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Abstract— In this paper, H>/H., control problem for linear
weakly coupled stochastic system with state and external
disturbance dependent noise involving multiple decision makers
is investigated. After defining strategy set that is based on Stack-
elberg game, the existence conditions of the proposed strategy
set that consists of cross-coupled algebraic nonlinear matrix
equations (CANMEs) with small parameter are established.
The asymptotic structure of CANMEs is shown for the first
time. Particularly, the leader’s strategy set are chosen as Pareto
strategy set. In order to obtain a solution set, a numerical
algorithm is discussed. A simple numerical example is given to
demonstrate the efficiency of the proposed method.

I. INTRODUCTION

The stochastic dynamic games for both continuous-time
and discrete-time systems have been widely studied [1], [2],
[31, [4]. Recently, it is well known that Stackelberg strategy
is important hierarchical strategy [8], [9], [10]. It has been
shown that the solution of Stackelberg strategy involves a
hierarchical combination of some optimization problems [5],
[11]. In order to obtain strategy set, algebraic cross-coupled
nonlinear matrix equations should be solved. However, a
little attention was paid to numerical approaches for solving
such equations [11], [12].

Hy/H control [6], [7] for a class of stochastic systems
against disturbance has attracted considerable attention and is
now widely applied to various practical fields. These results
are based on the Nash solutions. However, it should be
pointed out that limited results are useful for one player
case. On the other hand, when multiple decision makers exist,
infinite horizon Hs/H ., control problems for stochastic and
Markov jump linear stochastic systems were considered [11],
[12]. Although these results have been contributed to infi-
nite horizon Hs/H,, control design with multiple decision
makers, weakly-coupled linear systems are not investigated.
Although over the past decade, weakly-coupled large scale
stochastic systems have been extensively investigated (see
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[13] and reference therein), the numerical algorithm for
solving large-scale equations does not seem enough.

This paper investigates Hs/H., control problem for
a class of continuous-time weakly-coupled linear systems
with state-dependent noise, which are expressed by the
Itd stochastic differential equations. It is noteworthy that
earlier studies on the theory for the hierarchical strategy
set did not take into consideration the large-scale systems.
The main contributions of this paper are as follows. First,
stochastic Stackelberg games are introduced by utilizing the
existing results [12]. It should be noted that the considered
problem is an extension of own result [12] in the sense
that weakly-coupled systems are investigated. In order to ob-
tain a strategy set, cross-coupled algebraic nonlinear matrix
equations (CANMESs) with small coupling parameter € are
formulated. After introducing an asymptotic structure with
positive definiteness for CANME:s solutions, a novel numer-
ical algorithm for solving CANME:s is discussed. Finally,
in order to demonstrate the effectiveness of the proposed
scheme, a simple numerical example is provided.
Notation: The notations used in this paper are fairly standard.
The superscript 1" denotes matrix transpose. I,, denotes the
n x n identity matrix. E[-] denotes the expectation operator.
0;; denotes the Kronecker delta. Tr denotes the trace of
a matrix. block diag denotes a block diagonal matrix. ®
denotes the Kronecker product. U;,, denotes a permutation
matrix in the Kronecker matrix sense such that Uj,,,vecM =
veeMT, M € R>*™. L4([0, 0o), R*) denotes the space
of non-anticipative stochastic processes u(t) € R* with
respect to an increasing o-algebras Fy, ¢ > 0 satisfying
B[ Ju(t)|2dt] < oc.

II. PROBLEM FORMULATION

Consider a linear weakly couple stochastic system gov-
erned by Itd differential equation with multiple decision
makers defined by

dz(t) = {Asx(t)ﬁLZ Bjeu;(t)+Boou(t) | dt

j=1
+C.x(t)dw(t), (1a)
2
2(t) = Bea(t) + Y Gjeus(t), (1b)
j=1

where z(t) € R", z(0) = z° represents the state vector.
u;(t) € R™, ¢ = 1, 2 represent the i-th control inputs.
v(t) € R"™ represents the external disturbance. z(t) €
LZ4.([0, 00), R"=) represents the controlled output. w(t) € R



is a one-dimensional standard Wiener process defined in the
filtered probability space [6], [7].
Moreover, let us define the following matrices.

2(t) = {xl(t) } L 2i() € R, m=ny + o,

.’EQ(t)
A — Al el C. — Cn  eCr2
€ €loy Age |7 % €Cyp Oy |’
[ By | €Ba12
B = B =
te L eBia1 ] e [ Ba2s ] ’
Bo. i— [ Boi1 B2 B o= E11 eBrs
" | eBo Boz |7 77T | eEly, eEy |’
[ G111 ] eGaia
Gie = , Gog := .
1 | €G1a1 | 2 G222

To simplify our discussion, the following assumption is
made.

Assumption 1: (i) ErG;.=0,i=1, 2.

(i) GLG;.=0,i+#].

(i) GLGie=1I,,i=1, 2.

The cost performances are defined by

J()(Ul, u2, v, .270)

= 5| [ Bl - 0P a
0
Ji(u1, ug, v, 2°)
=E{ / [mT(t)Qing|ui(t)|2]dt}, (2b)
where 0
Qe = [ Q111 €Q112} Qs = {562211 5Q212}
e eQTy €Qian |7 ¥ eQFs Qe |’

It should be noted that a given ~ is chosen by the controller
designer.

We consider the hierarchical optimization problem that is
based on Pareto optimality.

Each player wants to minimize his own cost described in
(2b). As the definition of Pareto efficient solution [4], let us
combine the individual cost functions in (2b) into a team
cost function according to the following.

2
Jo(ur, uz, v, ) f:ZPij(Ul, uz, v, z°)
j=1

prtpe=1 0<p; <1, i=1, 2 3)

It is well known that a Pareto solution is a set (u1, us),
which minimizes J,(u1, ug, v, %) for any v = v(t).
Moreover, the following inequality holds.

Jo(uy, uz, v%(u1, uz), 2°)

= min Jo(ui, uz, v, z°) (€))
and
v* = vo(uf, uy). (5)

We assume that Pareto optimal solution based on closed-loop
Stackelberg strategy has the following form.

ui(x, t) = Fiex(t). (6)
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It is shown that the gain Fj. is dependent on the initial state
of the systems z(0). To eliminate this dependence on x(0),
it is assumed that E[z(0)] = 0, E[z(0)27(0)] = I,..

Lemma 1: [12] Suppose that a set of cross-coupled alge-
braic nonlinear matrix equations (CANMESs) (7) has solu-
tions M;. > 0, Nz, t =0, 1 and Fi., i =1, 2.

Fy = AL _My. + My Ay + CT My.C.

—y 2 MoSoe Mo + Qpe =0, (7a)
Fy= AL M, + M,c Ay + CIM,.C. + Que =0, (7b)
F3 = Ay.No. + No. AL, + C.Ny.CT

+972(S0e Mpe Npe + NpeM,peSoc) = 0, (Tc)
Fy=Ay.N,. + N, A}, + C.N,.CT + I, = 0, (7d)
F§ = Fic(Noc+piNpe)+ B/ (MoeNoe + My Npe) = 0,(7e)

where

2
Qpe = E'E.+ ) F[lFj,

j=1

2
AUE = Ae + Z BjEFjE + 772SOEM067

j=1

2
QUE = ij [Qje + F]'T;FjeL Soe = BOaBg;--

j=1

Then, this strategy set is called the Nash-Pareto hierarchical
strategy.

III. ASYMPTOTIC STRUCTURE FOR CANMES

In this section, asymptotic structures for CANMEs (7)
are investigated. Without loss of generality, the following
analysis requires a basic assumption [7].

Assumption 2: (A, By | Cii), i =1, 2 are stabilizable
and (A, Cii | VQii), t =1, 2 are exactly observable.

Since A., C., Bjc, Boe, FE: and G, include ¢, suppose
that solutions My., M,., Noe, Nye and Fie, ¢ = 1, 2 of
CANMEs (7) have the following structure [12], [13].

Mo11  eMop1o Mpy1  eMpo
My, = M, = L P
0e |:€Mg12 M022 ’ pe 8MZ12 Mpgg
N, = Noi1 eNo12 — | Nou1 eNpr2
€ EN(,]GQ N022 ’ pe €NpTlQ NP22 ’

Fio:=[Fi1 €Fin], Fo = [eFon Faxl.

By substituting these matrices into CANMEs (7), setting
€ = 0, and partitioning CANMEs (7), the following reduced-
order cross-coupled stochastic algebraic Lyapunov and Ric-
cati equations (RCSALRE?S) are obtained. It should be noted
that MOiia NOiia Mpii? Npii and Fiiia 1= 1, 2 are the 11m1t1ng



solutions of CANMEs (7) as ¢ — +0.
AgiiMOii + Moii Avii + CE;MOMCM
—y"2Myi; Boii Bai; Mosi + EL Eyi + FLFyiy =0, (8a)
A My + Mpii Avi; + CEM,;:C
+pi(Qiii + FiiyFii) = 0,
ApiiNoii + NoiiAli; + CiiNoi C:
+v72(Boii Bl M i N iz + N i M i3 Boii Bai;) = 048c)

(8b)

AviiNpii + Npii AL + CiuN i CF + I, = 0, (8d)
Fii(Noii + pilNpis)
+B(Moii Noii + MpiiNpii) = 0, (8e)

where i = 1, 2, AU“‘ = A” + B;iiFiii +77230111'B(¥;1‘M0ii-
Theorem 1: Under Assumption 2, suppose that the fol-
lowing matrix is nonsingular.
Ju 0 0 0 Jis Jie
Jor Jin 0 0 Jas Jog
J31 Jz2 Jsz Jza Jzs Jae
Ja 0 0 Jzz Jas Jag
Js1 Js2 Jsz Jsa Jss O
Jo1 Jo2 Joz Jea 0 Jes

where

Ju=Al®l,+1,® AL +CT @ C7,

Jis = (B My+ F\)" @1, + I, ® (Bf My + Fy)7,

Jie = (BIMy+ F)T @1, + I, ® (B My + F)7,

Jo1 =77 2[(M,S0) ® I, + I, ® (M,S)],

Jos = (B{ M, + p1 )T @ I, + I,, @ (BT M, + p1 F1) 7,
Jog = (BI M, + po Fo)T @ I, + 1,, @ (B3 M, + p2F2) 7,
J31 =772[So ® No + No ® So),

Js2 =7 7%[So® N, + N, ® Sp),

J3=Ag @I, +I,® Ag +C®C,

Jsa = v 2[(SoM,) @ I, + I, ® (SoM,)],

Js3s =y ?[B1 ® No + No ® By],

Js6 =7 2[Ba ® Ny + Ny @ By,

Ju=7"2%So® N, + N, ® Sp],
Jis=B1®N,+ N,® By, Jig=B2®N,+ N, ® B,
Js1 = No® By, Jso = N,® BY,

Js3 = I, ® (Fy + BY My), Jsa = I,, @ (p1 F1 + B M),
Js5 = No + p11\7p7

Jo1 = No® BY, Joo = N,® B3,

Jos = I, ® (Fy + BJ My), Joa = I, ® (poF> + BzTMp),
Jos = No + p2Np7

Ag = block diag (Au11  Auaz),

C := block diag (0111 0222) ,

= | B = | 0
] e[

MO := block diag (MOH M()QQ) 5
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M, := block diag (M1 My ),
Np := block diag (Non Nogz) ,
N, := block diag (N,11 Ny ),
Fi:=[Fiy 0], F,:=[0 Fa].

Then, there exists a small constant £* such that for all ¢ €
(0, €*), CANMEs (7) admit positive definite solutions M.,

M, Noe, N, and feedback gains Fj. that can be expressed
as
Moe = Mo+ O(e), Mye = M, +O(g),  (10a)
No: = No + O(g), N, =N, +O(e), (10b)
F. =F+0(), i=1, 2. (10c)

Proof: The proof can be done by using the implicit
function theorem to CANMEs (7). To do so, it is enough
to show that the corresponding Jacobian is nonsingular at
€ = 0. First, the derivative of solutions for CANMEs (7) is
given below.

J = V(MOEa Mpa; Noe, Npa; Fy, F2a)

- OF, OF, OF, OF, OF, OF,]
OMy. OM,. ONo. ON,. OF. OF.
OF, OFy OF, OF, OF, OF,
My, OM,. ONo. ON,. OF. OF.
OF; OF, OF; OFs; 0F; OF,
= | GF GF OF GF ops 98| an
dMy. OM,. ON,. ON,. OF,. OF.
OF: OF: OF: OFi OF:; OF;
dMo. OM,. ONy. ON,. OF,. 0P,
OF: OF: OF: OF: OF:; OF:
| 9My. 0M,. ONo. ON,. 0F. OF,. |

Hence, the Jacobian at ¢ = 0 is given by (9). That is,
J = J’s:O' By using the assumption that the Jacobian is
nonsingular, it is proved that the asymptotic structure has
the form of (10) from the implicit function theorem. ]

IV. COMPUTATIONAL ALGORITHM

In order to obtain the solutions of CANME:s (7), the fol-
lowing numerical computation that is based on the Newton’s
method is given:

AV METY ¢ AR oMY o
2 T
# 3| (Bra R E
j=1
+FIT (B};Mé?) + F}?ﬂ ~- L =o, (12a)

7‘2<M;Q>SOEM(§§“> + Még“)SoEMp(?))

+A8LE)TM(?+1) + M,(,;‘“)A§}2 + CTM;S?H)C

2 T
n n n+1
+) KBJTEM;QerjF}Q) F
j=1



+RDT (BngW +piFN ))} LY =0, (12b)
72<NSZ)M(§§+1 Soe + Soe M, n+1)N(n))

+7_2(N,§?)Mp(?+1)508 + SOEM,EQH)NP(?))

N A

+A(n)N("+1) + N(”+1)A(" + CN(WJFl cT

+v—2(508M,§2>N,E:'+1> + Ngg“)M,S?)SOa)

—L{M =0, (12¢)
7_2<N/§?)M(§:‘L+l SOE + SOE n+1)N(n))
Z(N(” FITBT 4 B, F;S+I)N[E§)>
FAGIN(HD o N (etD ATT
+CN<"+1 cT - =o, (12d)

+1 n n
BT<M(§7L IN® 4 DN >>
(N o )4 (BT )N

+ <piFi(5") + BT M},g>> N Ll =, (12¢)

where ¢ =1, 2,

A — A4 Z BjoF\ + 4280 MY,
2
K - z(Ms?BjsF;? )
j=1

MY So. MY — ETE. +ZF(")TF("

Je

L = 72(M,§Q>SOEM(§? + SOEMIE?)>

3 (e )

Son(au - ETED),

j=1
B = (N M o+ 50 DN )
#2 NEME S0 + S0 MPND )

2
n n)T n n
+ Z <Nés)Fj(E "B + B;.F! >N(g€>) ,
pe

L = ‘Z(N“”M D50 + S0 MTND)
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2
n n)T n n
+Z<N§E)Ffs) B + Bj.Fy! >N,§5)) e

L _ (F<n> BT Mé?) N

+(sz( B M (" )>N,§g>, i=1, 2
Moreover, the initial conditions Még), M ,ES), Nés), N, ,ES) and
FZ(EO), i =1, 2 are chosen as given below.
0 _ _
MY = Ny, MO = 1,
N = Ny, N<°> N,
FO = F, Fé? = F.

The following theorem indicates that the proposed algo-
rithm (12) that is based on the Newton’s method attains the
quadratic convergence.

Theorem 2: Suppose that the Jacobian (9) is nonsingular.
Under Assumption 2, there exists the small constant £ such
that for all ¢ € (0, &), & < e*, the iterative algorithm
(12) converges to the exact solutions with the rate of the
quadratic convergence. Moreover, the convergence solutions
attain a local unique solutions of the CANMEs (7) in the
neighborhood of the initial conditions. That is, the following
conditions are satisfied.

MY — Mo.| = O(e*"), |\M<" M,.| = O(=2")(13a)
ING = Noc| = O(e%"), NS — N,o| = O(e"), (13b)
|F™ — F | = 0", (13¢)

where 1 =1, 2, n =0, 1, 2,

Proof: The proof is given directly by applying the
Newton-Kantorovich theorem [14] for CANMEs (7). It is
immediately obtained from CANMEs (7) that there exists a
positive scalar + such that for any solutions

IV(Mg., Mp., Ng., Ng., Fi., F5.)
_V(MOav M;?av NOa? Ngav FlbavF2bs)H

< AN([veeMg.]", [veeM )", [veeNg.]",
[veeNp )T, [vecFiL]T, [vecFs.]T)
_([VeCMgs]T7 [VeCM;Z))s]T7 [VeCNgs]T7

[VecNf)’E] T [VecFlba]T7 [VecFQbE]) I (14)

Moreover, it is easy to
0 0 0 0 0 0 3
V(Méa), Mﬁga)v No(a)’ NIEE)7 Fl(e)’ FQ(E)) =J+ O(E_)
is nonsingular because for small e, using (9) and J

is also nonsingular. Therefore, there exists S such that

verify that

(© 0 0 0 0 0)\1—
= v, M,EJ, NSQ, Dy O i
On o the © . © h d since
P02, M52, NG, (g)vp(e Y B = 06). i =
L ....4 ||F1(M0 Mpe', Noo', Npe's Fil, F25 )H =
O(a), 1 = 1, 2, there exists 1 such that n <
0) 0 0 0 0 0)\1—
IV (M2, M,SJ, N, N2, FD, EO)

(Cjo P51 + 3252 1||F D=

O(g). Thus, there exists 6



such that § = Bny < 271 because = O(e). Finally, the
Newton-Kantorovich theorem results in the desired results
(13). ]

It should be noted that the O-th order algebraic equations
(8) are nonlinear matrix equations. Hence, it is hard to solve
these equations. However, if v is sufficiently large, these
equations can be changed as follows.

(Asi + BiiiFyii) T Mois + Moii(Aii + Biii Fiis)

+CE MoiiCis + ELEs; + FL Fyii = 0, (15a)
Ag;Mpii + MpiiAii + Cg;MpiiCii

_pi_QMpiiBiiiBg;iMpii + piQiii = 0, (15b)
Noii =0, (15¢)
(Aii+BiiiFiii)Npii + Npii(Aii+BiiiFiii)T

+CiN,i;CL + 1, = 0, (15d)
Eyi = —p;  BE M. (15¢)

It is worth pointing out that these equations can be solved
separately. These initial conditions would be useful when
the parameter y is sufficiently large. However, even if this
parameter is small, the same initial conditions would be
reliable. In fact, this important feature can be verified in
numerical section.

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed
scheme, a simple example is given. The system matrices are
given as follows.

0.2 « 0.1  0.05¢
e = 0.01, As—[ e _1}’ CE_{O.O& 0.1 }’
-1 0.5¢ 0.1 ¢
BlE = |: c :| 5 BQE = |: 2 :| ) BO€ = |: I 02 :| ’
1 ¢ 0 0
e 2 0 0
Ee=lg o |+ Gz | CG==] o |
0 0 c 0.5
1 0 0 0
Q“_[o 25}’ QQE_[O L ] e

First, in order to obtain initial conditions, O-th order solutions
of (8) is solved. It should be noted that v = 5 is chosen.
These solutions are given below.

M = My = block diag (1.2261 9.8110e-01),

M = M, = block diag (6.1319e-01 1.5496e-01),
N = Ny = block diag (1.1767e-04 2.4846e-05)
NY = N, = block diag (4.8977e-01 2.2384e-01),
FY =F =[12264 0],

FY = F,=[0 —6.2015e-01].

These solutions were obtained by using the other Newton’s
method. On the other hand, even if the parameter -y is small
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for v = 5, other initial conditions that are based on (15) are
computed separately. These solutions are given below.

My = block diag (1.2258 9.8120e-01),

M, = block diag (6.1290e-01 1.5485e-01),
No =0,

N, = block diag (4.8981e-01 2.2383e-01),
[y =[1.2258 0],

Fy =10 —6.1942e-01].

It is easy to verify that these solutions seem to be very
close even if the parameter ~ is small. Therefore, this initial
condition can also be worked well.

It should be noted that the Newton’s method (12) con-
verges to the exact solution with a computational error of
the order of e-14 after three iterations. The convergence
property is given by Table 1.

Table 1.

i IF |+ 500 [
5.7596455805e-02
5.6284043724e-04
1.5060512883e-08
2.0901004009e-15

It is easy to verify that the quadratic convergence can be
attained. The exact strategies F;, ©+ = 1, 2 and the solutions
of CANMEs (7) are given below.

Fio=[ 12263 —2.7333e-04 |,

w N~ o3

Foe =] —1.1942e-02 —6.2910e-01 |,
My, — { 1.2260 7.6610e-03 }
7.6610e-03 9.7583e-01 |’
Mo — [ 6.1317e-01 1.4355e-03 }
pe 1.4355e-03 1.5720e-01 |’
No. = { 1.1896e-04 1.1539e-05 ]
1.1539e-05 2.4686e-05 |’
N [ 4.8976e-01 —2.7093e—03]
pe —2.7093e-03  2.2209e-01

VI. CONCLUSIONS

In this paper, an Hy/H ., control problem for a class of
weakly coupled stochastic system governed by It6 differen-
tial equation with state and external disturbance dependent
noise involving multiple decision makers was discussed
by using a Stackelberg game approach. After establishing
the asymptotic structure, Newton’s method was derived to
solve CANME:s. Particularly, the computation of the initial
conditions was discussed deeply. As a result, the initial
conditions can be obtained separately and the reduced-order
computation is only needed. Finally, the effectiveness of
the numerical algorithms was confirmed in the numerical
example.
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