was used to excite the loop and no other
external disturbances or nonlinearities were added.

Fig. 3 shows the controller and process outputs when
the parameter sets (S;,J1) = (0.6,0.06) and (S2,J>) = (0,0)
are used. Stiction induced oscillations are present in all
plant signals, even though the valve in loop 2 had no
stiction simulated. If considering the control loops separately,
loop 1 takes on the classic appearance of a nonintegrating
process under PI control that has stiction, with triangular
wave controller output (#1) and approximately rectangular
wave process output (y;). However, the effects of the valve
nonlinearity will also appear in loop 2, and it can be shown
that using SISO Hammerstein stiction detection on this loop
will result in positive detection even though stiction is absent
from the second valve.

An approximate linear model of the process was generated
by taking a zero-order hold discretization of the original
continuous time transfer function model to produce a discrete
transfer function model, and then converting this into VARX
form. Using the controller output data from Fig. 3, and
assuming stiction sequentially in one loop at a time, predicted
outputs y; and §, were generated for a range of stiction
parameters on each valve.

Fig. 4 shows the mean-square error for each output with
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stiction assumed on each valve sequentially (one valve with
stiction, the other without) during detection. The pointed
lines on each plot represent the mean square error (mse)
resulting from assuming stiction in the first valve and no
stiction in the second, while the circled lines provide the mse
when stiction is assumed to be present only in the second
valve. On the plots, each estimated stiction parameter (d; in
the case of the pointed line, cig in the case of the circled
line) is scaled by the span of the corresponding op signal so
that the results can be presented together. For both estimated
outputs y; and ¥, the minimum mean squared error is
achieved when d; > 0.6 (d» = 0) (on the plots dy =06
corresponds to approximately 0.9 when scaled by span of the
op). Since the minimum value of mse is obtained for each
output when assuming stiction in valve 1 (pointed line), the
method is correctly indicating stiction in this valve.

In this case, the results from each plot in Fig. 4 agree,
and so the plot of I,, in Fig. 5 reflects this, having
a minimum value for dA] > 0.6 (> 0.9 on the plot after
scaling by dyax) and dy = 0. Therefore, it is concluded that
stiction is correctly detected in the valve within loop 1 for
this case. Interestingly, the indicated values of the stiction
parameter (d, >0.6) correspond to the case where the valve
is completely immobile for the duration of the predicted
series. This result is probably due to different valve models
being used during simulation and detection.

The simulation was again repeated, this time with stiction
simulated in the valve in loop 2 with stiction parameter
magnitudes of (S2,J2) = (0.05,0.05) ((S1,J1) = (0,0)). This
is a special case where the deadband and stickband are
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Fig. 6. Simulated controller and process outputs for the Wood and Berry
system under the case (S2,J2) = (0.05,0.05)

equal, which provides input-output behavior quite similar
to the one-parameter model used during identification. The
data from this simulation is presented in Fig. 6, wherein
each plant signal is vaguely sinusoidal. Again, the stiction
detection proceeded according the method of the previous
section. The mse for each output is plotted separately in
Fig. 7. For each output, minimum mse was obtained for
the parameter set (cf] =0, dAz = 0.048) (on the plots, this
value of d is scaled to approximately 0.37). Here, as could
be expected in this special case, the result achieved gives
d>»~ S =1J. The agreement of the results between each of
the plots in Fig. 7 is also reflected in the MSE index in
Fig. 8, wherein the same parameter set is identified.

A final simulation example uses a 3 x 3 MIMO transfer
function simulation model obtained from [19]. Valve stiction
was simulated in loop 1 using the same two parameter
model as before and parameters (S; = 0.06, J; = 0.04). The
simulated output was sampled at 1 Hz for 1200 seconds.
Again, stiction detection occurs using the approach of the
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previous section, with an approximate model generated by
taking a zero-order hold of the original transfer function
model. Fig. 9 presents results from attempting to identify
stiction on each valve. For each output, the lowest mse
is obtained by assuming (d|,d»,d3) = (0.54,0,0) (scaled
values).

The MSE index was calculated, with the results in Fig. 10.
A correct localization to the valve in loop 1 is provided
with the minimum Iy/sg reached at (d,ds,d3) = (0.54,0,0)
(scaled by span of op). The MSE index is useful for selection
of a final detection in cases where the results for each output
considered separately do not agree, although this case was
not found in any of the simulation results of this section.

IV. DISCUSSION AND CONCLUSIONS

The results of the previous section indicate that performing
localization of stiction detection in interacting multivari-
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ate systems using approximately known model information
shows promise. The results of each detection were correct,
with appreciable margin between correct and erroneous
detection. These relatively convincing results in the case
where an approximately known model is available, lead us
to the next question, which is the ability of this method to
work when a model is not available and would have to be
identified, in which case model structure (order) and time
delays would have to be estimated too. The additional task
of estimating multivariate linear dynamics from the closed-
loop data will have unknown effect on the reliability of
the method. The reliability could decrease if the parameter



estimates converge far from true values, but the use of
simultaneous linear model identification could also provide
the flexibility to reduce errors due to plant or disturbance
changes compared to the case of using previously determined
dynamics. One possible way to decrease error may be to
use a valve model for detection which is more able to
capture the input-output behavior of the valve generating
the data (in this study, the detection valve model is a one-
parameter and the simulation model was a 2 parameter type).
For practical applications, it would be necessary to know
which valve model provides the most similar input-output
characteristics as the sticky valve in the closed loop. There
is some disagreement in the literature in this regard, with
recent work [20] suggesting that a suitable valve model
should have the valve reaching a stationary state during each
sampling period, which is in contrast to the assumption in
many previous works wherein the valve was assumed to stay
in motion across sampling periods.

Extensive studies on industrial data-sets [21] have shown
that, at best, the currently existing automated data-based
techniques should be relied on as a screening mechanism
in order to identify which subset of control valves should
be selected for more invasive tests in order to confirm valve
stiction. This conclusion is because of the limited accuracy
of the non-invasive techniques studied. This is still a valuable
role for this type of technique to serve as it can greatly reduce
the time and effort of plant personnel in locating the source of
oscillations. In this role, it is essential that a stiction detection
technique should have a low false negative rate, to avoid
eliminating the sticky valve from consideration. Of course,
reducing the number of false positives is also beneficial as it
will reduce the number of invasive tests necessary in order
to locate the valve with stiction that is the root cause of
the oscillations. In a similar way, the currently proposed
technique is not meant to provide a definite answer as to
which valve contains stiction, but it can provide the most
probable location for plant personnel to begin more invasive
testing.

Future work can proceed in several directions, such as
dropping the assumption that a nominal plant model is
available for use. In the SISO case, it is known that the
presence of stiction provides sufficient excitation for the
closed-loop identification of plant models [6]. For the MIMO
case, it would be necessary to fit a multivariate linear model,
such as a VARX, VARMAX, or matrix transfer function
model. Even in the SISO case, fitting linear dynamics is a
computationally intensive procedure, which must be repeated
at a large sampling of stiction parameters, so it is unknown
if the multivariate case is feasible to be completed in a
timely manner. A final challenge is industrial validation of
the proposed approach, which will require obtaining data sets
from the correct type of process (interacting) with enough
additional information (the condition of each control valve
in the system, knowledge of disturbances, controller tunings,
plant models) to properly test the diagnosis technique.
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