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Abstract— In this paper, we propose a data-driven tuning
method of internal model controllers (which is abbreviated
as IMC) for nonlinear systems with hysteresis. We utilize
fictitious reference iterative tuning (which is abbreviated as
FRIT), which yields the desired controller parameter with only
one-shot experimental data without any mathematical models
of a plant, to obtain the desired parameter of the IMC in
which a mathematical model consisting of not only a dynamical
linear part but also static hysteresis one is implemented. As
a result, our proposed method enables us to obtain not only
a desirable controller but also a mathematical model of the
nonlinear system with hysteresis.

I. INTRODUCTION

Most of actual plants to be controlled in practical appli-
cations are nonlinear dynamical systems. There are many
cases where it is not appropriate to approximate a nonlinear
system as a linear dynamical system due to its inherent
characteristics related to strong nonlinearity. Particularly,
hysteresis is known as one of the nonlinear characteristics
which cannot be well-approximated by linear systems. In
addition, hysteresis reflects one of the common features on
actuators used in many control applications, so it is important
to address such a nonlinearity from the practical points of
view.

To address such a system, this paper extends the internal
model control (IMC) [1] architecture to nonlinear systems.
It is well known that the IMC has a simple structure which
works to decrease the error between the output of the actual
plant and the output generated by the internal model included
in the controller. It is considered that such a simplicity on the
control architecture is useful to control of a class of nonlinear
systems like hysteresis. On the other hand, it is also difficult
to figure out hysteresis as a mathematical model. This implies
that the strategy by which experimental data can be utilized
for controller design or tuning without a mathematical model
is to be expected as one of the rational approaches to the IMC
for a nonlinear system with hysteresis.

Thus, in addition to expansion of IMC to nonlinear sys-
tems with hysteresis, this paper also proposes a data-driven
approach to the IMC for nonlinear hysteresis systems without
mathematical models. Here, the data-driven approach is to
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design a controller or tune a parameter of the controller with
the direct use of the data without mathematical models. As
representative works in this framework, Iterative Feedback
Tuning (IFT) in [2], Virtual Reference Iterative Tuning
(VRFT) in [3], the non-iterative version of correlation based
tuning in [4] and the Fictitious Reference Iterative Tuning
(FRIT) in [5] and [6] were proposed and studied. Among
them, IFT is the most rational approach because the cost
function to be minimized in IFT directly represents the
purpose of controller tuning. However, IFT requires many
experiments, which is a crucial drawback from the practical
points of view. The latter three methods enables us to obtain
the desired parameter with only one-shot experiment. Here,
we take the FRIT approach which is intuitively understand-
able since the output is focused in this method for off-line
minimization of IMC.

Moreover, we require a parameterized mathematical model
as the internal model to be implemented in the IMC. As
an appropriate parameterization, several hysteresis models
were proposed, such as [7] and [8]. A hysteresis model
introduced in [7], which is called a heuristic recurrent neural
network (HRNN), is one of effective models capable of
designing a good hysteresis model. However, since a HRNN
model consists of as many parameters as at least 20-30
parameters, it might take much time and make inferior
control performance to optimize the cost function in FRIT
for IMC. To cope with this problem, another hysteresis
model is proposed in [8] by Wakasa et al. This model is
easily handled because it is characterized with only three
parameters. Thus, we implement the parameterized model
proposed in [8] as the internal model for nonlinear system
with hysteresis.

Moreover, in the case where the internal model completely
reflects the dynamics of the actual plant, implementing the
model of a plant to IMC yields the desired tracking property.
Conversely, in the case in which we do not know a mathemat-
ical model of a plant, the achievement of the desired output
by some sort of method based on the direct use of the data,
like FRIT, enables us to identify the plant as the internal
mathematical model in IMC. Thus, our proposed method
with data-driven tuning FRIT can be regarded as the way
of not only attainment of a controller but also identification
of a mathematical model. It is effective and useful to perform
such a simultaneous attainment of controller and model from
the practical points of view.

This paper is organized as follows. In section II, we
give the problem formulation. In section III, we give some
required preliminaries. In section IV, we explain how FRIT
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is embedded into IMC for the hysteresis model. In section V,
we show that performing FRIT leads to obtain the optimal
controller and to identify the mathematical model of a plant
by using an illustrative numerical example. In section VI, we
give concluding remarks.
[Notation]: Let R denote the set of real numbers. In terms
of the enhancement of the readability, we often omit the
notation ‘s’ from a transfer function G(s) if it is clear from
the context. In addition, the output of a transfer function
G with respect to the input u is denoted with y = Gu
with enhancement of the readability. Together the sampling
period δ, we prepare the norm defined by ||w||(N,∆) :=√

1
N

∑N
i=0(w(∆i))2 for the sampled time series of w from

t = 0 to t = N∆.

II. PRELIMINARIES

In this section, we give brief reviews on FRIT for linear
time-invariant case and hysteresis model.

A. Problem Formulation

In Fig. 1, we illustrate the conventional control system
with a tunable controller. This paper assume that a plant G
is single-input and single output, linear, time invariant, and
minimum phase. We also assume that G is unknown while
the structure of G is known. In the following, Let Gn denote
a nominal model of a plant.

A feedback controller C(ρ) is with a tunable parameter
vector ρ. For, example, C(ρ) is parameterized as

C(ρ) =
ρ1s

n + ρ2s
n−1 + · · ·+ ρns+ 1

ρn+1sn + ρn+2sn−1 + · · ·+ ρ2ns+ ρ2n+1

with the parameter vector ρ := [ρ1 ρ2 · · · ρ2n ρ2n+1]. The
closed loop can be also regarded as the function of ρ, so we
denote

T (ρ) :=
G

1 +GC(ρ)

as the transfer function from r to y.

Fig. 1. A closed loop control system

We assume that C(ρini) with the initial parameter ρini
tentatively stabilizes the closed loop so as to obtain the
bounded input uini := u(ρini) and the bounded output
yini := y(ρini). We are also given a desired property as the
reference model from r to y as Td.

Under these settings, the purpose of this paper is to pro-
pose the data-driven tuning method for the optimal parameter
such that

J(ρ) = ||y(ρini)− Tdr̃(ρ)||2(N,∆)

is minimized with only using the data uini and yini.

B. Fictitious Reference Iterative Tuning (FRIT) linear time-
invariant systems

We give a brief review of FRIT based on the reference
[5]. Then, the purpose of the tuning of a controller is that
the control system yields the desired output. First, perform an
experiment on the closed loop system with C(ρini) to obtain
yini and uini. Then we compute the fictitious reference signal
r̃(ρ), which was originally proposed in [9], as follows,

r̃(ρ) = C(ρ)−1uini + yini. (1)

We introduce the error signal

ẽ(ρ) = yini − Tdr̃(ρ).

To construct the cost function

JF (ρ) =

N∑
t=0

(ẽ(ρ))2. (2)

Then, the task of FRIT is to find the optimal parameter

ρ̃ := arg minρJF (ρ).

Finally, implement ρ̃ to the controller. Note that (9) with the
fictitious reference r̃(ρ) in (1) requires only uini and yini.
This means that the minimization of (9) can be performed
off-line by using only one-shot experimental data. The rela-
tionship between the minimization of (9) and that of (1) can
be given by rewriting the cost function JF (ρ) as

JF (ρ) =

∣∣∣∣∣∣∣∣(1− Td

T (ρ)

)
yini

∣∣∣∣∣∣∣∣2
(N,∆)

. (3)

From (3), we see that the minimization of JF (ρ) in (9) leads
to the minimization of the relative error between the desired
reference model and the actual closed loop with the obtained
parameter ρ. We can easily find out in this process that the
parameter ρ̃ is obtained just by the initial data, uini and yini.
This is an brief explanation on how FRIT can achieve the
desired output in the linear time-invariant case.

C. Hysteresis Model [8]

We give a brief review of hysteresis model proposed by
Wakasa et.al [8] . In this reference, the following hysteresis
model Hx was proposed

Hx : h(k) = Hx(h(k − 1), u(k)) (4)

=
1− h(k − 1)

1 + e(α−u(k))γ
+

h(k − 1)

1 + e(β−u(k))γ
,

where u ∈ R, h ∈ (0, 1) and k are input, output and
sampling number, respectively. Hx represents a hysteresis
model which is determined by three parameters, α, β and γ
∈ R. The parameters α and β are the threshold parameters,
and the parameter γ is the parameter related to the gradient
of the output with respect to the input respectively. These
parameters are denoted by a parameterized vector x =
(α, β, γ)T . There are several advantages in this model. One
is that the model is rate-dependent, which means the shape
of the hysteresis changes with the frequency of the input.
Another is that the model uses just three parameters, so the
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computation time is less than HRNN model introduced in
[7]. The other advantage is that the inverse of the model can
be simply expressed as

Ĥx : u(k) = Ĥx(h(k), h(k − 1)) = −(logξ̂)/γ, (5)

ξ is the positive solution of

a2ξ
2 + a1 + a0 = 0,

(6)

where these coefficients are calculated from the following
equations

a2 = e(α+β)γh(k)

a1 = (eαγ + eβγ)h(k)− (eαγ − eβγ)h(k − 1)− eβγ

a0 = h(k)− 1.

More detailed discussions can be found in the reference [8].

III. MAIN RESULTS

A. Basic Idea

We introduce a controller parameter tuning and identifying
a mathematical model for systems with hysteresis in [8] by
expanding FRIT to nonlinear systems.

A method that uses FRIT for IMC in a linear dynamical
system in the linear time invariant case has already been
proposed [10]. Our proposed architecture here is its extension
for the system with nonlinear hysteresis property shown in
the Fig. 2 where a plant and internal model controller is
illustrated.

Plant

Fig. 2. IMC for system with hysteresis

We suppose that the plant consists of a static hysteresis part
and a dynamic linear part. The internal model controller is
given by the reference transfer function Td, a model of the
static part Hm(x), its inverse model Ĥm(x), a dynamical
part Pm(θ) and its inverse model P−1

m (θ). Hm(x) and
Pm(θ) depend on parameter θ and x respectively. These
tuning parameters are written as ρ = (θ, x). The purpose
of the system is to yield the desired output and to obtain a
mathematical model of a plant,

Now we consider the fictitious reference signal for our
framework. Input uini(ρ) can be described as follows.

uini = ĤmP−1
m Td(r − yini + PmHmuini) (7)

By solving for r in the equation, we can get the following
fictitious reference signal r̃

r̃ = (T−1
d − 1)PmHmuini + yini, (8)

and the cost function can be described as

JF (ρ) = ||y(ρini)− Tdr̃(ρ)(N,∆)||2. (9)

By using r̃, we minimize the cost function JF (ρ). Then, it
is possible to obtain both a controller parameter and a model
of the plant by JF (ρ).

B. Algorithm

Here we summarize the proposed method as the following
steps.

1) Set the initial parameter θini and reference model Td.

2) Perform the initial experiment with θini in Fig. 2. And
we can obtain the initial data, uini and yini.

3) Minimize the cost function JF (ρ) in (9).

4) Implement ρ̃ in Fig. 2 and perform the experiment.

In the step 3), we can utilize a conventional nonlinear
optimization method.
[Remark]: This paper uses CMA-ES [12] proposed in
[11], for the nonlinear minimization of the cost function.
This optimization does not depend on the initial parameter.
This means that it is not necessary to implement the IMC
architecture in Fig. 2 as the initial controller.

IV. NUMERICAL EXAMPLE

To show the validity of the proposed method, we show a
numerical example. Consider

P =
50

0.01s2 + s+ 50

as a dynamic linear part of the actual plant,

Hx : h(k) =
1− h(k − 1)

1 + e(α−u(k))γ
+

h(k − 1)

1 + e(β−u(k))γ

x = (α, β, γ)

= (156.3892, 33.5837, 0.1816)

as a static hysteresis part of the plant. Of course, we assume
that both of them are unknown. On the other hand, we
implement the parameterized mathematical model consists
of each static hysteresis part

Hxm : h(k) =
1− h(k − 1)

1 + e(αm−u(k))γm
+

h(k − 1)

1 + e(βm−u(k))γm

xm = (αm, βm, γm)

and a dynamical linear part

Pm =
1

ams2 + bms+ cm
, θ = (am, bm, cm).

As the initial controller, we use PID controller with initial
parameter (KP , KI , KD) = (500, 500, 0) We set the
sampling period ∆ = 0.001 sec. By implementing the PID
controller and setting sinusoidal signals as reference signal
shown in Fig. 3, we obtain the initial data. The desired output
yd and the initial output y are illustrated by the chained line
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and the solid line respectively in Fig. 5. By using the initial
data, we can solve the cost function (9).

Here, we give the reference transfer function described
by Td = 1

0.01×10−3s2+0.01s+1 . Then we minimize the cost
function (9) with respect to the parameter of static hysteresis
part xm and that of dynamical linear part θm. As a result,
we obtain as

xm = (156.3781, 33.5948, 0.1817),

θm = (1.9952× 10−04, 0.02, 0.9994),

From this, we can see the obtained model matches the actual
plant appropriately. By implementing ρ̃ to the IMC in Fig. 2,
we again perform the experiment. The input u and the output
y(ρ̃) with the desired output yd are illustrated in Fig. 6 and
Fig. 7, respectively . We also see that the output tracks the
desired output.

0 0.5 1 1.5
0

0.5

1

Fig. 3. The reference signal
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100

200

Fig. 4. The initial input

0 0.5 1 1.5
0
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1

Fig. 5. The desired output yd (the solid line), and the initial output yini

(the chained line)

V. CONCLUDING REMARKS

In this paper, we have proposed a data-driven tuning
method of IMC for nonlinear systems with hysteresis. We
have utilized FRIT to obtain the desired parameter of the
IMC in which a mathematical model consisting of not only
a dynamical linear part but also a static hysteresis one is
implemented.
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Fig. 6. The input by the tuned controller
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0
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Fig. 7. The desired output yd (the solid line), and the output y (the chained
line)
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