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Abstract— In this paper a new procedure for classification
of normal and abnormal operating conditions of a process
when multiple observation sequences are available is intro-
duced. Signals are converted to discrete observations using the
method of triangular representation. For overall classification
of the process, the combinatorial method is used to train
hidden Markov models when multiple observation sequences
are available. The proposed methodology has the advantage
of considering time varying window sizes for the input data.
Therefore, a search algorithm to find the optimal window size at
each time step is proposed. Application of the method is tested
for overall monitoring of the continuous stirred tank reactor
(CSTR) system. Results of overall classification are compared
to the previous approach based on back propagation neural
networks (BPNN) and show better performance in detecting
normal and abnormal operating conditions.
Keywords: Process Diagnosis, Hidden Markov models

I. INTRODUCTION

Process monitoring and fault diagnosis are two important
steps in order to achieve safe operations. Three main
approaches exist for process monitoring. The knowledge
based approach which is based on qualitative models, the
model based approach which is based on analytical models
and the data driven framework which is appropriate for
large multivariate processes [1]. Statistical approaches are
among the most popular ones for the data-driven process
monitoring of the multivariate processes. Simoglou et al.
proposed process monitoring based on a state space model
to capture the system dynamics where the parameters of the
model were obtained based on canonical variate analysis
(CVA) and partial least squares (PLS) [2]. Haiqing et al.
improved fault detection based on the principal component
analysis (PCA) by considering the relations between T 2

and squared prediction error statistics and their effect on
the system parameters [3]. More details in this area is
available in [4]. Pattern recognition techniques, which are
based on the extraction of main features of the signals from
plant data, are more popular among other knowledge based
approaches [5].

Based on the method of triangular representation, initially
introduced by Bakhshi et al. [6], Wong et al. (1998)
developed a new strategy to detect abnormal trends from
important qualitative information of a signal [7]. Later,
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Wong et al. (2001) introduced two different methodologies
for overall classification of the process [8]. In the first
scheme, observations from individual variables are classified
based on separate hidden Markov models. Then, a symbolic
string, called the sequence of events, is produced from
this classification. A final HMM step is applied for the
overall classification afterwards. In the second scheme,
the probabilities generated from classification of individual
variables are input to a back propagation neural network
(BPNN) to decide on the overall classification. They show
that the BPNN approach provides a better classification
while increasing the computational time.

One of the drawbacks of their proposed methodology
is the consideration of only individual variable effect and
interactions between different inputs are not considered.
Furthermore, time varying property of the process cannot
be considered in the original approach. Finally, high
computational time and a large number of components are
required for overall classification. For example, at least four
components (three HMMs and one BPNN) are required for
the decision making having only three inputs available.
In this paper we propose to use a multivariate approach (Li
et al. (2000)) to build the hidden Markov model for multiple
observations [9]. Consequently, only one component is
required for the overall decision making and interactions
between different inputs are automatically considered.
Furthermore, unlike the BPNN approach, time varying
window sizes of the input data can be used to deal with
time varying property of the process. Therefore, a search
algorithm to find the optimal window size at each time
step is proposed. Application of the new methodology is
studied on the CSTR system developed by Henson et al.
(1990) [10]. The new approach shows fewer false alarms in
detection of abnormal behaviour of the process.

The remainder of this paper is organized as follows:
In section 2, the proposed methodology will be briefly
introduced and compared to the previous approach. In
section 3, the data pre-processing steps are summarized.
Section 4 explains our proposed methodology in detail and
compares it with the BPNN approach. Sections 5 and 6
include the case study, results and conclusion.

II. PROCESS MONITORING APPROACHES

Wong et al. (2001) introduce a methodology for clas-
sification of abnormal process operations when multiple
observation sequences are available in [8]. First, they use
wavelet analysis to remove the high frequency noise of the
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signals. Second, continuous time observations are discretized
to a sequence of numbers based on the method of triangular
representation and using appropriate fuzzy rules and mem-
bership functions. In the overall classification step, first, each
variable is classified based on its corresponding HMM. These
probabilities are then input to a BPNN for overall decision
making.

In the proposed methodology of this paper, the data pre-
processing steps are similar to Wong et al. (2001) which
include wavelet analysis, fuzzification and triangular repre-
sentation. However, in the critical modelling step, we adopt
the multivariate hidden Markov modelling procedure [9],
which results in significant performance improvement. Since
the new methodology is flexible in adapting variable window
sizes for the input data, a procedure to optimize the window
size is also proposed. In comparison to the BPNN, the new
approach helps in reducing the number of false alarms and
the required computational time for overall decision making.
The proposed fault detection method of this paper is pre-
sented in figure 1.

Fig. 1. The proposed methodology of this paper for overall classification
of a process

The algorithm consists of the following steps: 1.
Data pre-processing, 2. Window size selection and 3.
Overall classification. These three steps will be presented
respectively in the following sections.

III. DATA PRE-PROCESSING

A. Wavelet Analysis

Since typical process data is noisy, the first step in classifi-
cation of a signal is data filtering. Several approaches exist to
filter a signal, e.g., moving average, Gaussian filter, Fourier
transform or wavelet analysis. Wavelet analysis uses a time-
scale region and has excellent time-frequency properties.
Furthermore, it gives a multi-scale description of trends and
features which enables us to analyse the data more efficiently.

Therefore, wavelet analysis is also used in this paper. More
information in this area can be found in [11].

B. Feature Extraction

The method of triangular representation by Bakhshi et al.
(1994) converts a continuous time signal into a sequence
of symbolic discrete observations which capture the most
important qualitative and quantitative information contained
in the signal [6]. The symbolic form of observations is
appropriate as the input of a classifying system such as
hidden Markov models. This method is based on the idea
that at extrema and inflection points, the first and second
derivatives are zero respectively. They named any part of
the signal with a constant sign of first and second order
derivatives as an episode. These episodes are generated
after filtering the signal and contain an extremum with a
neighboured inflection point which makes a triangle. Seven
types of triangles, e.g. A, B, C, D, E, F and G, can be defined
as illustrated in figure 2.

Fig. 2. Seven types of triangles for triangular representation of a signal
[7]

In addition to the qualitative information of the episode,
semi-quantitative information such as duration and magni-
tude is also used for classification. The duration is defined as
the time interval between two end points of an episode. The
magnitude is the vertical difference between those two end
points. Using fuzzy classification, three kinds of magnitudes
(large, medium and small) and three kinds of durations
(long, middle and short) will be generated. Figure 3 shows
the results of classification of an arbitrary type triangle,
A, to nine sub-types, using fuzzy classification. In fuzzy
classification, elements of a fuzzy set have a degree of
membership in the unit interval [0,1], while the membership
of elements in a classical set is only defined by binary terms
0 and 1 [12].

Straight lines in figure 2 are limited to very smooth trends
and can be approximated with triangles of the same type.
Therefore, the total possible number of discrete observations
is equal to 4×9 = 36.

IV. DATA CLASSIFICATION FOR MULTIPLE
OBSERVATION SEQUENCES

A. BPNN Approach

Wong et al. (2001) introduce the BPNN approach as a
classification method when multiple observation sequences
are available [8]. In this method, each variable is classified
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Fig. 3. Nine sub-types of triangle ”A” using fuzzy classification (Wong et
al. (1998)) [7]

separately based on its corresponding HMM. Probabilities
generated from classification of each individual variable are
then input to a BPNN for the overall classification.

B. Multivariate HMM modeling for Multiple Observation
Sequences

Since process variables are correlated, the sequence re-
sulted from the triangular representation must also be corre-
lated. It is natural to adopt multivariate modeling approach.
Li et al. (2000) has laid theoretical foundation on multivariate
HMM modelling, which is adopted here [9].

Consider the following set of observation sequences

O = {O(1),O(2), . . . ,O(K)} (1)

where
Ok = o(k)1 o(k)2 . . .o(k)Tk

, 1≤ k ≤ K (2)

are individual observation sequences.
To calculate the probability of the observation sequence

given the model, the following expression is always true from
the chain rule:

P(O|λ ) = P(O(1)|λ )P(O(2)|O(1),λ ) . . .P(O(K)|O(K−1), . . . ,O(1),λ )

P(O|λ ) = P(O(2)|λ )P(O(3)|O(2),λ ) . . .P(O(1)|O(K), . . . ,O(2),λ )

...

P(O|λ ) = P(O(K)|λ )P(O(1)|O(K),λ ) . . .P(O(K−1)|O(K),O(K−2), . . . ,O(1),λ )
(3)

where λ is the model. Therefore, the probability of the
multiple observations given the model can be expressed as:

P(O|λ ) =
K

∑
k=1

ωkP(O(k)|λ ) (4)

where

ω1 =
1
K

P(O(2)|O(1),λ ) . . .P(O(K)|O(K−1), . . . ,O(1),λ )

ω2 =
1
K

P(O(3)|O(2),λ ) . . .P(O(1)|O(K), . . . ,O(2),λ )

...

ωK =
1
K

P(O(1)|O(K),λ ) . . .P(O(K−1)|O(K),O(K−2), . . . ,O(1),λ ) (5)

are weights. Considering the serial independence assumption
within the individual observation sequences, the formulation
can be simplified to:

P(O|λ ) =
K

∏
k=1

P(O(k)|λ ) (6)

and the combinatorial weights become:

ωk =
1
K

P(O|λ )
P(O(k)|λ )

, 1≤ k ≤ K (7)

Implementing the EM algorithm with calculation of the
auxiliary function at the E-step and maximization over the
auxiliary variable at the M step, the re-estimation formulas
to train HMMs for multiple observation sequences can be
obtained as follows:
State transition probability is

āmn =
∑

K
k=1 ∑

Tk−1
t=1 ξ

(k)
t (m,n)

∑
K
k=1 ∑

Tk−1
t=1 γ

(k)
t (n)

, 1≤ m≤ N,1≤ n≤ N (8)

where ξ
(k)
t (m,n) is the probability of the new observation

being in state m at time t and in state n at time t + 1 for
the kth observation sequence and γ

(k)
t (n) is the probability

of the new observation being in state n at time t for the
kth observation sequence. Further information regarding the
calculation of ξ

(k)
t (m,n) and γ

(k)
t (n) can be found in [9].

Symbol emission probability is

b̄n(m) =
∑

K
k=1 ∑

Tk
t=1 δ (o(k)t ,νm)γ

(k)
t (n)

∑
K
k=1 ∑

Tk−1
t=1 γ

(k)
t (n)

, 1≤m≤N,1≤ n≤N

(9)
where δ (ok

t ,νm) = 1 i f ot = νm and 0 otherwise.
Initial state probability is

π̄n =
1
K

K

∑
k=1

γ
(k)
1 (n), 1≤ n≤ N (10)

V. OPTIMAL WINDOW SIZE SELECTION

Although BPNNs are limited to fixed window sizes, time-
varying input dimensions can be considered at each time
step using hidden Markov models [7]. Therefore, a search
algorithm to find the optimal window size is proposed
in this section. Unlike the previous approaches [13], this
algorithm is looking for a fixed episode of more informative
observations in the window.

Selection of large window sizes has the drawback of
remaining in transition zones for large time intervals where
no decision can be made on the operating condition of
the system. The minimum number of observations (Nmin)
required to thoroughly explain the operating condition might
differ according to the level of noise removal, on-line sam-
pling rate, etc. Although Nmin contains a window of most
recent observations, making the final decision only based
on Nmin may cause many false alarms and affect critical
decisions. One solution to this problem is searching for Nmin
number of observations in a window of most recent data
(NW ). Intuitively, using the proposed methodology in figure

15



5, we are looking for a small window of observations which
maximizes the difference of the likelihood given each model.
Therefore, assuming emax = NW −Nmin,

eopt = argmaxe∈[0,emax ]{(P(O|λNormal)−P(O|λAbnormal))
2|O=O(τ+e:τ+e+Nmin)}

(11)

where τ = t −NW and O = O(τ + e : τ + e +Nmin) is the
optimal episode of observations in the window. P(O|λ ) is
calculated from the forward-backward algorithm [14].

Using the search algorithm in (11), we are looking for
an episode of Nmin observations which best classifies the
normal and abnormal operations in the window of NW
observations. A schematic of the proposed algorithm is
illustrated in figure 4.

Fig. 4. Optimal window size selection

A summary of the proposed algorithm (4.B and 5) is
presented in figure 5.

Fig. 5. Summary of the proposed methodology of this paper

VI. CASE STUDY

A. Two CSTRs in Series

Application of the proposed method is studied on the
CSTR system of Henson et al. [10]. The irreversible exother-
mic first order reaction A→ B occurs in two CSTR reactors
in series. The product of the first reactor is the feed to the
second reactor and a parallel flow (qC) is used as the coolant.
A schematic view of the system is shown in figure 6.

Fig. 6. Two CSTRs in Series [10]

B. Normal and Abnormal Operating Conditions

The feed flow rate q f is used as the disturbance to the
process. The outputs of the process (CA2 and T2) are selected
as the indicators of the abnormality in the process. The
abnormal behavior in the process outputs is due to the sudden
changes in the feed flow-rate (a pulse disturbance with the
amplitude 15(L/min) and period of five sample times in time
steps between 610−1210) which cause overshoots in process
outputs. The system starts at the initial value of CA2 equal to

0.05(
mol
L

) and the set-point is selected as CA2 = 0.075(
mol
L

).
A PI controller with parameters given as τI = 0.25(min)

and KC = 350(
L2

mol.min
) is implemented as explained by

Henson et al. (1990). It is also assumed that q f always has

a white noise disturbance with variance 0.5(
L

min
). Normal

and abnormal process operations are shown in figure 7. The
disturbance is illustrated in figure 8.

Fig. 7. Normal and abnormal process operations and the indicator variables

Other model parameters used in simulation are presented
in table I.
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Fig. 8. Disturbance to the process

TABLE I
SIMULATION PARAMETERS [10]

q = 100(L/min) k0 = 7.2×1010min−1

CA f = 1(mol/L) E/R = 1×104K
Tf = 350K −4H = 4.78×104J/mol
TC f = 350K ρ,ρC = 1000g/L

V1,V2 = 100L CP,CPC = 0.239J/g.K
UA1,UA2 = 1.67×105J/min.K

VII. RESULTS AND DISCUSSION

A. Triangular Representation

A combination of normal and abnormal operating regions
after reaching the desired set-point is presented in figure 9.

Fig. 9. Normal and abnormal operations after reaching the desired set-point

After removing the high frequency noise in two levels us-
ing wavelet analysis and normalizing the data, the minimum,
maximum and inflection points of the signals are calculated.
Then, using appropriate fuzzy membership functions and
rules for durations and magnitudes of the signals, they are
converted to discrete observations. Peaks of the membership
functions are selected as minimum, maximum and average
of the magnitudes and durations. Standard deviation of the
membership functions is a linear function of the standard
deviation of durations and magnitudes. Discretized observa-
tions of the output concentration and temperature signals are
presented in figures 10 and 11.

The abnormal region is the area between two direct red
lines. As it is clear from these two figures, larger size
triangles are generated when the process enters the abnormal
region

Fig. 10. Discritized observations for the output concentration

Fig. 11. Discretized observations for the output temperature

B. Large Window of Input Data (non-adaptive window size)

Large window of input data for process classification
provides similar results between BPNN and the proposed
method of this paper. Figures 12 and 13 compare the results
of the two approaches considering 10 last observations as the
input to the classification algorithms. A total number of 772
discrete observations, including 579 observations for normal
and 193 for abnormal regions, are used to train the models
of the normal and abnormal operating conditions. In each
data set, 2/3 of the data is used for training and 1/3 is used
for validation. The number of HMM hidden states, which
is usually selected as the average number of symbols in a
sequence of the training set, is equal to 8 in this study. The
number of neurons in the hidden layer of the neural network
is selected equal to be equal to 6 in the BPNN approach.

Fig. 12. Normalized probability of the observation sequences belonging
to normal and abnormal regions using HMMs with fixed window of data
(NW = Nmin = 10)

Fig. 13. Normalized probability of the observation sequences belonging to
normal and abnormal regions using the BPNN approach (NW = Nmin = 10)
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As presented in figures 12 and 13, with a large window
of the input data, both approaches provide similar results.

C. Small Window of Input Data (adaptive window size)

As explained in section 5, using large window sizes, a
long time will be required for any classification algorithm
to capture the most recent behavior of the process due to
a large amount of old data in the window. Consequently,
the classification algorithm remains in transition zones where
no decision can be made on the operating condition of the
system. Furthermore, by training a hidden Markov model for
multiple observation sequences directly, interactions between
different inputs are considered. Figures 14 to 16 present the
results of the overall classification with 5 observations as the
input of the classification system.

Fig. 14. Normalized probability of the observation sequences belonging to
normal and abnormal regions using the BPNN approach (NW = Nmin = 5)

As it is clear from figure 14, a large number of false alarms
appear when the window size is reduced to half using the
BPNN approach.

Fig. 15. Normalized probability of the observation sequences belonging to
normal and abnormal regions using the proposed methodology of this paper
(NW = 9,Nmin = 5)

Figure 15 shows the result of overall classification based
on the proposed method. The number of false alarms is
reduced. However, the likelihood ratio is decreased. In other
words, the overall decision making is improved while the
individual effect of each variable is reduced. The number of
shifts to find the optimal window (eopt ) is presented in figure
15. This number varies between 1 and emax = NW −Nmin =
9−5= 4 and indicates the Oopt =O(τ+eopt : τ+eopt +Nmin)
sequence of observations which are selected for overall
classification.

VIII. CONCLUSIONS

In this paper an improved method for multivariate sym-
bolic based classification of the process is introduced and
compared to the previous approaches. Results demonstrate
that the new approach shows fewer false alarms. However,

Fig. 16. Number of shifts to find the optimal window

the final decision will be made based on smaller likelihood
ratios. Following the proposed procedure, interactions be-
tween inputs will be automatically considered and abnormal-
ities due to the effect of each single variable (which could
often be an outlier or noise) will be avoided. Furthermore, in
comparison to the BPNN approach, only one component (one
hidden Markov model trained for the overall classification)
is required for decision making and computation time is
greatly reduced. Finally, in the new procedure, the optimal
window of input data can be found using the introduced
search algorithm. Therefore, the final decision is based on
the more informative observations in the window and the
old information will not affect the overall decision making.
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