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Abstract— This paper proposes a method to specify straight-
forwardly poles of controllers of strongly stable generalized
predictive control(GPC) systems using symbolic computation
software. Strongly stable control system is defined as a system
having both of stable poles of closed loop systems and stable
poles of controllers. That is, the system is stable even when
feedback loop is cut by an accident. The authors have already
derived a strongly stable controller for GPC systems by extend-
ing the controllers to two degree of freedom compensators and
using coprime factorization approach. To design the strongly
stable systems, we need to specify both of the poles of closed-
loop and poles of controllers. So far we do not have a method
to deign directly the poles and we need to use trial-and-
error method to specify the controller’s poles. To specify the
poles directly, we need to calculate design parameters from
given desirable poles analytically, not numerically. To calculate
poles analytically, symbolic computation software is useful.
So far symbolic computation software requires large amount
of computer resources and until recently, the software was
not practically available. But, recently computer technology is
developed so fast that the software becomes practically usable.
Hence this paper proposes to use the symbolic computation
software in design of GPC controller poles.

I. INTRODUCTION

In industry, safety is the most important issue. As a
safe model predictive control(MPC), strongly stable MPC is
proposed[1]. The strongly stable control system is defined as
a system having both of stable poles of closed loop systems
and stable poles of controllers[2]. That is, the system is stable
even when feedback loop is cut by an accident. The proposed
strongly stable GPC is obtained by extending the controllers
to two degree of freedom compensators and using coprime
factorization approach and have applied the strongly stable
MPC to experimental systems[3], [4]. Also studies exist to
extend the strongly stable MPC to a continuous-time system
and to apply to a real plant[5].

To design the strongly stable systems, we need to specify
both of the poles of closed-loop and poles of controllers. In
applying the controller to real plants, plant dynamics changes
frequently and when the change occurs, the controllers
should be redesigned to follow the change. Hence a design
method for design parameters to be determined directly is
required. So far we do not have such design method and we
depend on trial-and-error methods. That is, first, give design
parameter candidates, then calculate numerically poles of
controllers, if the poles are not desirable, then try other
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parameter values. This procedures are repeated until the
desirable poles are obtained.

There exists a paper using two degree of freedom con-
troller in GPC[6]. Their design method is to insure stability
and robustness and to use an optimization programming.
Also exists a paper to propose a computational method for
strongly stable GPC[7]. The paper is concerned to the closed-
loop poles not controller poles.

To avoid these trial-and-error procedures, we need to
calculate design parameters from given desirable poles an-
alytically, not numerically. Since several matrix equations
to be solved and a matrix inversion are included, to obtain
the analytical expressions in GPC, these calculations are
impossible by hand. To calculate such expressions analyt-
ically, symbolic computation software are useful. Once the
analytical expressions are obtained, then from the desirable
poles the design parameters are determined. So far symbolic
computation software requires large amount of computer
resources and until recently, the software was not practically
available. But, recently computer technology is developed
so fast that software becomes practically usable. Hence this
paper proposes to use the symbolic computation software in
design of GPC controller poles.

Already some studies have tried to use symbolic computa-
tion software in controller design[8], [9], but there does not
exist researches to apply symbolic computation software to
the design of GPC and this paper is the first one trying the
application.

This paper is organized as follows. Section II gives the
problem setting. Section III reviews strongly stable GPC.
In section IV proposes a design procedure to use symbolic
computation in the design of poles of controller in strongly
stable GPC. Section V is for simulation to show the design
procedure. Finally, Section VI is the conclusion of this paper.

Notation z−1 denotes time-delay, that is, z−1y(t) = y(t−
1). ∆ denotes as ∆ = 1 − z−1. Polynomials of z−1 are
written as A[z−1], whereas rational functions of z−1 are as
A(z−1).

II. PROBLEM SETTING

The plant to be considered is given by the discrete-time
single-input single-output system described by the following
equations.

A[z−1]y(t) = z−kmB[z−1]u(t) + C[z−1]
ξ(t)

∆
(1)

A[z−1] = 1 + a1z
−1 + a2z

−2 + · · ·++anz
−n (2)

B[z−1] = b0 + b1z
−1 + b2z

−2 + · · ·++bmz−m (3)
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C[z−1] = 1 + c1z
−1 + · · · clz−l (4)

where u(t) is scalar input and y(t) is scalar output, km ≥
1 is delay-time and ξ(t) is uniform random measurement
noise. A[z−1], B[z−1] are polynomials with n, mth-order,
coprime with each other. Polynomial C[z−1] is of order l.
For simplicity, it is assumed that km = 1.

The control objective is for output y(t) to follow reference
w(t) and to have desirable response. To attain the objective,
in GPC, the following generalized index J is to be mini-
mized.

J = E

 N2∑
j=1

{y(t+ j)− ym(t+ j)}2

+

N3∑
j=1

λ {∆u(t+ j − 1)}2
 (5)

where N2 and N3 are output horizon and control horizon
and for simplicity N3 is set as N3 = N2. λ are weighting
coefficients and the poles of the closed-loop are determined
by these coefficients. The expectation of the index J is
averaged over random noise ξ(t), ξ(t − 1), · · ·. ym(t + j)
are the outputs of the following reference model.

ym(t) = y(t)

ym(t+ j) = αym(t+ j − 1) + (1− α)w(t) (6)

w(t) is reference input, α is a design parameter to determine
transient responsee and 0 ≤ α ≤ 1．

III. STRONGLY STABLE MODEL PREDICTIVE CONTROL

This section summaries the design procedure of the
strongly stable GPC[1]. The strong stability includes two
stability as shown in Fig.1, that is,
(i) the closed-loop is stable,
(ii) also controller itself is stable so that the control input
will not run explosively when feedback loop is breakdown.

Fig. 1. Strongly stable control system

The design procedure has the following 7 steps[1]:
Step 1. For j = 1, · · · , N2, obtain (j−1)th-order polynomial

Ej [z
−1] and nth-order polynomial Fj [z

−1] satisfying the
following Diopahtine equation

C[z−1] = ∆A[z−1]Ej [z
−1] + z−jFj [z

−1] (7)

Ej [z
−1] = 1 + e1z

−1 + · · ·+ ej−1z
−(j−1) (8)

Fj [z
−1] = f j

0 + f j
1z

−1 + · · ·+ f j
nz

−n (9)

where coefficients e1, · · · , eN2 of Ej [z
−1] are determined

independently to j．
Step 2. For j = 1, · · · , N2, obtain (j−1)th-order polynomial
Rj [z

−1] and n3th-order polynomial Sj [z
−1] by decomposing

the following equation, where n3 = max{m, l} − 1,

Ej [z
−1]B[z−1] = C[z−1]Rj [z

−1] + z−jSj [z
−1] (10)

Rj [z
−1] = r0 + r1z

−1 + · · ·+ rj−1z
−(j−1) (11)

Sj [z
−1] = sj0 + sj1z

−1 + · · ·+ sjn3
z−n3 (12)

where coefficients r0, r1, · · · , rN2 of Rj [z
−1] are determined

independently to j．
Step 3. Obtain coefficients p1, · · · , pN2 using the following
equation and define nth-order polynomial Fp[z

−1], n3th-
order polynomial Sp[z

−1] and (N2 − 1)th-order polynomial
P [z−1]．

[p1, · · · , pN2 ] = [1, 0, · · · , 0](RTR+ Λ)−1RT (13)

R =


r0 0 · · · 0
r1 r0 · · · 0

...
...

. . .
...

rN2−1 rN2−2 · · · r0

 (14)

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN2

 (15)

Fp[z
−1] =

N2∑
j=1

pjFj [z
−1] (16)

Sp[z
−1] =

N2∑
j=1

pjSj [z
−1] (17)

P [z−1] =

N2∑
j=1

pN2−j+1z
j−1 (18)

Step 4. For j = 1, · · · , N2, obtain (n+m)th-order polyno-
mial Dj [z

−1] and Dp[z
−1] using the following equations

Dj [z
−1] = ∆A[z−1]Sj [z

−1] +B[z−1]Fj [z
−1] (19)

DP [z
−1] =

N2∑
j=1

pjDj [z
−1] (20)

Then calculate (n+1)th-order polynomial T [z−1] satisfying
the following equation

C[z−1]T [z−1] = ∆A[z−1]C[z−1] + z−1Dp[z
−1] (21)
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Step 5. Using polynomial T [z −1], obtain coprime rational
expression G(s) of system (1) by the following equations[2].

G(z−1) = NG(z
−1)/DG(z

−1) (22)

NG(z
−1) = z−kmB[z−1]/T [z−1] (23)

DG(z
−1) = A[z−1]/T [z−1] (24)

Then N(z−1) and D(z−1) satisfy the following Bezout
identity

X(z−1)NG(z
−1) + Y (z−1)DG(z

−1) = 1 (25)

X(z−1) = Fp[z
−1]/C[z−1] (26)

Y (z−1) = (C[z−1] + z−1Sp[z
−1])∆/C[z−1](27)

and NG(z
−1)，DG(z

−1) ∈ RH∞ are coprime.
Step 6. Introducing new design parameter rational functions
U(z−1), K(z−1) ∈ RH∞, two degree of freedom stabilizing
controller for G(z−1) is given by the following Youla
Parameterization[2]．

u(t) = C1(z
−1)w(t)− C2(z

−1)y(t) (28)

C1(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1K(z−1) (29)

C2(z
−1) = (Y (z−1)− U(z−1)N(z−1))−1

(X(z−1) + U(z−1)D(z−1)) (30)

Using new parameter polynomials Ud[z
−1] and Un[z

−1],
parameter U(z−1) is defined as

U(z−1) =
Un[z

−1]

Ud[z−1]
T [z−1] (31)

where Ud[z
−1] is chosen as stable polynomial, Then con-

troller (28) described by rational function is expressed in
polynomial form as

{Ud[z
−1](C[z−1]+z−1Sp[z

−1]∆

−Un[z
−1]z−1C[z−1]B[z−1]}u(t)

= Ud[z
−1]C[z−1]P [z−1]yM (t+N2)

−(Ud[z
−1]Fp[z

−1] + Un[z
−1]C[z−1]A[z−1])y(t) (32)

Step 7. Using the controller (32), the poles of the closed-
loop system are given by the zeroes of polynomial T [z−1]
and the poles of the controller are zeroes of the following
equation

Tc[z
−1] = Ud[z

−1](C[z−1] + z−1Sp[z
−1])∆

−Un[z
−1]z−1C[z−1]B[z−1] (33)

Since zeros of T [z−1] are independent to parameters Ud[z
−1]

and Un[z
−1], to design a strongly stable GPC, it is necessary

to select polynomials Ud[z
−1] and Un[z

−1] so that zeroes
of TC [z

−1] are stable. But the selecting procedure relies
on trial-and-error method as shown in ”conventional design
procedure” of Fig.2.

Fig. 2. Design procedures

IV. DESIGN USING SYMBOLIC COMPUTATION SOFTWARE

In this section, a design procedure to specify the controller
poles to given p1, · · · , pnc is proposed.

First define the orders of parameters Un[z
−1] and Ud[z

−1]
as nn and nd. Then Un[z

−1] and Ud[z
−1] are given by the

following polynomials

Un[z
−1] = un0 + un1z

−1 + · · ·+ unnd
z−nn (34)

Ud[z
−1] = 1 + ud1z

−1 + · · ·+ udnd
z−nd (35)

And the coefficients un0, · · · , unnn and ud1, · · · , udnd
of

Un[z
−1] and Ud[z

−1] are determined so that zeroes of
polynomial Tc[z

−1] of (33) are equal to p1, · · · , pnc . The
order nc of Tc[z

−1] is

nc = max{nd + l + 1, nd +max{m, l},
nn + 1 + l +m} (36)

Then Tc[z
−1] is polynomial of z−1

Tc[z
−1] ≡ l1 + l2z

−1 + · · ·+ lnc
z−nc (37)

and its coefficients l1, l2, · · · , lnc are polynomials of un0, · · ·,
unnn

, ud1, · · ·, udnd
.

nc poles of controller should be specified to p1, · · · , pnc
,

then polynomials Tc[z
−1] should be

Tc[z
−1] = (1− p1z

−1) · · · (1− pncz
−1) (38)

= 1 + q1z
−1 + · · ·+ qncz

−nc (39)

where coefficients q1, · · ·, qnc are polynomials of
p1, · · · , pnc . Hence equations (37) and (39) should be equal
to each other, then the coefficients Un[z

−1], Ud[z
−1] should

be determined so that the coefficients of the two equations
are equal.

l1 = q1, · · · , lnc = qnc (40)

Equations (40) are simultaneous algebraic equations with
unknown variables un0, · · ·, unnn , ud1, · · ·, udnd

including
the coefficients p1, p2, · · · , pnc

and coefficients of polyno-
mials C[z−1], B[z−1] and Sp[z

−1] as parameters. These
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simultaneous algebraic equations are calculated analytically
using symbolic computation software and solved. Then sub-
stituting the desirable poles p1, p2, · · · , pnc into the solved
solutions of the simultaneous algebraic equations (40), the
design parameters un0, · · ·, unnn , ud1, · · ·, udnd

are obtained
directly, without using trial-and-error method as is shown in
”proposed design procedure” in Fig. 2.

V. SIMULATION EXAMPLE

Suppose polynomials A[z−1], B[z−1] and C[z−1] of the
plant and the output horizon N2 are given as

A[z−1] = 1 + a1z
−1 + a2z

−2 = 1 + 0.6z−1 + 0.7z−2,

B[z−1] = b0 + b1z
−1 = 0.5− 1.5z−1,

C[z−1] = 1, N2 = 5, λ = 1, α = 0 (41)

The reference signal is rectangular wave with amplitude 1,
period 100 sampling times and since α = 0，the output of
reference model is ym(t) = w(t). Then polynomial Sp[z

−1]
of (17) is

Sp[z
−1] = sp0 = 0.095793 (42)

Let the design parameters Un[z
−1] and Ud[z

−1] be as

Un[z
−1] = un0 + un1z

−1, Ud[z
−1] = 1 + ud1z

−1 (43)

Then design parameters are un0, un1 and ud1. Let the poles
to be specified be denoted as p1, p2 and p3, Then equations
to be solved are

−un1b1− ud1sp0 = −p3p2p1,

−un1b0− un0b1 + (ud1 − 1)sp0 − ud1

= −((−p2 − p3)p1 − p3p2), (44)

−un0b0 + sp0 + ud1 = −(p1 + p2 + p3 − 1)

Using symbolic computation software, these equations are
solved as

ud1 = −ud1n/ud1d (45)

ud1n = (p3p2p1)b
2
0 + (sp0 + (p2 + p3)p1 + p3p2)b1b0

+(sp0 + p1 + p2 + p3 − 1)b21

ud1d = (−sp0b
2
0 − sp0b1b0 + b1b0 + b21)

un1 = −un1n/un1d (46)

un1n = +(−s2p0 + (((p3 − 1)p2 − p3)p1 − p3p2)sp0

−p3p2p1)b0

+(−s2p0 + (−p1 − p2 − p3 + 1)sp0 − p3p2p1)b1

un1d = (−sp0b
2
0 + (−sp0 + 1)b1b0 + b21)

un0 = −un0n/un0d (47)

un0n = ((−s2p0 + (−p1 − p2 − p3 + 1)sp0 + (−p3p2p1)b0

+(−s2p0 + (−p1 − p2 − p3 + 1)sp0

+(−p2 − p3 + 1)p1 + (−p3 + 1)p2 + p3 − 1)b1)

un0d = (sp0b
2
0 + (sp0 − 1)b1b0 − b21)

When desirable poles p1, p2 and p3 are given, then substitut-
ing these poles into these equations, parameters ud1, un1 and
un0 to specify the poles of controllers are directly calculated.

Fig. 3. Simulation Run #1

That is, once the desirable poles p1, p2 and p3 are selected,
then the design parameters are determined.

To show usefulness of these equations, three simulation
runs are conducted. In the simulations, to show effectiveness
of strongly stable controllers, feedback is cut at 100th
sampling time. Also. uniform random noise ξ with amplitude
±0.1 is added.

Simulation #1: Non-extended model predictive control,
that is, ud1, un1 and un0 are selected equal to 0. Since
controller has unstable pole, z−1 = 1, after the feedback
is cut, the controller output is divergent.

Simulation #2: This case is strongly stable. Parameters
are selected by trial-and-error method[1], poles of controller
include complex numbers and after the feedback is cut, the
response is oscillatory.

Simulation #3: The extended controller is designed using
the method proposed in this paper, that is, first, desirable
poles are selected as p1 = 0.7.p2 = 0.6, p3 = 0.5. Then
the design parameters are determined using equations (45)
∼ (47). Simulation run shows that the response is stable after
feedback is cut and also not oscillatory.

Simulation results are summarized in Table 1.

TABLE I

SIMULATION

No, Design un0, un1, ud1 Poles of Fig.
controller

1 Not strongly 0, 0, 0 1.0, -0.0958 Fig.3
stable

2 Strongly stable 0.4, 0, 0 0.552± 0.447i Fig.4
trial-and-error

3 Strongly stable 0.264, -0.189 0.7, 0.6 Fig.5
proposed -0.774 0.5

VI. CONCLUSION

In this paper, a design procedure is proposed for strongly
stable generalized model predictive control. So far, the poles
of controller are selected by trial-and-error method. In the
design procedure given in this paper, the design parame-
ters are decided from the given desirable poles straight-
forwardly. To calculate the parameters, the expressions to
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Fig. 4. Simulation Run #2

Fig. 5. Simulation Run #3

show the relations between the poles and the parameters
are first obtained, then substituting the desired poles into
the relations, the values of parameters are obtained. To
calculate the expressions, symbolic computation software is
used. Simulation runs show that better output responses are
obtained in the case that controller is designed by the method
of this paper than the case that the parameters are obtained
by trial-and-error method in previous paper.

To apply the proposed deign method to an exprimental
plant or a practical process plant is a future work.
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