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Abstract— In this paper, subspace identification methods are
compared regarding their capability to cope with process dis-
turbances occurring in complex plants. The Tennessee Eastman
process is considered to be a realistic simulation model of
chemical processes. The MOESP, N4SID and ORT methods
as well as some of their variants are applied to data gathered
from the process while being subject to random disturbances.
Such disturbances cause the identification methods to have
unforeseen difficulties in identifying the correct parameter
values.

I. INTRODUCTION

In face of the inevitable existence of non-white dis-
turbances to which large and complex industrial chemical
processes are subjected (e.g. the ambient temperature and its
influence on supporting processes like the supply of cooling
water), the question of whether and to what extent the results
of subspace identification methods are affected under these
conditions is raised. The aim of this paper is the comparison
and analysis of the results, which subspace identification
methods are able to give under these conditions. Therefore, a
realistic process model with sufficent complexity is required.
Furthermore, the model needs to have the ability to influence
the process with realistic disturbances. A model having the
desired complexity and the structure to incorporate realistic
process disturbances is the process model of the Tennessee
Eastman process published in [1]. In this first investigation,
the emphasis is on the possible variation of the identification
results rather than on the identification of the process itself.

Although an effort to identify the Tennessee Eastman
process by means of subspace identification methods was
made in [2], no disturbances were used except for the
measurement noise. A comparison of the different subspace
identification approaches based on a comparable model like
that of the Tennessee Eastman process has not been published
since. Moreover, the comparison of the ORT (orthogonal
decomposition) method of [3], which showed good results
under conditions when the disturbing stochastic process has a
different dynamic than the system to be identified, to methods
like the N4SID (numerical algorithms for subspace state-
space system identification) method of [4] is seldom done in
the context considered here. Such a comparison was recently
published against the background of an electrodynamic sys-
tem in [5].
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The paper is structured as follows. Section II contains a
brief review of the used subspace identification methods. In
Section III, an overview of the Tennessee Eastman process
is given. The description of the simulation model and the
identification, e.g. choice of the test signal, follows in Section
IV. Identification results are given and discussed in Section
V. Finally, Section VI is devoted to some closing remarks.

II. SUBSPACE IDENTIFICATION METHODS

In the following section, three different approaches to the
problem of identifying a system in form of the state space
representation

x(t+ 1) = Ax(t) +Bu(t) +Ke(t) (1a)
y(t) = Cx(t) +Du(t) + e(t) (1b)

are briefly discussed. Other forms and an overall overview
of subspace identification are given in [6]. The considered
methods are the MOESP (multiple input multiple output
output-error state space), the N4SID and ORT methods. The
first method was derived from a purely statistical point of
view, whereas the third one was derived in the framework
of the stochastic realization theory. The second method lies
between the other two as it uses elements of the realization
theory as well as approach of the statistical (data) approach.
However, the actual implementations of these methods work
with real data and thus use the statistical approach.

A. Notations and Projections

Following [3], [7], the input u and output y are considered
to be weakly stationary, second-order processes. Based on
this assumption, the spaces

U = span{· · · , u(t− 1), u(t), u(t+ 1), · · · }, (2)
Y = span{· · · , y(t− 1), y(t), y(t+ 1), · · · } (3)

can be defined. The overbar denotes the closure with respect
to the inner product defined by E{ηξ} , where η, ξ ∈ U and
E{·} is the mathematical expectation1. Furthermore, let the
subspaces

U−t = span{· · · , u(t− 2), u(t− 1)} (4)

U+
t = span{u(t), u(t+ 1), · · · } (5)

be generated by the past as well as the present and future
values of u. The spaces Y+

t and Y−t are equally described

1It has to be kept in mind that these spaces are spanned by measurable
functions of the type f : Ω→ Rn. Hence, the ambient space P = Y ∨ U
is a subspace of L2(Ω).
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by y. The bond between the case of the stochastic realization
theory and the data approach is explained in [3].

Let a be a random variable and B = span{b} the span
of the random variable b, then the orthogonal projection
Ê{a|B} is given by the conditional expectation [7]

Ê{a|B} = E{a|b} = µa + ΣabΣ
−1
bb (b− µb) . (6)

Since both a and b are elements of an ambient space H,
there is also an projection onto the orthogonal complement
of B, calculated as

Ê
{
a|B⊥

}
= a−Ê{a|B} = a−µa−ΣabΣ

−1
bb (b−µb) . (7)

Now, let C = span{c} be the span of a third random variable
c fulfilling the condition B∩C = {0}. The oblique projection
Ê||C{a|B} of a onto B along C is given by the conditional
covariance matrices as [7]

Ê||C{a|B} =E
{
Ê
{
a|C⊥

}
Ê
{
B|C⊥

}}
× E

{
Ê
{
B|C⊥

}
Ê
{
B|C⊥

}}−1
b

=Σab|cΣ
−1
bb|cb .

(8)

B. MOESP
The (ordinary) MOESP algorithm presented in [8] models

only the part of (1) which is driven by the exogenous input
u. Using the observed input–output data over some time
span T , two block Hankel matrices U and Y are formed;
see [8]. These two matrices are decomposed using the LQ
decomposition: [

U
Y

]
=

[
L11 0
L21 L22

] [
QT

1

QT
2

]
. (9)

Using the orthogonal projection of Y onto the orthogonal
complement of U (the finite time spaces are basically the
same as the spaces spanned by the Hankel matrices; see [3])

Ê{Y[t t+T ]|U⊥[t t+T ]} = L22Q
T
2 (10)

and the singular value decomposition

L22 =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T
1 V T

2

]
(11)

of L22, the extended observability matrix is derived as

O = U1Σ
1/2
1 . (12)

From this matrix, the matrices A and B of (1) can be com-
puted. The matrices B and D are calculated using U2, L11

and L21. The statistical properties of the MOESP algorithm
are discussed in [9]. Since MOESP is only asymptotically
unbiased for white noise input signals, two other algorithms
using an instrumental variable approach are proposed in [9],
[10]. These algorithms use the additional data of the input
and output respectively. The PI-MOESP algorithm of [9]
uses the past of the input (in relation to U and Y of (9)),
whereas the PO-MOESP algorithm proposed in [10] uses
the past of the input and the output. The prefixes PI and PO
stand for “past input” and “past output”. As indicated by the
name, the MOESP methods are state-space methods for the
identification of models in the OE (output error) structure.

C. N4SID

The idea of the N4SID method is to identify the system
given by (1), so that the subsystem driven by the exogenous
input u (refered to as the “deterministic” part) as well as the
system driven by the noise e (refered to as the “stochastic”
part) will share the matrices A and C. As explained in [4],
the first step is the calculation of the space spanned by the
states. Assuming freedom of feedback and sufficient richness
of the input (see [3], [7]), this space is calculated through
the oblique projection (∨ denoting the vector sum)

X+/−
t = Ê‖U+

t
{Y+

t |Y−t ∨ U−t } . (13)

Since the numerical implementation yields not only a basis
vector of X+/−

t , but also the extended observability matrix,
the states of the “deterministic” system can be computed by
means of the extended observability matrix and the outputs

yd(t) = Ê{Y+
t |Y−t ∨ U} ,

yd(t+ 1) = Ê{Y+
t+1|Y

−
t+1 ∨ U} .

(14)

These states are used to solve a least-square equation of the
type

min
A,C,B,D

∥∥∥∥[xd(t+ 1)
y(t)

]
−
[
A B
C D

] [
xd(t)
y(t)

]∥∥∥∥
2

(15)

for the system matrices. The residuals are used for the calcu-
lation of the “stochastic” system and thus for the computation
of K. For a discussion of the basic principles of the N4SID
approach and its two variants, refer to [4]. The first algorithm
follows the explanation given here. The second algorithms
skips the step of (14) and solely uses (13) to calculate the
states. Furthermore, a robust version of the first algorithm is
given in [4]. In [11], it is shown that this robust algorithm and
the PO-MOESP method compute the same matrices A and
C. Enforced by the oblique projection (13), the “stochastic”
system and the “deterministic” system will share the system
matrix A and the output matrix C making the model of the
N4SID approach analogous to the ARMAX (autoregressive-
moving-average structure with exogenous input) structure.

D. ORT

In terms of the fundamental idea of the ORT method, the
system to be identified is considered to be a stochastic system
driven by an exogenous input [3]. Following this rationale,
the output y is decomposed into a “deterministic” component
driven by the exogenous input and a “stochastic” component
driven by a white noise sequence. The “deterministic” com-
ponent yd is separated from y by means of an orthogonal
projection of the output on the space spanned by the input.
With the assumption of freedom of feedback, that is

yd(t) = Ê{y(t)|U} = Ê{y(t)|U−t+1} . (16)

The “stochastic” component ys is subsequently given by the
projection onto the orthogonal complement of U . Thus, ys
is described by

ys(t) = y(t)− Ê{y(t)|U−t+1} = y(t)− Ê{y(t)|U}
= Ê{y(t)|U⊥} .

(17)
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The following identification, which is a MOESP-like algo-
rithm in case of the deterministic component, results in a
combination of the two subsystems in a block-diagonal order
(d: “deterministic” subsystem, s: “stochastic” subsystem)[
xd(t+ 1)
xs(t+ 1)

]
=

[
Ad 0
0 As

] [
xd(t)
xs(t)

]
+

[
Bd

Ks

] [
u(t)
e(t)

]
, (18a)

y(t) =
[
Cd Cs

] [xd(t)
xs(t)

]
+

[
Dd

I

] [
u(t)
e(t)

]
. (18b)

This structure can be seen as the state-space analogue of
the Box–Jenkins structure. For a thorough explanation of
the ORT method the reader should refer to [7]. The basic
description and some additional insight regarding the rela-
tionship between the algorithms used to derive the model
using observed data and the underlying setting of stochastic
realization theory are given in [3].

III. TENNESSEE EASTMAN PROCESS
The Tennessee Eastman process was first introduced at the

AIChE 1990 Annual Meeting in Chicago, Illinois, USA and
was later published in [1]. It draws its relevance for case
studies from the fact that it was modelled based on a real
process.

The substance system of the process consists of 8 com-
ponents named A through H. The components A, C, D and
E are the reactants. Components G and H are the desired
products. Component F is a by-product, while component B
is an inert. The reactions as given in [1] are

A(g) + C(g) + D(g)→ G(liq) product 1,
A(g) + C(g) + E(g)→ H(liq) product 2,

A(g) + E(g)→ F(liq) by-product,
D(g)→ 2F(liq) by-product.

The piping and instrumentation diagram (P&ID) for the
process is shown in Fig. 1. The major unit operations
are the reactor, the product condenser, the vapour-liquid
separator, the recycle compressor and the product stripper.
The gaseous reactants A, D and E are fed directly into the
reactor. Reactant C and also an amount of A (stream 4) enter
the process through the stripper. After reacting, a blend of
vaporous products and the unreacted feed leaves the reactor.
Subsequently, this blend runs through the condenser where
the vaporous components liquidify. After being separated in
the vapour-liquid separator, the noncondensed components
are fed back through the compressor to the reactor feed. In
the downstream stripping column, the remaining reactants are
removed using the components of feed stream 4 as stripping
agents.

In the P&ID, the four-digit numbers of the measuring
points and valves are assigned with respect to the five units.
The first two digits specify the unit; 11 is for the reactor, 12
for the condenser, 13 for the separator, 14 for the compressor,
15 for the stripper and 10 is for the overall equipment.

Although an inert, component B affects the process. It is
crucial that the amount of this component circulating in the
process is kept constant. Hence, it needs to be purged from
the process together with the by-product through stream 9.

IV. SIMULATION AND IDENTIFICATION

Details of the simulation and subsequent identification are
presented. The model of the Tennessee Eastman process
stems from [14]. The operating mode of the plant model
during the identification experiments was the base case
(Mode 1; see [1]). The general simulation and identifica-
tion parameters are listed in Table I. The implementational
aspects are described in the following subsections.

TABLE I
SIMULATION AND IDENTIFICATION SPECIFICATIONS

Solver (Fixed-step) ode3 (Bogacki-Shampine)
Duration 96 h
Step size 0.5 s
Decimation (relative to step size) 60
Sample time of input signal 30 s
Time span used for identification 24 h - 96 h
Number of data points 8640
Sample Time of data points 30 s
Number of block rows used for con-
structing the Hankel matrices

75, 200*

* only for the identifications of the reactor, separator, stripper and the MISO systems
(see below)

A. Simulation design

Due to its inherent instability, first the process needed
to be stabilized. However, in order to preserve as much of
the process dynamic as possible, the number of controllers
added to the plant was kept to a minimum and controllers
were solely used to prevent the plant from violating its shut-
down constraints. In [12] a stabilization strategy is proposed.
In terms of the stabilization of the reactor pressure an
improvement can be achieved using the three-stage cascade
control proposed in [13]. The reactor pressure is linked with
the reactor temperature, since both values are dependent
on each other through the reaction within the reactor. The
implemented control loops are shown in Fig. 1. As a result
of the process stabilization, not all manipulated variables as
mentioned in [1] are accessible. On the other hand, the set
points of the controllers constitute additional manipulated
variables of the stabilized process. The resulting manipulated
variables, which are considered as the system inputs during
the identification, and their steady-state values of Mode 1
are presented in Table II. The outputs of the models are the
usual outputs as given in Table 4 and Table 5 of [1, p. 249].

Since an examination of the effects of process disturbances
is desired, some changes to the model of [14] are necessary.
The model has been augmented with two additional param-
eters. The first parameter facilitates the initialization of the
model’s random generator, thereby allowing for simulation
with different disturbance characteristics. By means of the
second parameter, the measurement noise of the measuring
points can be switched off. The process disturbances, which
were activated during the simulations, are shown in Table
III.
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Fig. 1. Tennessee Eastman process (CWS: cooling water supply; CWR: cooling water return; Cond: condensate) with control loops for process stabilization
(in accordance with explanations in [1], [12], [13])

TABLE II
MANIPULATED VARIABLES OF THE STABILIZED PROCESS AND VALUES

OF THEIR RESPECTIVE INPUT SIGNALS

P&ID identifier Description mean variance

V-1002 D feed (stream 2) 63.053% 6.25%2

V-1001 A feed (stream 1) 24.644% 6.25%2

V-1004 A and C feed (stream 4) 61.302% 6.25%2

V-1401 Compressor recycle valve 22.210% 6.25%2

V-1005 Purge valve (stream 9) 40.064% 6.25%2

V-1502 Stripper steam valve 47.446% 6.25%2

V-1201 Condenser cooling water
flow (stream 13)

18.114% 6.25%2

SC 1101 Agitator speed 50% 6.25%2

PICAZ+ 1101 Setpoint reactor pressure
(gauge pressure)

2705 kPa 625 kPa2

LICAZ± 1101 Setpoint reactor level 75% 6.25%2

LICAZ± 1301 Setpoint separator level 50% 6.25%2

LICAZ± 1501 Setpoint stripper level 50% 6.25%2

B. Identification

Throughout the simulations, the input signal was chosen
to be a coloured noise sequence. It best meets the require-
ments of the identification problem at hand. Firstly, from
the viewpoint of a realistic setting of the identification, it
stresses the equipment less than other signal types like the
pseudo-random binary signal. Rapid and step-like changes
of the coloured noise can be avoided by using a suitable
generation filter. Secondly, the number of block rows of the
Hankel matrices can be changed at will without violating
the requirements of sufficient (persistence of) excitation and
the related rank conditions of these matrices. In terms of

TABLE III
RANDOM VARIATION DISTURBANCES [1]

Identifier in [1] Description

IDV(8) A, B, C feed composition of stream 4
IDV(9) D feed temperature of stream 2
IDV(10) C feed temperature of stream 4
IDV(11) Reactor cooling water inlet temperature
IDV(12) Condenser cooling water inlet temperature

persistence of excitation, let a coloured noise sequence be
described by an average representation

u(t) =
∞∑
i=0

h(i)e(t− i)

with e being a zero-mean, pairwise orthogonal, second-order
process, i.e. a white noise process. Since the filter is assumed
to be stable and of minimal phase, the following can be
deduced. The spaces generated by u and e up to time t are
denoted by U−t+1 and E−t+1 respectively. Then, it follows from
the Wold decomposition theorem that U−t+1 = E−t+1. Now, let
for some index k < t the space U−t+1 be decomposed into
a subspace spanned by the past up to k denoted as U−k and
a subspace spanned by the future of k (up to t) denoted as
U+
k . Since e is an orthogonal basis of U−t+1, the conditions

(+ denoting the direct sum)

U+
k + U−k = U−t+1 , U+

k ∩ U
−
k = {0}

hold. Therefore, a coloured noise sequence fulfils the rich-
ness condition and is consequently persistently exciting of
order infinity [3], [7].
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The four following identification approaches were consid-
ered (MIMO: multiple input multiple output; MISO: multiple
input single output):

1) 22-by-12-MIMO system with all outputs except for
X1001, X1002, X1003 (model orders: 10, 15)

2) 11-by-12-MIMO system with T1101, L1101, P1101,
T1301, L1301, P1301, T1501, L1501, P1501, F1502,
F1006 (model order: 10)

3) 3-by-12-MIMO systems of the reactor, separator and
stripper using temperature, level and pressure of each
unit (model order: 5)

4) MISO systems of T1101, L1101, P1101, T1301,
L1301, P1301, T1501, L1501, P1501 (model order:
5)

First, baseline simulations and identifications without any
disturbances and measurement noise were conducted in order
to get the “deterministic” behaviour of the model. The
coloured noise was generated using the filter

C(z) =
√
k

√
1− a2

1− az−1
, Tsample = 30 s (19)

from [7, p. 262]. The parameter a manipulates the covariance
properties of the resulting coloured noise. Since the plant
is rather slow in its dynamics and thus fast varying input
signals would show no significant reaction in the outputs, a
was chosen to give a slowly varying signal. Its value was
set to 0.95, 0.99, 0.995 and 0.999, resulting in four different
covariance characteristics of the input noise. The parameter
k adjusts the variance of the driving white noise (assuming
unit variance) and thereby sets up the amplitude of the inputs.
The value of k for each particular input is given in Table II.
These values create input signals with an amplitude in the
range of ±5% and ±50 kPa. For each of the four signal
types, 10 simulation with different signal realizations were
run.

Afterwards, the signal giving the best identification result
was used for the simulations with disturbances and mea-
surement noise. Simulations with 30 different disturbance
and noise characteristics were done, i.e. 30 different initial
values of the model’s random generator were used. In order
to evaluate the consequences of changes of the input am-
plitude, the input signals were set to 100%, 50%, 20% and
10% of their nominal amplitude. That is, one disturbance
characteristic was used for the simulations with each of the
four amplitudes of the input signal. The resulting models of
the disturbed data are compared against the model of the
disturbance-free signal.

The identification methods used were the (ordinary)
MOESP method of [8], the PI-MOESP method of [9],
the PO-MOESP of [10], the first algorithm and the robust
algorithm of the N4SID method given in [4] as well as the
ORT method described in [3], [7]. The actual implementation
of the ORT, MOESP, and PO-MOESP methods used are
these given in the appendix of [7]. For the implementation of
the PI-MOESP method the PO-MOESP implementation was
altered according to [9]. The algorithms of the two N4SID
algorithms are those coming as an addition with [4].

V. RESULTS AND DISCUSSION

The step responses of the baseline models of the first
and second identification approach deviated from the step
responses of the disturbance-free process model too strong
to be used for the analysis of the effects of processes
disturbances. Thus, the analysis is stated by means of the
third and fourth identification approaches. Those facts were
upheld by the scattering of the eigenvalues. For the former
two identification approaches, no clear convergence was
evident, whereas the eigenvalues of the latter two approaches
converged to distinct positions. Regarding the quality of
the step responses of the identified models, the N4SID
algorithms gave the best fit.

In terms of the identifications with disturbances and noise,
two possible results were expected. If the effects of the
disturbances were insignificant compared to the input signals
or possessed the same dynamic2 as the process, the model
would be an OE, ARMAX or Box-Jenkins model. However,
if the disturbances had a significant effect on the process and
possessed a different dynamic, a Box-Jenkins model would
be identified. That is, either the identified models would be
the same as the baseline model or at least the results of
the ORT method would remained the same. Furthermore,
with a decreasing amplitude of the input signal an increasing
variation of the identification results was expected.

All results of the methods showed significant deviations
from the baseline models throughout all models of the third
and fourth identification approach. The deviations remained
even when the number of block rows of the Hankel matrices
was increased from 75 to 200. Those deviations manifest
themselves in particular in the eigenvalues of the identified
models. The overall picture of the shift of the eigenvalues
remained the same irrespective of the amplitude of the
input signal. In Fig. 2 and Fig. 3, the eigenvalues of the
identified reactor models (third identification approach) are
shown using the input signal with an amplitude of 100%. In
conformance with [11], the eigenvalues of the PO-MOESP
and the robust N4SID methods are the same. Hence they
are shown in the same diagram. Except for the PI-MOESP
method, whose results already showed a strong variation
of the eigenvalues’ position when the disturbance-free data
was used, the shift of the position of the eigenvalues is
evident. Furthermore, this shift shows a direction towards
new eigenvalue positions in case of disturbances. The robust
N4SID algorithm was at least able to yield models with
an approximately good steady-state gain. The transient be-
haviour was nowhere near that of the undisturbed process,
though.

Since neither an ARMAX method (N4SID), an OE method
(MOESP) nor a Box-Jenkins method (ORT) was able to
identify the process in presence of disturbance, the following
hypothesis can be stated: due to the nature and the complex-
ity of the process structure, the disturbances are capable of
causing a significant change within the process’s elementary

2More precisely: the dynamic of the identified noise model is the same
as the dynamic of the identified process model.
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Fig. 2. Eigenvalues of the identification of the reactor using Hankel matrices with 75 block rows and a = 0.995 (cross: eigenvalues of the baseline
model, asterisk: eigenvalues of the identification using the disturbed data)

MOESP

Real Part

Im
ag

in
ar

y
Pa

rt

−0.1

0

0.1

0.95 1.00 1.05

+

+

+
++

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

PI-MOESP

Real Part

Im
ag

in
ar

y
Pa

rt

−0.1

0

0.1

0.95 1.00 1.05

++ +
+

+

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

* *

*

*

* *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *
*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

** * *

*

*

*

*

*

*

*

PO-MOESP
N4SID Robust

Real Part

Im
ag

in
ar

y
Pa

rt

−0.1

0

0.1

0.95 1.00 1.05

+

+

+
++

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

N4SID Alg. 1

Real Part

Im
ag

in
ar

y
Pa

rt
−0.1

0

0.1

0.95 1.00 1.05

+

+

+
++

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ORT

Real Part

Im
ag

in
ar

y
Pa

rt

−0.1

0

0.1

0.95 1.00 1.05

+

+

+
++

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Fig. 3. Eigenvalues of the identification of the reactor using Hankel matrices with 200 block rows and a = 0.995 (cross: eigenvalues of the baseline
model, asterisk: eigenvalues of the identification using the disturbed data)

dynamics (in terms of the identification methods), so that
the presented methods are unable to determine the original
(disturbance-free) behaviour of the process.

VI. CONCLUSIONS
Using the Tennessee Eastman process as a representation

of a complex process and a coloured noise signal as input
to this process, it was shown that the subspace methods
MOESP, N4SID and ORT cannot retrieve the underlying
behaviour of the process when process disturbances are
present. In order to verify or refute this hypothesis, two
steps need to be taken. Firstly, the whole process needs
to be analyzed in greater depth. Secondly, the number and
type of identification experiments needs to be increased by
considering additional input signals so as to remove possible
effects due to correlation between the disturbances and input
signals. As well, longer simulation times and additional
disturbance characteristics will be considered. Finally, more
identification methods will be used.
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