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Abstract— In this paper, H2/H∞ control problem for linear
weakly coupled stochastic system with state and external
disturbance dependent noise involving multiple decision makers
is investigated. After defining strategy set that is based on Stack-
elberg game, the existence conditions of the proposed strategy
set that consists of cross-coupled algebraic nonlinear matrix
equations (CANMEs) with small parameter are established.
The asymptotic structure of CANMEs is shown for the first
time. Particularly, the leader’s strategy set are chosen as Pareto
strategy set. In order to obtain a solution set, a numerical
algorithm is discussed. A simple numerical example is given to
demonstrate the efficiency of the proposed method.

I. INTRODUCTION

The stochastic dynamic games for both continuous-time

and discrete-time systems have been widely studied [1], [2],

[3], [4]. Recently, it is well known that Stackelberg strategy

is important hierarchical strategy [8], [9], [10]. It has been

shown that the solution of Stackelberg strategy involves a

hierarchical combination of some optimization problems [5],

[11]. In order to obtain strategy set, algebraic cross-coupled

nonlinear matrix equations should be solved. However, a

little attention was paid to numerical approaches for solving

such equations [11], [12].

H2/H∞ control [6], [7] for a class of stochastic systems

against disturbance has attracted considerable attention and is

now widely applied to various practical fields. These results

are based on the Nash solutions. However, it should be

pointed out that limited results are useful for one player

case. On the other hand, when multiple decision makers exist,

infinite horizon H2/H∞ control problems for stochastic and

Markov jump linear stochastic systems were considered [11],

[12]. Although these results have been contributed to infi-

nite horizon H2/H∞ control design with multiple decision

makers, weakly-coupled linear systems are not investigated.

Although over the past decade, weakly-coupled large scale

stochastic systems have been extensively investigated (see
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[13] and reference therein), the numerical algorithm for

solving large-scale equations does not seem enough.

This paper investigates H2/H∞ control problem for

a class of continuous-time weakly-coupled linear systems

with state-dependent noise, which are expressed by the

Itô stochastic differential equations. It is noteworthy that

earlier studies on the theory for the hierarchical strategy

set did not take into consideration the large-scale systems.

The main contributions of this paper are as follows. First,

stochastic Stackelberg games are introduced by utilizing the

existing results [12]. It should be noted that the considered

problem is an extension of own result [12] in the sense

that weakly-coupled systems are investigated. In order to ob-

tain a strategy set, cross-coupled algebraic nonlinear matrix

equations (CANMEs) with small coupling parameter ε are

formulated. After introducing an asymptotic structure with

positive definiteness for CANMEs solutions, a novel numer-

ical algorithm for solving CANMEs is discussed. Finally,

in order to demonstrate the effectiveness of the proposed

scheme, a simple numerical example is provided.

Notation: The notations used in this paper are fairly standard.

The superscript T denotes matrix transpose. In denotes the

n× n identity matrix. E[·] denotes the expectation operator.

δij denotes the Kronecker delta. Tr denotes the trace of

a matrix. block diag denotes a block diagonal matrix. ⊗
denotes the Kronecker product. Ulm denotes a permutation

matrix in the Kronecker matrix sense such that UlmvecM =
vecMT , M ∈ ℜl×m. L2

F ([0, ∞), ℜk) denotes the space

of non-anticipative stochastic processes u(t) ∈ ℜk with

respect to an increasing σ-algebras Ft, t ≥ 0 satisfying

E[
∫

∞

0
||u(t)||2dt] < ∞.

II. PROBLEM FORMULATION

Consider a linear weakly couple stochastic system gov-

erned by Itô differential equation with multiple decision

makers defined by

dx(t) =

[

Aεx(t)+
2

∑

j=1

Bjεuj(t)+B0εv(t)

]

dt

+Cεx(t)dw(t), (1a)

z(t) = Eεx(t) +

2
∑

j=1

Gjεuj(t), (1b)

where x(t) ∈ ℜn, x(0) = x0 represents the state vector.

ui(t) ∈ ℜmi , i = 1, 2 represent the i-th control inputs.

v(t) ∈ ℜnv represents the external disturbance. z(t) ∈
L2
F ([0, ∞), ℜnz ) represents the controlled output. w(t) ∈ ℜ
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is a one-dimensional standard Wiener process defined in the

filtered probability space [6], [7].

Moreover, let us define the following matrices.

x(t) :=

[

x1(t)
x2(t)

]

, xi(t) ∈ ℜni , n = n1 + n2,

Aε :=

[

A11 εA12

εA21 A22

]

, Cε :=

[

C11 εC12

εC21 C22

]

,

B1ε :=

[

B111

εB121

]

, B2ε :=

[

εB212

B222

]

,

B0ε :=

[

B011 εB012

εB021 B022

]

, Eε :=

[

E11 εE12

εET
12 εE22

]

,

G1ε :=

[

G111

εG121

]

, G2ε :=

[

εG212

G222

]

.

To simplify our discussion, the following assumption is

made.

Assumption 1: (i) ET
ε Giε = 0, i = 1, 2.

(ii) GT
iεGjε = 0, i 6= j.

(iii) GT
iεGiε = Imi

, i = 1, 2.

The cost performances are defined by

J0(u1, u2, v, x0)

= E

[
∫

∞

0

[γ2||v(t)||2 − ||z(t)||2]dt
]

, (2a)

Ji(u1, u2, v, x0)

= E

[
∫

∞

0

[xT (t)Qiεx(t) + ||ui(t)||2]dt
]

, (2b)

where

Q1ε :=

[

Q111 εQ112

εQT
112 εQ122

]

, Q2ε :=

[

εQ211 εQ212

εQT
212 Q222

]

.

It should be noted that a given γ is chosen by the controller

designer.

We consider the hierarchical optimization problem that is

based on Pareto optimality.

Each player wants to minimize his own cost described in

(2b). As the definition of Pareto efficient solution [4], let us

combine the individual cost functions in (2b) into a team

cost function according to the following.

Jρ(u1, u2, v, x0) :=

2
∑

j=1

ρjJj(u1, u2, v, x0)

ρ1 + ρ2 = 1, 0 < ρi < 1, i = 1, 2. (3)

It is well known that a Pareto solution is a set (u1, u2),
which minimizes Jρ(u1, u2, v, x0) for any v = v(t).
Moreover, the following inequality holds.

J0(u1, u2, v0(u1, u2), x0)

= min
v

J0(u1, u2, v, x0) (4)

and

v∗ = v0(u∗

1, u∗

2). (5)

We assume that Pareto optimal solution based on closed-loop

Stackelberg strategy has the following form.

ui(x, t) = Fiεx(t). (6)

It is shown that the gain Fiε is dependent on the initial state

of the systems x(0). To eliminate this dependence on x(0),
it is assumed that E[x(0)] = 0, E[x(0)xT (0)] = In.

Lemma 1: [12] Suppose that a set of cross-coupled alge-

braic nonlinear matrix equations (CANMEs) (7) has solu-

tions Miε ≥ 0, Niε, i = 0, 1 and Fiε, i = 1, 2.

F 1 = AT
UεM0ε +M0εAUε + CT

ε M0εCε

−γ−2M0εS0εM0ε +QFε = 0, (7a)

F 2 = AT
UεMρε +MρεAUε + CT

ε MρεCε +QUε = 0, (7b)

F 3 = AUεN0ε +N0εA
T
Uε + CεN0εC

T
ε

+γ−2(S0εMρεNρε +NρεMρεS0ε) = 0, (7c)

F 4 = AUεNρε +NρεA
T
Uε + CεNρεC

T
ε + In = 0, (7d)

F
i
5 = Fiε(N0ε+ρiNρε)+BT

i (M0εN0ε+MρεNρε) = 0,(7e)

where

QFε := ET
ε Eε +

2
∑

j=1

FT
jεFjε,

AUε = Aε +

2
∑

j=1

BjεFjε + γ−2S0εM0ε,

QUε :=

2
∑

j=1

ρj [Qjε + FT
jεFjε], S0ε = B0εB

T
0ε.

Then, this strategy set is called the Nash-Pareto hierarchical

strategy.

III. ASYMPTOTIC STRUCTURE FOR CANMES

In this section, asymptotic structures for CANMEs (7)

are investigated. Without loss of generality, the following

analysis requires a basic assumption [7].

Assumption 2: (Aii, Biii | Cii), i = 1, 2 are stabilizable

and (Aii, Cii |
√
Qiii), i = 1, 2 are exactly observable.

Since Aε, Cε, Biε, B0ε, Eε and Giε include ε, suppose

that solutions M0ε, Mρε, N0ε, Nρε and Fiε, i = 1, 2 of

CANMEs (7) have the following structure [12], [13].

M0ε :=

[

M011 εM012

εMT
012 M022

]

, Mρε :=

[

Mρ11 εMρ12

εMT
ρ12 Mρ22

]

,

N0ε :=

[

N011 εN012

εNT
012 N022

]

, Nρε :=

[

Nρ11 εNρ12

εNT
ρ12 Nρ22

]

,

F1ε :=
[

F111 εF122

]

, F2ε :=
[

εF211 F222

]

.

By substituting these matrices into CANMEs (7), setting

ε = 0, and partitioning CANMEs (7), the following reduced-

order cross-coupled stochastic algebraic Lyapunov and Ric-

cati equations (RCSALREs) are obtained. It should be noted

that M̄0ii, N̄0ii, M̄ρii, N̄ρii and F̄iii, i = 1, 2 are the limiting
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solutions of CANMEs (7) as ε → +0.

AT
UiiM̄0ii + M̄0iiAUii + CT

iiM̄0iiCii

−γ−2M̄0iiB0iiB
T
0iiM̄0ii + ET

iiEii + FT
iiiFiii = 0, (8a)

AT
UiiM̄ρii + M̄ρiiAUii + CT

iiM̄ρiiCii

+ρi(Qiii + FT
iiiFiii) = 0, (8b)

AUiiN̄0ii + N̄0iiA
T
Uii + CiiN̄0iiC

T
ii

+γ−2(B0iiB
T
0iiM̄ρiiN̄ρii + N̄ρiiM̄ρiiB0iiB

T
0ii) = 0,(8c)

AUiiN̄ρii + N̄ρiiA
T
Uii + CiiN̄ρiiC

T
ii + Ini

= 0, (8d)

Fiii(N̄0ii + ρiN̄ρii)

+BT
iii(M̄0iiN̄0ii + M̄ρiiN̄ρii) = 0, (8e)

where i = 1, 2, AUii := Aii +BiiiFiii + γ−2B0iiB
T
0iiM0ii.

Theorem 1: Under Assumption 2, suppose that the fol-

lowing matrix is nonsingular.

J̄ :=

















J̄11 0 0 0 J̄15 J̄16
J̄21 J̄11 0 0 J̄25 J̄26
J̄31 J̄32 J̄33 J̄34 J̄35 J̄36
J̄41 0 0 J̄33 J̄45 J̄46
J̄51 J̄52 J̄53 J̄54 J̄55 0
J̄61 J̄62 J̄63 J̄64 0 J̄66

















, (9)

where

J̄11 = AT
Ū
⊗ In + In ⊗AT

Ū
+ C̄T ⊗ C̄T ,

J̄15 = (B̄T
1 M̄0 + F̄1)

T ⊗ In + In ⊗ (B̄T
1 M̄0 + F̄1)

T ,

J̄16 = (B̄T
2 M̄0 + F̄2)

T ⊗ In + In ⊗ (B̄T
2 M̄0 + F̄2)

T ,

J̄21 = γ−2[(M̄ρS0)⊗ In + In ⊗ (M̄ρS0)],

J̄25 = (B̄T
1 M̄ρ + ρ1F̄1)

T ⊗ In + In ⊗ (B̄T
1 M̄ρ + ρ1F̄1)

T ,

J̄26 = (B̄T
2 M̄ρ + ρ2F̄2)

T ⊗ In + In ⊗ (B̄T
2 M̄ρ + ρ2F̄2)

T ,

J̄31 = γ−2[S0 ⊗ N̄0 + N̄0 ⊗ S0],

J̄32 = γ−2[S0 ⊗ N̄ρ + N̄ρ ⊗ S0],

J̄33 = AŪ ⊗ In + In ⊗AŪ + C̄ ⊗ C̄,

J̄34 = γ−2[(S0M̄ρ)⊗ In + In ⊗ (S0M̄ρ)],

J̄35 = γ−2[B̄1 ⊗ N̄0 + N̄0 ⊗ B̄1],

J̄36 = γ−2[B̄2 ⊗ N̄0 + N̄0 ⊗ B̄2],

J̄41 = γ−2[S0 ⊗ N̄ρ + N̄ρ ⊗ S0],

J̄45 = B̄1 ⊗ N̄ρ + N̄ρ ⊗ B̄1, J̄46 = B̄2 ⊗ N̄ρ + N̄ρ ⊗ B̄2,

J̄51 = N̄0 ⊗ B̄T
1 , J̄52 = N̄ρ ⊗ B̄T

1 ,

J̄53 = In ⊗ (F̄1 + B̄T
1 M̄0), J̄54 = In ⊗ (ρ1F̄1 + B̄T

1 M̄ρ),

J̄55 = N̄0 + ρ1N̄ρ,

J̄61 = N̄0 ⊗ B̄T
2 , J̄62 = N̄ρ ⊗ B̄T

2 ,

J̄63 = In ⊗ (F̄2 + B̄T
2 M̄0), J̄64 = In ⊗ (ρ2F̄2 + B̄T

2 M̄ρ),

J̄66 = N̄0 + ρ2N̄ρ,

AŪ := block diag
(

AU11 AU22

)

,

C̄ := block diag
(

C111 C222

)

,

B̄1 :=

[

B111

0

]

, B̄2 :=

[

0
B222

]

,

M̄0 := block diag
(

M̄011 M̄022

)

,

M̄ρ := block diag
(

M̄ρ11 M̄ρ22

)

,

N̄0 := block diag
(

N̄011 N̄022

)

,

N̄ρ := block diag
(

N̄ρ11 N̄ρ22

)

,

F̄1 :=
[

F111 0
]

, F̄2 :=
[

0 F222

]

.

Then, there exists a small constant ε∗ such that for all ε ∈
(0, ε∗), CANMEs (7) admit positive definite solutions M0ε,

Mρε, N0ε, Nρε and feedback gains Fiε that can be expressed

as

M0ε = M̄0 +O(ε), Mρε = M̄ρ +O(ε), (10a)

N0ε = N̄0 +O(ε), Nρε = N̄ρ +O(ε), (10b)

Fiε = F̄i +O(ε), i = 1, 2. (10c)

Proof: The proof can be done by using the implicit

function theorem to CANMEs (7). To do so, it is enough

to show that the corresponding Jacobian is nonsingular at

ε = 0. First, the derivative of solutions for CANMEs (7) is

given below.

J := ∇(M0ε, Mρε, N0ε, Nρε, F1ε, F2ε)

:=









































∂F 1

∂M0ε

∂F 1

∂Mρε

∂F 1

∂N0ε

∂F 1

∂Nρε

∂F 1

∂F1ε

∂F 1

∂F2ε
∂F 2

∂M0ε

∂F 2

∂Mρε

∂F 2

∂N0ε

∂F 2

∂Nρε

∂F 2

∂F1ε

∂F 2

∂F2ε
∂F 3

∂M0ε

∂F 3

∂Mρε

∂F 3

∂N0ε

∂F 3

∂Nρε

∂F 3

∂F1ε

∂F 3

∂F2ε
∂F 4

∂M0ε

∂F 4

∂Mρε

∂F 4

∂N0ε

∂F 4

∂Nρε

∂F 4

∂F1ε

∂F 4

∂F2ε

∂F 1
5

∂M0ε

∂F 1
5

∂Mρε

∂F 1
5

∂N0ε

∂F 1
5

∂Nρε

∂F 1
5

∂F1ε

∂F 1
5

∂F2ε

∂F 2
5

∂M0ε

∂F 2
5

∂Mρε

∂F 2
5

∂N0ε

∂F 2
5

∂Nρε

∂F 2
5

∂F1ε

∂F 2
5

∂F2ε









































. (11)

Hence, the Jacobian at ε = 0 is given by (9). That is,

J̄ = J
∣

∣

ε=0
. By using the assumption that the Jacobian is

nonsingular, it is proved that the asymptotic structure has

the form of (10) from the implicit function theorem.

IV. COMPUTATIONAL ALGORITHM

In order to obtain the solutions of CANMEs (7), the fol-

lowing numerical computation that is based on the Newton’s

method is given:

A
(n)T
Uε M

(n+1)
0ε +M

(n+1)
0ε A

(n)
Uε + CTM

(n+1)
0ε C

+
2

∑

j=1

[(

BT
jεM

(n)
0ε + F

(n)
jε

)T

F
(n+1)
jε

+F
(n+1)T
jε

(

BT
jεM

(n)
0ε + F

(n)
jε

)]

−L
(n)
1ε = 0, (12a)

γ−2

(

M (n)
ρε S0εM

(n+1)
0ε +M

(n+1)
0ε S0εM

(n)
ρε

)

+A
(n)T
Uε M (n+1)

ρε +M (n+1)
ρε A

(n)
Uε + CTM (n+1)

ρε C

+

2
∑

j=1

[(

BT
jεM

(n)
ρε + ρjF

(n)
jε

)T

F
(n+1)
jε
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+F
(n+1)T
jε

(

BT
jεM

(n)
ρε + ρjF

(n)
jε

)]

−L
(n)
2ε = 0, (12b)

γ−2

(

N
(n)
0ε M

(n+1)
0ε S0ε + S0εM

(n+1)
0ε N

(n)
0ε

)

+γ−2

(

N (n)
ρε M (n+1)

ρε S0ε + S0εM
(n+1)
ρε N (n)

ρε

)

+
2

∑

j=1

(

N
(n)
0ε F

(n+1)T
jε BT

jε +BjεF
(n+1)
jε N

(n)
0ε

)

+A
(n)
UεN

(n+1)
0ε +N

(n+1)
0ε A

(n)T
Uε + CN

(n+1)
0ε CT

+γ−2

(

S0εM
(n)
ρε N (n+1)

ρε +N (n+1)
ρε M (n)

ρε S0ε

)

−L
(n)
3ε = 0, (12c)

γ−2

(

N (n)
ρε M

(n+1)
0ε S0ε + S0εM

(n+1)
0ε N (n)

ρε

)

+
2

∑

j=1

(

N (n)
ρε F

(n+1)T
jε BT

jε +BjεF
(n+1)
jε N (n)

ρε

)

+A
(n)
UεN

(n+1)
ρε +N (n+1)

ρε A
(n)T
Uε

+CN (n+1)
ρε CT −L

(n)
4ε = 0, (12d)

BT
i

(

M
(n+1)
0ε N

(n)
0ε +M (n+1)

ρε N (n)
ρε

)

+F
(n+1)
iε

(

N
(n)
0ε +ρiN

(n)
ρε

)

+

(

F
(n)
iε +BT

i M
(n)
0ε

)

N
(n+1)
0ε

+

(

ρiF
(n)
iε +BT

i M
(n)
ρε

)

N (n+1)
ρε −L

i(n)
5ε = 0, (12e)

where i = 1, 2,

A
(n)
Uε = A+

2
∑

j=1

BjεF
(n)
jε + γ−2S0εM

(n)
0ε ,

L
(n)
1ε =

2
∑

j=1

(

M
(n)
0ε BjεF

(n)
jε + F

(n)T
jε BT

jεM
(n)
0ε

)

+γ−2M
(n)
0ε S0εM

(n)
0ε − ET

ε Eε +

2
∑

j=1

F
(n)T
jε F

(n)
jε ,

L
(n)
2ε = γ−2

(

M (n)
ρε S0εM

(n)
0ε +M

(n)
0ε S0εM

(n)
ρε

)

+

2
∑

j=1

(

M (n)
ρε BjεF

(n)
jε + F

(n)T
jε BT

jεM
(n)
ρε

)

−
2

∑

j=1

ρi

(

Qjε − F
(n)T
jε F

(n)
jε

)

,

L
(n)
3ε = γ−2

(

N
(n)
0ε M

(n)
0ε S0ε + S0εM

(n)
0ε N

(n)
0ε

)

+γ−2

(

N (n)
ρε M (n)

ρε S0ε + S0εM
(n)
ρε N (n)

ρε

)

+

2
∑

j=1

(

N
(n)
0ε F

(n)T
jε BT

jε +BjεF
(n)
jε N

(n)
0ε

)

,

L
(n)
4ε = γ−2

(

N (n)
ρε M

(n)
0ε S0ε + S0εM

(n)
0ε N (n)

ρε

)

+

2
∑

j=1

(

N (n)
ρε F

(n)T
jε BT

jε +BjεF
(n)
jε N (n)

ρε

)

− In,

L
i(n)
5ε =

(

F
(n)
iε +BT

i M
(n)
0ε

)

N
(n)
0ε

+

(

ρiF
(n)
iε +BT

i M
(n)
ρε

)

N (n)
ρε , i = 1, 2.

Moreover, the initial conditions M
(0)
0ε , M

(0)
ρε , N

(0)
0ε , N

(0)
ρε and

F
(0)
iε , i = 1, 2 are chosen as given below.

M
(0)
0ε = M̄0, M (0)

ρε = M̄ρ,

N
(0)
0ε = N̄0, N (0)

ρε = N̄ρ,

F
(0)
1ε = F̄1, F

(0)
2ε = F̄2.

The following theorem indicates that the proposed algo-

rithm (12) that is based on the Newton’s method attains the

quadratic convergence.

Theorem 2: Suppose that the Jacobian (9) is nonsingular.

Under Assumption 2, there exists the small constant ε̄ such

that for all ε ∈ (0, ε̄), ε̄ ≤ ε∗, the iterative algorithm

(12) converges to the exact solutions with the rate of the

quadratic convergence. Moreover, the convergence solutions

attain a local unique solutions of the CANMEs (7) in the

neighborhood of the initial conditions. That is, the following

conditions are satisfied.

||M (n)
0ε −M0ε|| = O(ε2

n

), ||M (n)
ρε −Mρε|| = O(ε2

n

),(13a)

||N (n)
0ε −N0ε|| = O(ε2

n

), ||N (n)
ρε −Nρε|| = O(ε2

n

), (13b)

||F (n)
iε − Fiε|| = O(ε2

n

), (13c)

where i = 1, 2, n = 0, 1, 2, ... .

Proof: The proof is given directly by applying the

Newton-Kantorovich theorem [14] for CANMEs (7). It is

immediately obtained from CANMEs (7) that there exists a

positive scalar γ such that for any solutions

||∇(Ma
0ε, Ma

ρε, Na
0ε, Na

ρε, F a
1ε, F

a
2ε)

−∇(M b
0ε, M b

ρε, N b
0ε, N b

ρε, F b
1ε, F

b
2ε)‖

≤ γ||([vecMa
0ε]

T , [vecMa
ρε]

T , [vecNa
0ε]

T ,

[vecNa
ρε]

T , [vecF a
1ε]

T , [vecF a
2ε]

T )

−([vecM b
0ε]

T , [vecM b
ρε]

T , [vecN b
0ε]

T ,

[vecN b
ρε]

T , [vecF b
1ε]

T , [vecF b
2ε])||. (14)

Moreover, it is easy to verify that

∇(M
(0)
0ε , M

(0)
ρε , N

(0)
0ε , N

(0)
ρε , F

(0)
1ε , F

(0)
2ε ) = J̄ + O(ε)

is nonsingular because for small ε, using (9) and J̄

is also nonsingular. Therefore, there exists β such that

β = ||[∇(M
(0)
0ε , M

(0)
ρε , N

(0)
0ε , N

(0)
ρε , F

(0)
1ε , F

(0)
2ε )]−1||.

On the other hand, since

||F i(M
(0)
0ε , M

(0)
ρε , N

(0)
0ε , N

(0)
ρε , F

(0)
1ε , F

(0)
2ε )|| = O(ε), i =

1, ... , 4, ||F i
5(M

(0)
0ε , M

(0)
ρε , N

(0)
0ε , N

(0)
ρε , F

(0)
1ε , F

(0)
2ε )|| =

O(ε), i = 1, 2, there exists η such that η ≤
||[∇(M

(0)
0ε , M

(0)
ρε , N

(0)
0ε , N

(0)
ρε , F

(0)
1ε , F

(0)
2ε )]−1|| ·

(
∑4

j=1 ||F j || +
∑2

j=1 ||F
j
5||) = O(ε). Thus, there exists θ
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such that θ = βηγ < 2−1 because η = O(ε). Finally, the

Newton-Kantorovich theorem results in the desired results

(13).

It should be noted that the 0-th order algebraic equations

(8) are nonlinear matrix equations. Hence, it is hard to solve

these equations. However, if γ is sufficiently large, these

equations can be changed as follows.

(Aii +BiiiFiii)
T M̂0ii + M̂0ii(Aii +BiiiFiii)

+CT
iiM̂0iiCii + ET

iiEii + FT
iiiFiii = 0, (15a)

AT
iiM̂ρii + M̂ρiiAii + CT

iiM̂ρiiCii

−ρ−2
i M̂ρiiBiiiB

T
iiiM̂ρii + ρiQiii = 0, (15b)

N̂0ii = 0, (15c)

(Aii+BiiiFiii)N̂ρii + N̂ρii(Aii+BiiiFiii)
T

+CiiN̂ρiiC
T
ii + Ini

= 0, (15d)

F̂iii = −ρ−1
i BT

iiiM̂ρii. (15e)

It is worth pointing out that these equations can be solved

separately. These initial conditions would be useful when

the parameter γ is sufficiently large. However, even if this

parameter is small, the same initial conditions would be

reliable. In fact, this important feature can be verified in

numerical section.

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed

scheme, a simple example is given. The system matrices are

given as follows.

ε = 0.01, Aε =

[

0.2 ε
−ε −1

]

, Cε =

[

0.1 0.05ε
0.05ε 0.1

]

,

B1ε =

[

−1
ε

]

, B2ε =

[

0.5ε
2

]

, B0ε =

[

0.1 ε
ε 0.2

]

,

Eε =









1 ε
ε 2
0 0
0 0









, G1ε =









0
0
1
ε









, G2ε =









0
0
ε
0.5









,

Q1ε =

[

1 0
0 2ε

]

, Q2ε =

[

0 0
0 1

]

, ρ1 = ρ2 = 0.5.

First, in order to obtain initial conditions, 0-th order solutions

of (8) is solved. It should be noted that γ = 5 is chosen.

These solutions are given below.

M
(0)
0ε = M̄0 = block diag

(

1.2261 9.8110e-01
)

,

M (0)
ρε = M̄ρ = block diag

(

6.1319e-01 1.5496e-01
)

,

N
(0)
0ε = N̄0 = block diag

(

1.1767e-04 2.4846e-05
)

,

N (0)
ρε = N̄ρ = block diag

(

4.8977e-01 2.2384e-01
)

,

F
(0)
1ε = F̄1 =

[

1.2264 0
]

,

F
(0)
2ε = F̄2 =

[

0 −6.2015e-01
]

.

These solutions were obtained by using the other Newton’s

method. On the other hand, even if the parameter γ is small

for γ = 5, other initial conditions that are based on (15) are

computed separately. These solutions are given below.

M̂0 = block diag
(

1.2258 9.8120e-01
)

,

M̂ρ = block diag
(

6.1290e-01 1.5485e-01
)

,

N̂0 = 0,

N̂ρ = block diag
(

4.8981e-01 2.2383e-01
)

,

F̂1 =
[

1.2258 0
]

,

F̂2 =
[

0 −6.1942e-01
]

.

It is easy to verify that these solutions seem to be very

close even if the parameter γ is small. Therefore, this initial

condition can also be worked well.

It should be noted that the Newton’s method (12) con-

verges to the exact solution with a computational error of

the order of e-14 after three iterations. The convergence

property is given by Table 1.

Table 1.

n
∑4

j=1 ||F j ||+
∑2

j=1 ||F
j
5||

0 5.7596455805e-02
1 5.6284043724e-04
2 1.5060512883e-08
3 2.0901004009e-15

It is easy to verify that the quadratic convergence can be

attained. The exact strategies Fi, i = 1, 2 and the solutions

of CANMEs (7) are given below.

F1ε =
[

1.2263 −2.7333e-04
]

,

F2ε =
[

−1.1942e-02 −6.2910e-01
]

,

M0ε =

[

1.2260 7.6610e-03
7.6610e-03 9.7583e-01

]

,

Mρε =

[

6.1317e-01 1.4355e-03
1.4355e-03 1.5720e-01

]

,

N0ε =

[

1.1896e-04 1.1539e-05
1.1539e-05 2.4686e-05

]

,

Nρε =

[

4.8976e-01 −2.7093e-03
−2.7093e-03 2.2209e-01

]

.

VI. CONCLUSIONS

In this paper, an H2/H∞ control problem for a class of

weakly coupled stochastic system governed by Itô differen-

tial equation with state and external disturbance dependent

noise involving multiple decision makers was discussed

by using a Stackelberg game approach. After establishing

the asymptotic structure, Newton’s method was derived to

solve CANMEs. Particularly, the computation of the initial

conditions was discussed deeply. As a result, the initial

conditions can be obtained separately and the reduced-order

computation is only needed. Finally, the effectiveness of

the numerical algorithms was confirmed in the numerical

example.
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