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Abstract— A time-domain based tuning technique for 

Model Predictive Controllers is presented. Tuning goals are 

specified as the sum of the square errors between closed-loop 

outputs and user-defined reference trajectories, and a 

framework is developed to guide the user through the tuning 

procedure, which requires process output priority 

assignment and input-output pairing. The tuning problem is 

solved in a stepwise fashion, and constraints are included in 

subsequent steps in order to enforce that high priority output 

performance will not be disrupted. The tuning strategy was 

applied to a DMC controller, in a 2x2 C3/C4 splitter process. 

Optimum tuning parameters were compared to a set of 

parameters obtained by trial and error, and results show that 

the technique is able to achieve close tracking and 

disturbance rejection performance, as long as the tuning 

problem is well defined. 

I. INTRODUCTION 

Model Predictive Control (MPC) was introduced back 

in 1960’s. The new technology was attractive from the 

process and control point of view, because it allowed for 

direct incorporation of process constraints into the control 

optimization problem; moreover, multiple-input multiple-

output (MIMO) processes were treated as 

straightforwardly as single-input single-output (SISO) 
processes by simple mathematical manipulation. MPC 

algorithms vary broadly in the model formulation and 

stability and robustness properties; however, the 

underlying framework is a constrained optimization 

problem. A cost function comprised of two weighted 

terms: (i) the sum of squared differences between the 

process’ predicted outputs over a prediction horizon 

(calculated using the current output value and process 

model) and a reference output value; and (ii) a term 

considering the sum of input variables increments over the 

control horizon. Problem constraints take into account 
physical limitations of process variables and input variable 

increments. The optimization problem is solved to obtain 

optimum input increments, at each sampling time. The 

first entry of the input increment vector is fed to the 

process, and at the next sampling time, the process is 

repeated. For more information on MPC, the reader is 

referred to [1].  

Industry has widely accepted Dynamic Matrix Control 

(DMC), formalized by [2], as a usual control strategy 
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because it has the advantages of MPC mentioned earlier, 

and it is based on step response or impulse response 
models, which are more intuitive than state-space models. 

Nonetheless, commissioning a DMC poses challenges to 

the control engineer, especially regarding controller 

tuning. The parameters that affect robustness, stability and 

performance in DMCs are: prediction horizon (p), control 

horizon (m), model horizon (N), sampling time (Ts) and 

cost function weighting matrices on differences between 

predicted outputs and reference values (Qy) and input 

increments (R). The tuning technique presented in this 

paper will allow tuning of the weighting matrices, since 

sampling time is not generally available for free choice, 

model horizon should be chosen large enough as to ensure 
that the process dynamics is considered throughout all the 

required range, and prediction and control horizon are 

chosen following quantitative guidelines from literature 

[3], yielding good results.  

Controller tuning guidelines are usually classified by 

tuning goal (tuning for performance, robustness or 

stability, however, some strategies associate multiple 

objectives in the objective function, or as constraints) or 

according to the domain in which tuning objectives are 

specified, i.e. time-domain or frequency domain. [4] 

developed a frequency-domain tuning strategy based on 
minimization of the H-infinity norm of a mixed sensitivity 

function in which the main tuning goal is to ensure proper 

disturbance rejection in DMC controllers. [5] and [6] put 

forward  tuning techniques based on the conditioning 

number of the DMC system matrix, which is directly 

related to its ill-conditioning. The former developed 

qualitative guidelines regarding the choice of matrix R, so 

that proper conditioning of the system matrix is achieved. 

The latter said that a conditioning number of 500, is a 

good compromise between stability and performance for 

open-loop stable systems, and used a first order plus dead 

time approximation of the system dynamics to derivate 
analytical expression for optimum R values. [7] 

formulated a tuning strategy in which tuning goals are 

given in terms of time-domain performance specifications 

like overshoot, rise time, and settling time. The authors 

used a min-max objective function formulation to account 

for performance and robustness goals, and the tuning 

problem was solved by Particle Swarm Optimization, 

which is a heuristic search based on evolutionary 

algorithms. It simulates bird flocks behavior moving from 

one place to another; individual birds portrait possible 
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solutions and the final direction of the flock is sought as 

an optimal solution. 

The time-domain based tuning technique developed 

here considers time-domain performance objectives to find 

optimum values of Qy and R for DMC controllers; 
however, it can be applied to virtually any parameter-

based controller formulation. This paper is comprised of 

the following sections: first, we provide the DMC 

formulation used in tuning and simulations examples. 

Second, we explain the tuning technique for the nominal 

case in more detail. Later, the technique is applied to a 

two-input two-output model of C3/C4 industrial splitter. 

The paper closes with conclusions and remarks for future 

works. 

II. METHODOLOGY 

A. DMC controller 

 

The DMC used in the paper is similar to [2]. Equations 

1 to 3 show the prediction model, and how the free 

response vector is calculated. hi
kj is the value of output j at 

time instant i for an unitary impulse in input k, j=1,…,ny; 

k=1,…,nu; i=1,…,N. It is used to calculate the dynamic 
matrix, Dm, in which Gi,j, i=1,…,p; j=1,…,nu are 

submatrices with coefficients gi,k of the i-th step response 

corresponding to the j-th input. The impulse response is 

obtained from a transfer function, or equivalent, process 

representation. The free response vector, f, is calculated 

according to (4), and (1) shows the prediction of process 

outputs over the prediction horizon. ny is the number of 

process outputs and nu is the number of process inputs. 

∆u(k) is a vector of dimension 1 × nu, and represents an 

increment in process inputs, y(k) is the value of process 

outputs at time instant k, yc(k+i), i=1,…,p is is a vector of 

dimension 1 × ny and represents the predicted outputs 
value at time instant k+i. ym(k) is the vector of measured 

outputs at time instant k. 

 

 

 

 

 

 

1,1

2,1 12

,1 1,2 1,

0 01

0 12

1  

     
    

     
    
    

          



 

c

c

c
p p p m nu

G u ky k

G G u ky k

G G G u k my k p



 

 

 

1

2

  
 

 
 
 

  

f k

f k

f k p

 

   
1 1 

 
nu N

kj k

j i

k i

y k h u k i  

,

1


i

kj

i k i

j

g h  

       1

1





     
N

m j j

j

f k i y k g g u k j  

To improve notation, (1) is be written in a compact 

form, seen in (5).  

  c

m ky D u f  

  

where y
c
 is the vector of predicted outputs over the 

prediction horizon, p; ∆uk is the vector of control efforts 

over the control horizon, m; and f is the vector of stacked 

free responses f(k+i), i=1,…,p. 

Assuming a constant output setpoint, ysp(k), the set 
point vector is defined as ysp=[ysp(k)… ysp(k)]. Finally, the 

objective function of the DMC controller is written 

according to (6), and the DMC control problem, consists 

in minimizing (6), subject to constraints defined in (7) and 

(8). 

2

0

1
2

0

min ( ) ( )

( )








   

 





yk

p
c

sp Qu
i

m

R
i

y k i k y k i

u k i k

 

subject to 

 min max , 0, , 1    u u k j u j m  

 max max , 0, , 1       u u k j u j m  

umin and umax are the lower and upper bound of the inputs 

and ∆umax is the maximum control effort. Qy, Qy>0 and R, 

R≥0 are diagonal matrices. The problem defined by (6), 

(7) and (8) is efficiently solved by Quadratic Programming 

(QP) algorithms, however, during the tuning procedure, 

we will solve it analytically by disregarding constraints, as 

done in [8]. During simulations though, process 
constraints will be taken into account. 

 

B. Nominal tuning strategy 

 

We assume that controller and plant have the same 

model, i.e. model mismatch in not an issue. The tuning 
technique is based on minimizing the sum of squared 

errors (SSE) between closed-loop output trajectories and 

user-defined reference trajectories that take into account 

process characteristics like overshoot, rise time, and 

settling time. Similar strategies  have been used in 
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literature, for example, [9] used output envelopes that 

constrain process output behavior, [10] used reference 

trajectories for both decoupling in MIMO systems and 

time domain performance goals. Also, it was stated by 

several authors that tuning objective functions based 
solely on the integral of squared or absolute error of 

process outputs and a setpoints are faulty ([11], [12]).  The 

method also requires that the user assigns priorities to 

process outputs, and that input-output pairs are established 

prior to solving the optimization. In this fashion, a 

successive tuning technique is developed, in which outputs 

considered more important are driven closer to their 

reference trajectories during the tuning procedure, and 

previously attained optimum values are maintained or 

improved in subsequent steps, while performance of low 

priority outputs is considered only if there is no significant 

sacrifice of high priority output performance. 
The technique focuses on tuning weighting matrices Qy 

and R. The integer variables N, p, and m will not be 

included because it would lead to a mixed-integer 

nonlinear optimization problem, which might prove 

difficult to solve. Moreover, the effect of p and m in the 

closed loop performance is indirect; high values of p and 

m might render the control problem computationally 

infeasible, and there are several references in literature that 

provide reliable guidelines for choosing these parameters 

[3]. 

N is chosen according to the highest settling time of the 
open-loop step response of the process, in order to 

guarantee that the step (impulse) response model has 

enough information on system dynamics. p is chosen as a 

fraction of N, 60% represents good compromise between 

information availability and computational load. Finally, 

m is usually set to a value within 3-6. Higher values of m 

mean more stability at the cost of higher computational 

load. 

In open-loop unstable processes, and in the case in 

which the controller internal model and the plant model 

are different (plant-model mismatch), it is recommended 

to set slightly higher p and m to try to achieve more stable 
control, however there are no formal stability and 

robustness guarantees for nominal controllers. For tuning 

purposes, in SISO systems, it suffices to set Qy to a fixed 

value and vary R to obtain an optimum control 

performance, because the ratio of Qy to R unequivocally 

determines a control profile, even though the total control 

cost might not be unique. In MIMO systems, it suffices to 

make one entry of Qy constant and tune the remaining 

coefficients the weighting matrices. 

 

The remainder of this work uses the following notation: 
a system of ny outputs and nu inputs can be represented by 

a matrix of transfer function Gs(s), the entries of the 

transfer function matrix are represented by Gi,j(s), 

i=1,…,ny, j=1,…,nu, and s is the Laplace variable. qy,i and 

rj, i=1,…,ny, j=1,…,nu are diagonal entries of matrices Qy 

and R. 

 

1) Output priority assignment 

 

Determining important variables among a set of 

different variables is a common scenario for process 
engineers. Important outputs are usually chosen based on 

economic, environmental, or safety factors. This tuning 

algorithm assumes a user-defined sequence of prioritized 

outputs. 

 

2) Specifying output-input pairs 

 

The framework behind PID control supports successive 

tuning of square subsystems with increasing dimensions 

up to the size of the original system. Most control loops in 

real plants are comprised of pairs of output-input 

variables. Since priority of outputs has already been 
defined, the second step is to choose a suitable input for 

each output according to its priority. [13] reviewed a 

couple of methods to select these pairs. 

There are cases in which process knowledge dictates 

output-input pairs, however, when such information is 

unavailable or insufficient, pairing techniques like 

Relative Gain Array (RGA) or Singular Value Analysis 

(SVA) are employed. Observe that there may be processes 

in which ny≠nu, and if this circumstance arises, the user is 

oriented to either: (i) assign more than one input to high 

priority outputs if nu>ny, or (ii) clump low priority outputs 
to a single input if ny>nu. Hereafter, subscripts i and j in y 

and u, as well as in qy and r will refer to the variable order 

defined here. 

 

3) Preparing the remaining parameters 

 

The algorithm uses normalized transfer function, output 

set points, input and outputs initial points to minimize 

numerical problems during the tuning procedure, and to 

attenuate output scaling problems. It also allows for Qy to 

solely correspond to the relative importance of process 

outputs. 
 

4) Specifying tuning objectives 

 

The tuning objectives are output reference trajectories 

that allow the user to set time-domain performance goals 

such as overshoot, rise time, settling time, and dynamic 

behavior. The SSE between reference trajectories and 

closed-loop output trajectories is the tuning objective 

function. Reference trajectories might be chosen according 

to different criteria. One example is to take the open-loop 

transfer function related to an output, approximate it by a 
first-order plus dead time transfer function and set its time 

constant to a fraction of the original transfer function. This 

strategy has its merits because control engineers are fond 

of stable, swift, and non-oscillatory responses. Observe 

that reference trajectory goals are applicable to both 

disturbance rejection and output tracking tuning scenarios. 
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Reference trajectories are given by a diagonal transfer 

function matrix, Gdes(s), comprised of Gdes,i(s) i=1,…,ny 

terms. 

5) Sequential tuning algorithm 

 

Even though the tuning sequence follows the input-output 

order defined earlier, the first tuning step requires some 

particular procedures, and for better understanding, the 

tuning method will be explained in two parts. Initially, we 

define the tuning cost function and explain the first tuning 

step; later, we cover the remaining tuning steps, up to the 

last one. 

Let us first define a function to evaluate the SSE 

between an output’s reference trajectory and its closed-

loop response: 
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where t is the tuning horizon, y(j)i
ref is the discretized 

reference trajectory of output i, y(j)i is the closed-loop 

trajectory of output i, j=1,…,t, and η is the current tuning 
step. Observe that y(j)i, is evaluated using control moves 

calculated by an MPC in closed-loop and therefore, it is a 

function of the tuning parameters.  

a) First step 

The first step of the tuning problem is defined as 

follows: 

1min
x

V  

subject to 

 LB x UB  

where x, x  is the decision variable vector. In the first 

step, the vector x only takes a single element, r1, since qy,1 

is by definition constant to avoid conditioning problems. 

b) Successive steps 

The method tries to improve or at least to preserve the 

performance of high priority outputs every time a lower 

priority output and its respective input pair are added to 

the tuned process subsystem. Usually, extra inputs provide 

extra degrees of freedom for better output performance; 

however, some systems might not allow for further 

improvement due to coupling properties. In order to avoid 

infeasibilities, performance constraints are relaxed with 

slack variables, heavily weighted in the tuning cost 

function. The tuning problem, at tuning step η, for an η x η 

subsystem is: 
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and (12). δ is a vector of slack variables δ(i), i=1,…,(η-1) 

from (14); St is a diagonal positive definite weighting 

matrix,    1 1   
tS . Considering that qy,1 is constant, 

the decision variables vector at tuning step η is defined as: 

1 ,2 , 
   y yx r r q q ,  2 1

x . J*
old, 
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is a vector containing the optimum values of 

(11) or (13) obtained in tuning steps, η-1, η-2,…,1. 
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III. RESULTS AND DISCUSSION 

 

A 2x2 C3/C4 splitter model was considered to illustrate 

an application of the proposed tuning method. The 

nominal plant model was identified from operational data, 

within the range of process inputs. Table 1 shows a list of 

process variables, ranges, and unities. For more 
information about the process, the reader is referred to 

[14].  

Input-output pairs and output priority were defined 

from process information obtained in [14]. Non-tunable 

parameters were chosen as follows: N=100, p=60, m=5, 

the tuning method variables were chosen as t = 60, the 
pair y1-u2 is considered more important than y2-u1. Gdes 

was chosen based on first-order approximations of the 

open-loop step responses of transfer functions G2,1(s) and 

G1,2(s) of the nominal model. The time constant of the 

reference trajectory was set to 10% of the original value 

for Gdes1,1(s) and to 30% for Gdes2,2(s)  as in (17). Process 

initial conditions and output setpoints are: y0=[0.825 
0.82]’, u0=[0.60 0.70]’, ysp=[0.45 0.50]’, considering 

normalized values. The tuning problem initial guess in the 

first and second steps are x0,1=[0 1 8], x0,2=[0 1e-2 10 8 4 

1]. Lower and upper bounds are LB1=[0 1e-3 8], UB1=[∞ 

1e3 8] and LB2=[0 1e-3 1e-3 8 0.5 0], UB2=[∞ 1e3 1e3 8 6 

1e6]. St=1e4.  
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The tuning problem is solved using fmincon (trust-

region reflective algorithm, 1e-12 function tolerance, 1e-8 

x tolerance, 4000 max function evaluations and 1e-6 

constraint tolerance), and the unconstrained version of the 

control problem is solved analytically, in MATLAB® 
(version R2013a). 
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Figures 1 and 2 show results obtained by the tuning 

method after the last step, the outputs are given in 

engineering units. Table 2 shows values of Qy and R 

obtained by the tuning technique developed here and by 

[14] using a trial and error approach. 

The total time elapsed during steps one and two was 72 
seconds, using an Intel® Core™ i5 3.20 GHz, 4Gb RAM. 

The low value of δ (0.001), when compared to the second 

step cost function value (0.1067), shows that the tuning 

strategy allowed for a minor decrease in y1 performance 

index (illustrated in figure 1), while simultaneously adding 

y2‘s goal to the tuning problem.  

Since the upper and lower bounds for Qy were chosen 

arbitrarily, there is a sufficient low value for qy,2 so that 

it’s deviation from the setpoint is neglected in the control 

cost function. In this situation, y1 would achieve its peak 

performance; however, y2 would not be controlled, which 
is not desirable. Figure 2 shows that performance of y2 is 

already worse than y1’s, but both outputs would converge 

to their setpoints in longer simulations. Observe that the 

values of R obtained by the tuning technique were around 

10 times higher than the optimum trial and error values 

from [14], since the desired trajectories demanded smooth 

responses. 

A simulation study is carried on to compare results. The 

initial state of inputs and outputs is y0=[1.1 50] and 

u0=[3000 1700]. Upper and lower bounds of inputs and 

outputs are taken from table 1, and ∆umax=[50 25]. The 
simulation ran for 550 time instants, setpoint changes are 

listed in table 3. From time instants 200 to 205 and 400 to 

405, unmeasured disturbances affected process inputs. The 

DMC control problem was solved using quadprog (default 

settings), in MATLAB® (version R2013a). 

 
TABLE I. C3/C4 SPLITTER VARIABLES, RANGES, AND UNITIES. 

Tag Variable Range Unity 

y1 C3 % in butane stream 0.80 - 1.20 % 

y2 Top temperature 43 - 54 °C 

u1 Reflux flowrate 2000 - 4100 m
3
/h 

u2 Hot fluid flowrate 1200 - 2200 m
3
/h 

 
TABLE 2: TUNING PARAMETERS OBTAINED BY TWO TUNING TECHNIQUES. 

 Qy R 

 y1 y2 u1 u2 

Final parameters 8 1 11.327 29.079 

[14] parameters 1.3 1.2 1.5 1.5 

 
Figure 1: Comparing performance of y1 after the first and second 

tuning steps. 

 
Figure 2: Tuning results, process outputs. 

 

Figures 3 and 4 shows the process outputs and inputs, 

calculated using the tuning parameters obtained 

considering the reference trajectory approach (full lines), 

trial and error (dotted lines) and setpoint values (dashed 

lines). In figure 3, performances obtained by both tuning 

strategies are similar for output y1, except in disturbance 

rejection scenarios, where the reference trajectory strategy 

outperforms the practical trial and error-tuned controller. 

In output y2, the reference trajectory-tuned controller 

yields more sluggish responses and larger offset. The 

priority difference of y1 and y2, given by weights Qy, for 
the tuning strategy developed here (8 times) and from the 

trial and error tuning parameters (1.08 times) justify the 

observed results. Inputs behavior is very similar in both 

cases, as seen in the undistinguishable curves in figure 4, 

despite the differences in R seem in table 2, which are not 

great enough to lead to substantial discrepancies. In terms 

of Sum of Square Errors, considering the tracking error 
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from closed-loop outputs and set-points in Figure 3, the 

trial-and-error tuned controller is only 2% better. 

 
TABLE 3: SIMULATION SETPOINTS. 

Time instant y1,sp y2,sp 

0 0.99 48 

100 0.85 49 

300 0.9 51 

500 0.95 50 

 

 
Figure 3: Process outputs of the closed loop with optimum tuning 
parameters obtained with the proposed tuning technique and by 

plant trial and error. 

 
Figure 4: Process inputs of the closed loop with optimum tuning 

parameters obtained with the proposed tuning technique and by 
plant trial and error. 

IV. CONCLUSION 

 
A tuning technique for MPC, based on time-domain 

reference trajectory goals, was developed and tested on a 

2x2 C3/C4 splitter process. User-defined parameters of the 

tuning procedure, such as the pairing matrix, output 

priorities and reference trajectories, are crucial to obtain 

good results. In fact, results obtained using the technique 

are comparable to a trial and error-tuned controller, with 

the advantages of saving time through the solution of a 

well-structured optimization problem, and higher levels of 

automation.  The authors are working on an extension of 

the technique to account for polytopic model uncertainty. 
Our future goal is to develop a robust tuning strategy to 

produce a nominal controller with ‘robust tuning 

parameters’, in order to replace the need of robust 

controllers in industry, which are intrinsically more 

computationally demanding. 
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