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Abstract—H2/H∞ control problem for a class of stochastic
discrete-time linear systems with state, control and external
disturbance dependent noise or (x, u, v)-dependent noise
involving multiple decision makers, which is very valuable in
practice is investigated. It is shown that the strategy set can be
obtained by the solutions of cross-coupled stochastic algebraic
Riccati equations (CSAREs). In order to solve these equations,
some new algorithms are given. Numerical example is given to
demonstrate the effectiveness of the novel strategy set.

I. INTRODUCTION

With the maturity of Nash games, stochastic H2/H∞ con-
trol problems for a class of discrete-time system have been
investigated (see, e.g., [1], [2]). The finite horizon mixed
H2/H∞ control problem was considered in [1]. These results
were extended to the infinite horizon case [2]. It should
be noted that the existing results are based on LQ control
and H∞ control technique for continuous and discrete-time
stochastic systems [3], [4], [5], [7], [8]. When the strategy set
can be designed, cross-coupled stochastic algebraic Riccati
equations (CSAREs) have to be solved. However, little
attention has been given to a numerical algorithm for solving
these nonlinear matrix algebraic equations.

Recently, H2/H∞ control problems involving multiple
decision makers for discrete-time stochastic systems with
state and disturbance dependent noise have been solved
[9]. Moreover, the numerical algorithm via linear matrix
inequality (LMI) that is based on semidefinite programming
(SDP) has been developed. However, the convergence proof
has not been investigated up to now even if the proposed
algorithm can be worked well in practice. Therefore, it
is important to investigate a new numerical algorithm that
guarantees a convergence.

In this paper, infinite-horizon H2/H∞ control problem
with multiple decision makers for a class of discrete-time
linear stochastic systems is investigated. As compared with
the existing results in [9], state-, control- and disturbance-
dependent noise or (x, u, v)-dependent noise is considered.
It should be noted that since the existence of control-
input dependent noise has been verified [11], the consid-
eration of the control-dependent noise is very important.
After establishing the existence conditions that consist of
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CSAREs, Newton’s method is applied to solve these high-
order nonlinear matrix equations. As a result, if the initial
conditions are appropriately chosen, quadratic convergence
is guaranteed. Moreover, in order to avoid the complicated
derivation of Newton’s method, an algorithm based on LMI
is given. Finally, a simple numerical example is given to
demonstrate the efficiency of the proposed scheme.
Notation: The notations used in this paper are fairly standard.
The superscript T denotes matrix transpose. In denotes the
n× n identity matrix. E[·] denotes the expectation operator.
δij denotes the Kronecker delta. Tr denotes the trace of
a matrix. ⊗ denotes the Kronecker product. Ulm denotes
a permutation matrix in the Kronecker matrix sense such
that UlmvecM = vecMT , M ∈ ℜl×m. The l2-norm
of y(k) ∈ l2w(N, ℜn) is defined by ||y(k)||2

l2w(N, ℜn) :=
∑∞

k=0 E[||y(k)||2].

II. PRELIMINARY RESULTS

Consider the following discrete-time stochastic system.

x(k + 1) = Ax(k) +B1u(k)

+[Apx(k) +B1pu(k)]w(k), (1a)

y(k) = Cx(k), (1b)

where x(k) ∈ ℜn represents the state vector. u(k) ∈ ℜm

represents the control input. y(k) ∈ ℜl represents the system
output. w(k) ∈ ℜ is a one-dimensional sequence of real
random process defined in the filtered probability space,
which is a wide sense stationary, second-order process with
E[w(k)] = 0 and E[w(s)w(k)] = δst [2], [3].

Let us consider the following stochastic linear quadratic
(LQ) control problem subject to (1):

minimize J(u) :=
∞
∑

k=0

E[xT (k)Qx(k) + uT (k)Ru(k)],

Q = QT ≥ 0, R = RT > 0. (2)

The following lemma plays a key technical role in this paper
[2], [3].

Lemma 1: Assume that for any u(k), the closed-loop
system is mean square stable. Suppose that the following
stochastic algebraic Riccati equation (SARE) has a solution
Y = Y ∗.

−Y +ATY A+AT
p Y Ap +Q−LTR−1L = 0, (3)

where R := R + BT
1 Y B1 + BT

1pY B1p and L := BT
1 Y A+

BT
1pY Ap.
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Then, an optimal feedback control is given by

u∗(k) = K∗x(k) = −R−1Lx(k), (4)

where J(u∗) = xT (0)Y ∗x(0).
As another important method, the feedback gain K∗ can

be obtained by solving the following semidefinite program-
ming (SDP) [6].

maximize Tr [Y ], (5a)

subject to
[

−Y +ATY A+AT
p Y Ap +Q LT

L R

]

≥ 0, Y > 0. (5b)

Moreover, Y ∗ is a maximal solution, which is the unique
optimal solution.

To this end, we consider the following system

x(k + 1) = Ax(k)+Bv(k)+

[

Apx(k)+Bpv(k)

]

w(k), (6a)

z(k) = Cx(k), x(0) = x0, (6b)

where v(k) ∈ ℜnv represents the external disturbance.
z(k) ∈ ℜnz represents the controlled output.

Definition 1: [2] Suppose that for any given 0 < T ∈ N,
there exists a unique solution x(k, 0, v) ∈ l2w(NT+1, ℜn)
of (6) with initial value x(0) = 0. In the system (6), if the
disturbance input v(k) ∈ l2w(N, ℜnv ) and the controlled
output z(k) ∈ l2w(N, ℜ

nz ), then the perturbed operator L :
l2w(N, ℜnv ) → l2w(N, ℜnz ) is defined by

Lv(k) := Cx(k, 0, v), ∀v(k) ∈ l2w(N, ℜnv ), x(0) = 0

with its norm

||L||2 := sup
v(k) ∈ l2w(N, ℜnv ),
v(k) 6= 0, x0 = 0

||z(k)||2
l2w(N, ℜnz )

||v(k)||2
l2w(N, ℜnv )

= sup
v(k) ∈ l2w(N, ℜnv ),
v(k) 6= 0, x0 = 0

E[||Cx(k)||2
l2w(N, ℜnz )]

E[||v(k)||2
l2w(N, ℜnv )]

. (7)

The following lemma can be viewed as the discrete
version.

Lemma 2: [2] If the stochastic system (6) is internally
stable and ||L|| < γ for given γ > 0, then there exists a
stabilizing solution X ≤ 0 to the following SARE

−X +ATXA+AT
pXAp − CTC −LT

γR
−1
γ Lγ = 0, (8)

where Rγ := γ2Inv
+BTXB+BT

p XBp, Lγ := BTXA+
BT

p XAp, (A+BFγ , Ap +BpFγ) is stable with

Fγ = −R−1
γ Lγ . (9)

Conversely, if (6) is internally stable and (8) has a stabilizing
solution X ≤ 0, then ||L|| < γ.

On the other hand, the gain F ∗ can also be obtained by
solving the following SDP.

maximize Tr [X], (10a)

subject to
[

−X +ATXA+AT
pXAp−C

TC LT
γ

Lγ Rγ

]

≥ 0, X < 0.(10b)

Moreover, X∗ is a minimal solution, which is the unique
optimal solution.

III. H2/H∞ CONTROL WITH MULTIPLE DECISION
MAKERS

A. PROBLEM FORMULATION

Consider the stochastic linear discrete-time system with
state-dependent noises, which involve N -decision makers

x(k + 1) = Ax(k) +Bv(k) +
N
∑

j=1

Bjuj(k)

+

[

Apx(k) +Bpv(k) +

N
∑

j=1

Bpjuj(k)

]

w(k),

x(0) = x0, (11a)

zi(k) =

[

Cix(k)
Diui(k)

]

, z(k) =











Cx(k)
D1u1(k)

...
DNuN (k)











, (11b)

where DT
i Di = Imi

, C =
[

CT
1 · · · CT

N

]T
, ui(k) ∈

l2w(N, ℜ
mi), i = 1, ... , N represents the i-th control input.

It should be noted that as compared with the existing result
of [9], the controls ui-dependent noise are considered.

Given a disturbance attenuation level γ > 0, define
performance functions

J0(u1, ... , uN , v) :=

∞
∑

k=0

E[γ2||v(k)||2 − ||z(k)||2] (12)

and

Ji(u1, ... , uN , v) :=

∞
∑

k=0

E[||zi(k)||
2], i = 1, ... , N.(13)

The infinite horizon stochastic H2/H∞ control with multiple
decision makers of system (11) is stated as follows:

Given γ > 0, find if possible strategies u∗i (k) ∈
l2w(N, ℜmi), i = 1, ... , N such that

i) u∗i (k) stabilizes system (11) internally.
ii) ||Lu∗

i
||2

= sup
v(k) ∈ l2w(N, ℜnv ),
v(k) 6= 0, x0 = 0

∞
∑

k=0

E



||Cx(k)||2 +
N
∑

j=1

||u∗j (k)||
2





∞
∑

k=0

E[||v(k)||2]

< γ2. (14)

iii) When the worst case disturbance v∗(k) ∈ l2w(N, ℜ
nv ),

if exists, is implemented in (11), u∗i (k) minimizes the
output energy

Ji(u1, ... , uN , v
∗) :=

∞
∑

k=0

E[||zi(k)||
2]

=
∞
∑

k=0

E[||Cix(k)||
2 + ||ui(k)||

2], i = 1, ... , N. (15)
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If the above (u∗1, ... , u
∗
N , v

∗) exist, we say that the infinite
horizon stochastic H2/H∞ control with multiple decision
makers is solvable. Obviously, (u∗1, ... , u

∗
N , v

∗) are the
Nash equilibria of the two functionals (12) and (13), which
satisfy

J0(u
∗
1, ... , u

∗
N , v

∗) ≤ J0(u
∗
1, ... , u

∗
N , v), (16a)

Ji(u
∗
1, ... , u

∗
N , v

∗)

≤ Ji(u
∗
1, ... , u

∗
i−1, ui, u

∗
i+1, ... , u

∗
N , v

∗),

i = 1, ... , N. (16b)

These equilibria are based on the Nash solutions and applied
to the cases of multiple decision makers [9].

B. SOLUTION TO THE MULTI-OBJECTIVE MIXED
H2/H∞ PROBLEM

First, a solution to the stochastic H2/H∞ control by
means of cross-coupled stochastic algebraic Riccati equa-
tions (CSAREs) is given.

Theorem 1: For the discrete-time stochastic perturbed sys-
tems (11), suppose that the following CSAREs have solutions
(X, Y1, ... , YN , F, K1, ... ,KN ) with X < 0 and Yi > 0,
i = 1, ... , N .

−X +AT
−FXA−F +AT

−pFXA−pF

−CTC −
N
∑

j=1

KT
j Kj − L̄

T

γ R̄
−1
γ L̄γ = 0, (17a)

F = −R̄
−1
γ L̄γ , (17b)

−Yi +AT
−iYiA−i +AT

−piYiA−pi

+CT
i Ci − L̂

T

−iR̂
−1

i L̂−i = 0, (17c)

Ki = −R̂
−1

i L̂−i, i = 1, ... , N, (17d)

where A−F := A +
∑N

j=1BjKj , A−pF := Ap +
∑N

j=1BpjKj , L̄γ := BTXA−F + BT
p XA−pF , R̄γ :=

γ2Inv
+ BTXB + BT

p XBp, A−i := A + BF +
∑N

j=1, j 6=iBjKj , A−pi := Ap +BpF +
∑N

j=1, j 6=iBpjKj ,
L̂−i := BT

i YiA−i + BT
piYiA−pi, R̂i := Imi

+ BT
i YiBi +

BT
piYiBpi.
Define the set (u∗1, ... , u

∗
N ) by

u∗i (k) := K∗
i x(k) = −R̂

−1

i L̂−ix(k), i = 1, ... , N. (18)

Then, this strategy set denotes the finite horizon H2/H∞
control.

Proof: Set Z = −X and the equation (17a) yields:

−Z +AT
−FZA−F +AT

−pFZA−pF + CTC +

N
∑

j=1

KT
j Kj

+Ľ
T

γ Ř
−1

γ Ľγ = 0, (19)

where Ľγ = BTZA−F + BT
p ZA−pF = −L̄γ , Řγ =

γ2Inv
−BTZB −BT

p ZBp > 0.
We rewrite (19) in the form

−Z +AT
−FZA−F +AT

−pFZA−pF

+CTC +CT
p Cp = 0, (20)

where C =







U
1√
2
Ř

1

2

γ F̌

Onv×n






, Cp =







Oρ×n

Onv×n

1√
2
Ř

1

2

γ F̌






where

ρ = range(CTC +
∑N

j=1K
T
j Kj), U ∈ ℜρ×n is obtained

from the factorization UTU = CTC +
∑N

j=1K
T
j Kj and

F̌ = Ř
−1

γ Ľγ = −R̄
−1
γ L̄γ = F . By using the similar

technique in [10], it is easy to prove that under the con-
sidered assumptions the system (A−F , A−pF | C, Cp) is
detectable. Hence, it is omitted.

Now, let us consider the following problem in which the
cost function (21) is minimal at Ki = K∗

i .

φ(F ) := sup
v(k)∈l2w(N, ℜnv )

∞
∑

k=0

E[γ2||v(k)||2 − ||ẑ(k)||2], (21)

ẑ(k) = C̄x(k) =
[

CT (D1K
∗
1 )

T · · · (DNK
∗
N )T

]T
x(k),

where x(k) follows from

x(k + 1)

=

(

A+

N
∑

j=1

BjK
∗
j

)

x(k) +Bv(k)

+

[(

Ap +

N
∑

j=1

BpjK
∗
j

)

x(k) +Bpv(k)

]

w(k). (22)

Note that the function φ coincides with function J0 in
Lemma 2. Applying Lemma 2 to this optimization problem
as X ⇒ P , A−F ⇒ A, A−pF ⇒ Ap and C̄ ⇒ C, yields
the fact that the function φ is minimal at

F ∗
γ = −R−1

γ Lγ ⇒ F ∗ = −R̄
−1
γ L̄γ . (23)

On the other hand, consider the following LQ problem.

ψ(Ki) := min
ui(k)∈l2w(N, ℜmi )

∞
∑

k=0

E||zi(k)||
2 (24)

and x(k) follows from

x(k + 1) =

(

A+BF ∗ +
N
∑

j=1, j 6=i

BjKj

)

x(k)+Biui(k)

+

[(

Ap+BpF
∗ +

N
∑

j=1, j 6=i

BpjKj

)

x(k)

+Bpiui(k)

]

w(k). (25)

The function ψ coincides with function Ji in Lemma 1.
Applying Lemma 1 to this optimization problem as Yi ⇒ P ,
A−i ⇒ A, A−pi ⇒ Ap and A−pi ⇒ Ap yields the fact that
the function ψ is minimal at

K∗ = −R−1L ⇒ K∗
i = −R̂

−1

i L̂−i. (26)

So (u∗1, ... , u
∗
N , v

∗) solve the finite horizon H2/H∞ control
problem of stochastic system (11).
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IV. NUMERICAL ALGORITHM

In this section, two numerical algorithms are given. The
first one is Newton’s method and the other one is SDP
algorithm.

A. Newton’s method

First, CSAREs can be changed as follows.

FX(X, F, K1, ... ,KN )

= −X+ATXA+AT
pXAp

+γ2FTF − CTC −

N
∑

j=1

KT
j Kj = 0, (27a)

F Yi
(Yi, F, K1, ... ,KN )

= −Yi+ATYiA+AT
p YiAp

+CT
i Ci +KT

i Ki = 0, i = 1, ... , N, (27b)

F F (X, F, K1, ... ,KN )

= γ2F +BTXA+BT
p XAp = 0, (27c)

FKi
(Yi, F, K1, ... ,KN )

= Ki +BT
i YiA+BT

piYiAp = 0, i = 1, ... , N, (27d)

where A := A + BF +
∑N

j=1BjKj , Ap := Ap + BF +
∑N

j=1BpjKj .
Let us define Newton’s method as follows:

x(n+1) = x(n) − [J (n)]−1f(x(n)), (28)

where

f(x(n)) :=
[

[vecF
(n)
X ]T [vecF

(n)
Y1

]T · · · [vecF
(n)
YN

]T

[vecF
(n)
F ]T [vecF

(n)
K1

]T · · · [vecF
(n)
KN

]T
]T

,

x(n) :=
[

[vecX(n)]T [vecY
(n)
1 ]T · · · [vecY

(n)
N ]T

[vecF (n)]T [vecK
(n)
1 ]T · · · [vecK

(n)
N ]T

]T

,

J (n) := J (X(n), Y
(n)
1 , ... , Y

(n)
N , F (n), K

(n)
1 , ... ,K

(n)
N )

J (X, Y1, ... , YN , F, K1, ... ,KN )

=



































J̄00 O · · · O J̄
F

00 J̄
K1

01 · · · J̄
KN

0N

O J̄00 · · · O J̄
F

10 J̄
K1

11 · · · J̄
KN

1N
...

...
. . .

...
...

...
. . .

...

O O · · · J̄00 J̄
F

N0 J̄
K1

N1 · · · J̄
KN

NN

Ĵ00 O · · · O Ĵ
F

00 Ĵ
K1

01 · · · Ĵ
KN

0N

O Ĵ11 · · · O Ĵ
F

10 Ĵ
K1

11 · · · Ĵ
KN

1N
...

...
. . .

...
...

...
. . .

...

O O · · · ĴNN Ĵ
F

N0 Ĵ
K1

N1 · · · Ĵ
KN

NN



































,

J00 := −In ⊗ In +AT ⊗AT +AT
p ⊗AT

p ,

J̄
F

00 := In ⊗ (ATXB) + [(ATXB)⊗ In]Unnv

+In ⊗ (AT
pXBp) + [(AT

pXBp)⊗ In]Unnv

+γ2(In ⊗ FT + [FT ⊗ In]Unnv
),

J̄
Ki

0i := In ⊗ (ATXBi) + [(ATXBi)⊗ In]Unmi

+In ⊗ (AT
pXBpi) + [(AT

pXBpi)⊗ In]Unmi

−(In ⊗KT
i + [KT

i ⊗ In]Unmi
),

J̄
F

i0 := In ⊗ (ATYiB) + [(ATYiB)⊗ In]Unnv

+In ⊗ (AT
p YiBp) + [(AT

p YiBp)⊗ In]Unnv
,

J̄
Ki

ii := In ⊗ (ATYiBi) + [(ATYiBi)⊗ In]Unmi

+In ⊗ (AT
p YiBpi) + [(AT

p YiBpi)⊗ In]Unmi

+In ⊗KT
i + [KT

i ⊗ In]Unmi
,

J̄
Kj

ij := In ⊗ (ATYiBj) + [(ATYiBj)⊗ In]Unmi

+In ⊗ (AT
p YiBpj) + [(AT

p YiBpj)⊗ In]Unmi
,

Ĵ00 := AT ⊗BT +AT ⊗BT
p , Ĵ

F

00 = In ⊗ R̄γ ,

Ĵ
Ki

0i := In ⊗ (BTXBi) + In ⊗ (BT
p XBpi),

Ĵ ii := AT ⊗BT
i +AT

p ⊗BT
pi,

Ĵ
F

i0 := In ⊗ (BT
i YiB +BT

piYiBp),

Ĵ
Ki

ii := In ⊗ (Imi
+BT

i YiBi +BT
piYiBpi),

Ĵ
Ki

ij := In ⊗ (BT
i YiBj +BT

piYiBpj), i 6= j.

It should be noted that the initial conditions are chosen such
that the closed loop stochastic systems are internally stable.
On the other hand, it should be noted that the choice of
initial conditions is very important because the inappropriate
ones yield other solutions or divergence. In order to obtain
the appropriate initial conditions, the inverse-time computing
[1] would be available. Furthermore, if [J (n)]−1 does not
exist, the inverse-time computing can also be used instead
of Newton’s method.

B. SDP ALGORITHM

The SDP algorithm for obtaining the strategy set is given
below.
Step 1. As the initialization procedure, solve the following
two types of SDPs independently.

maximize Tr [Y
(0)
i ], (29a)

subject to

[

Φ(0) L̂
(0)T

−i

L̂
(0)

−i R̂
(0)

i

]

≥0, i = 1, ... , N, (29b)

maximize Tr [X(0)], (30a)

subject to

[

Ψ(0) L̄
(0)T

L̄
(0)

R̄
(0)
γ

]

≥0, X(0) ≤ 0, (30b)

where Φ(0) := −Y
(0)
i + ATY

(0)
i A + AT

p Y
(0)
i Ap + CT

i Ci,

L̂
(0)

−i := BT
i Y

(0)
i A+BT

piY
(0)
i Ap, R̂

(0)

i := Imi
+BT

i Y
(0)
i Bi+

BT
piY

(0)
i Bpi, Ψ(0) := −X(0) + ATX(0)A + AT

pX
(0)Ap −

CTC, L̄
(0)

:= BTX(0)A + BT
p X

(0)Ap, R̄
(0)
γ := γInv

+

BTX(0)B +BT
p X

(0)Bp.

Step 2. Set K
(0)
i = −[R̂

(0)

i ]−1L̂
(0)

−i and X(0) :=

−[R̄
(0)
γ ]−1L̄

(0)
.
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Step 3. Solve the following two SDPs independently.

maximize Tr [Y
(k+1)
i ], (31a)

subject to

[

Φ(k) L̂
(k)T

−i

L̂
(k)

−i R̂
(k)

i

]

≥0, i = 1, ... , N, (31b)

where Φ(k) := −Y
(k+1)
i + A

(k)T
−i Y

(k+1)
i A

(k)
−i +

A
(k)T
−pi Y

(k+1)
i A

(k)T
−pi + CT

i Ci, A
(k)
−i := A + BF (k) +

∑N

j=1, j 6=iBjK
(k)
j , A

(k)
−pi := Ap + BpF

(k) +
∑N

j=1, j 6=iBpjK
(k)
j , L̂

(k)

−i := BT
i Y

(k+1)
i A

(k)
−i +

BT
piY

(k+1)
i A

(k)
−pi, R̂

(k)

i := Imi
+ BT

i Y
(k+1)
i Bi +

BT
piY

(k+1)
i Bpi.

maximize Tr [X(k)], (32a)

subject to

[

Ψ(k) L̄
(k)T

L̄
(k)

R̄
(k)
γ

]

≥0, X(k) ≤ 0, (32b)

where Ψ(k) := −X(k+1) + A
(k)T
−F X(k+1)A

(k)
−F +

A
(k)T
−pFX

(k+1)A
(k)
−pF − CTC, A(k)

−F := A +
∑N

j=1BjK
(k)
j ,

A
(k)
−pF := Ap +

∑N

j=1BpjK
(k)
j , L̄

(k)
:= BTX(k+1)A

(k)
−F +

BT
p X

(k+1)A
(k)
−pF , R̄

(k)
γ := γInv

+ BTX(k+1)B +

BT
p X

(k+1)Bp.

Step 4. Set K(k+1)
i as follows.

K
(k+1)
i = −[R̂

(k)

i ]−1L̂
(k)

−i , F
(k+1) = −[R̄

(k)
γ ]−1L̄

(k)
.(33)

Step 5. If the algorithm converges, then X(k) → X , Y (k)
i →

Yi as k → ∞, where Yi is the solution of CSAREs (17c),
STOP. Otherwise, increment k → k + 1 and go to Step 3.
If the algorithm does not converge, the proposed algorithm
would be fail.

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed
strategies, a simple numerical example is investigated. The
corresponding matrices are given below.

γ = 2, A=

[

0.5 1
0 −0.5

]

, Ap=

[

0.01 0
0 0.02

]

,

B=

[

0.1
0.5

]

, Bp=

[

0
0.05

]

,

B1=

[

1
1

]

, B2=

[

0
2

]

, B3=

[

1
−0.5

]

,

Bp1=

[

0
0.01

]

, Bp2=

[

0
0.02

]

, Bp3=

[

0
0.01

]

,

C1=I2, C2=0.5I2, C3=2I2, D1 = D2 = D3 = 1.

By solving the corresponding CSAREs (17), we obtain the
linear state feedback strategies and the solutions.

F =
[

9.5868e-3 −9.4227e-3
]

,

K1 =
[

−1.1225e-1 −6.4417e-2
]

.

K2 =
[

−1.1268e-2 4.4757e-2
]

,

K3 =
[

−3.0192e-1 −7.8399e-1
]

,

X =

[

−1.1137 −2.5414e-1
−2.5414e-1 −1.6519

]

,

Y1 =

[

1.0209 1.8549e-2
1.8549e-2 1.0349

]

.

Y2 =

[

2.5218e-1 2.2935e-3
2.2935e-3 2.5970e-1

]

,

Y3 =

[

4.1258 2.8051e-1
2.8051e-1 4.7379

]

.

It is easy to verify that these strategies satisfy the multi-
objective control purpose, respectively.

Table 1. Error Per Iterations.

n ||E(n)||
0 1.6843e+ 01
1 1.3845e− 01
2 9.5408e− 04
3 2.7064e− 09
4 2.2025e− 15

Second, the convergence property is confirmed. It is ver-
ified that the solution of the CSAREs (17) converges to
the exact solution with accuracy of E < 10−11 after four
iterations, where the function E is defined as follows:

E(n)

= ||FX(X(n), F (n), K
(n)
1 , ... ,K

(n)
N )||

+

3
∑

j=1

||F Yj
(Y

(n)
j , F (n), K

(n)
1 , ... ,K

(n)
N )||

+||F F (X
(n), F (n), K

(n)
1 , ... ,K

(n)
N )||

+

3
∑

j=1

||FKj
(Y

(n)
j , F (n), K

(n)
1 , ... ,K

(n)
N )||.

In order to verify the exactness of the solution, the remainder
per iteration by substituting solutions X(n), Y (n)

i , F (n),
K

(n)
1 , ... , K(n)

N into the (17) is computed. It can be
verified from Table 1 that Newton’s method (28) generates
the quadratic convergence.

On the other hand, LMI approach that is based on SDP
needs 52 iterations. Although the convergence of the SDP
algorithm is not guaranteed, the resulting algorithm is also
reliable because the required computation work space is
small.

VI. CONCLUSION

Infinite-horizon H2/H∞ control with multiple decision
makers for discrete-time stochastic system has been stud-
ied. Particularly, as the extension of the existing H2/H∞
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control problem that has been investigated in [9], (x, u, v)-
dependent noise was considered. Moreover, in order to
guarantee the convergence, Newton’s method was applied
to CSAREs. As a result, it has been shown that the local
quadratic convergence was guaranteed. It is well known
that the Newton’s method seems to be classical. Hence,
although the proposed algorithm does not seem novel, it is
worth pointing out that fast convergence is attained under
assumption that the appropriate initial guesses are chosen.
Furthermore, SDP algorithm was also established to reduce
the computational work space. A numerical example has
shown the validity of the proposed scheme.
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