
  

  

Abstract— This paper presents a new control technique for 
the EDC thermal cracking furnace modeled by sets of 
ordinary differential equation (ODE) and 2D-partial 
differential equations (PDEs).  The dynamics of coupled 2D-
PDEs-ODE model have been divided into 2 subsystems, set 
of state variables of the internal and external cracking coil.  
With the concept of input-output (I/O) linearization, these 
inner and outer dynamics are applied to design the setpoint 
tracking calculator and the approximate I/O feedback 
controller respectively.  The first-order error dynamics and 
the finite-based, open-loop observer are integrated with the 
proposed controller system to compensate the model 
mismatch and to predict the unmeasured state information. 
The performances of the proposed method are evaluated 
through the servo test.  The results showed that the control 
method effectively forces the output to the desired setpoint. 

 

I. INTRODUCTION 

Vinyl chloride monomer (VCM) is a raw material for Poly 
Vinyl Chloride (PVC) production.  It is typically obtained 
from the cracking of 1,2-dichloroethane (EDC) under 400-
500°C, of which hydrogen chloride (HCl) is a byproduct. 
The reaction can proceed by following: 

          
( ) ( ) ( )2 4 2 2 3  

                              
C H Cl g C H Cl g HCl g

EDC VCM Hydrogen Chloride
→ +

   (1) 

 
The EDC cracking rate strongly depends on the reaction 

temperature; increase on the reaction temperature results in 
the high cracking rate.  The EDC vapor is reacted along the 
lengthy empty coil suspended in the chamber of the gas-fired 
cracking furnace.  Furnace dynamics are highly nonlinear 
due to the spatial distributed temperature and concentration 
of the gas inside the cracking coil, as well as the effect of the 
temperature of the furnace wall.  These complex behaviors 
lead to deteriorate the performance of the gas temperature 
control by a proportional integral derivative (PID) controller. 
They may cause off spec of the products, thermal runaway, 
plant shut down or, in the worst case, explosion.  Therefore, 
the control method that can handle the temperature of the 
cracking furnace effectively is needed to achieve a high 
quality product. 

Research works regarding the temperature control of the 
furnace were mostly focused on the dynamics of the tubular 
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reactor.  Some works applied the model reduction technique 
to lump the reactor model before performing the controller 
synthesis.  For example, the PDE was lumped by Galerkin 
method and then applied with infinite dimensional state 
feedback [1] lumped by method of characteristic and applied 
with robust control [2] and lumped by infinite dimensional 
method and applied with the linear quadratic regulator 
(LQR) [3]. Some works use the process data to develop an 
empirical model by the neural network method before 
applied with the robust control [4] or generic model control 
(GMC) [5].  Besides, there are few works considering to the 
interaction of wall radiation in the control of furnace. 
Masoumi and colleagues [6] studied the temperature control 
of the naphtha thermal cracking with multi cracking coils by 
using the PI controller. The desired setpoints were obtained 
from the optimization of the temperature profile. In Zeybek 
[7], the outlet gas temperature is controlled by manipulating 
the fuel mass flow rate by using the adaptive heuristic 
controller based on three layers of feed forward artificial 
network (ANN). Panjapornpon et al. [8] proposed the control 
of coupled PDE-ODEs for EDC cracking furnace by using 
approximate I/O linearization; the tube temperature was 
controlled by manipulating the fuel gas flow while the mass 
production rate of VCM was handled by the PI controller by 
manipulating the EDC feed.  The furnace model was 
developed by assuming a plug-flow velocity profile and 
neglecting the effect of the radius heat transfer. However, 
there are some works mentioned about significant difference 
of predicted process dynamics when the redial effect and 
velocity profile has been taken into accounted [9-10]. This 
brings about the question of the improvement of control 
performance when the 2D model has been applied. In fact, 
the gas temperature represented the reaction temperature is 
measured by a thermocouple installed at the center of the 
exit tube. The EDC conversion calculated by the 1D model 
will be lower than the actual process value. The performance 
of 1D-based PDE-ODE controller in practice may 
deteriorate due to a significant process-model mismatch. 

This work presents a new structure of the coupling 2D 
PDEs-ODE model for the EDC cracking furnace by using 
the I/O linearization.  The dynamics of EDC cracking 
furnace consist of the EDC concentration and gas 
temperature considered as the internal states and the tube 
temperature and furnace wall considered as external states.  
All the dynamics are described by PDEs except the furnace 
wall dynamics described by ODE.  The purpose of this work 
is to control the gas temperature at the exit tube by 
manipulating the fuel gas flow.  Instead of applying the I/O 
controller to the objective directly, the internal subsystem is 
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used for developing the setpoint tracking calculator while the 
external is applied for the controller synthesis. The gas 
temperature is applied with I/O linearization to develop the 
mapping function of the equivalent tube temperature setpoint 
for the I/O feedback controller.  The first-order error 
dynamics and the finite-based, open-loop observer are 
integrated into the control system to eliminate the offset and 
predict the unmeasured state information. An advantage of 
proposed control method with the partitioning state 
dynamics is to reduce the complexity of the controller 
equation with a better predicting quality by using the 2D 
process model. 

II. MATHEMATIC MODEL OF EDC CRACKING FURNACE  
A simple process scheme of an EDC cracking furnace is 

shown in Fig.1. In the operation, EDC vapor is fed to the 
cracking coil and converted to be VCM and HCl.  The natural 
gas is used as a combustion fuel to supply the energy to the 
furnace to rise up the furnace wall temperature (Tw). The 
furnace wall radiates and transfers the energy to the tube 
inside leading to the change of the tube temperature (Tt), the 
gas temperature (Tg) and EDC concentration (CEDC) 
consequently.  

In this work, the proposed control strategy is applied with 
2D PDEs-ODE model of EDC cracking furnace. The 
following  model assumptions are applied:  

1) All gases in the system are ideal. 
2) Only the reaction in (1) occurring in the tube is 
concerned. 
3) Neglect effects of all elbows and fittings; straight 
tube is assumed. 
4) The properties of gases in the tube are constant. 
5) The tube temperature is varied along the z-direction 
only because of the pipe thickness << the coil distance.   
6) The gas temperature and EDC concentration are 
varied in both the radius and distance of the coil. 

 

 
 

Fig. 1. Continuous stirred tank reactor with cooling system 
 

The dynamic models of the cracking furnace are 
represented by following equations 

- The dynamics of EDC concentration and reactor 
temperature in the cracking coil: 
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with the following boundaries and initial conditions: 

for the EDC concentration, 
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and for the gas temperature, 
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The velocity profile of the gas flowing in the coil is 
referred to an empirical/analytical solution of k ε−  
turbulence model in [11]: 
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where the total pressure gradient and fanning friction factor 
are approximated by using analytical/empirical equations 
proved from the Moody friction [12]: 
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The average velocity is calculated by 

2
0

2 ( )
iR

av z
i

r r dr
R

ν ν= ∫        (5) 

- The dynamics of tube and furnace wall temperature: 
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with the boundary and initial conditions:  
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All process parameters defined in the notation section are 
given in Table I.  

The model of the fired-furnace in (2)-(6) described by 
partial differential equations in r and z coordinates and 
ordinary differential equation can be grouped into two 
subsystem. 

 The subsystem of (7.a) expresses the interaction of the 
state variables inside the cracking coil and the subsystem in 
(7.b) expresses the interaction of the state variables outside 
the cracking coil and the radiating wall.  
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with the initial and boundary conditions of (7.a): 
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and the initial and boundary conditions of (7.b): 
 

Table I. 
PARAMETER VALUES FOR THE EDC CRACKING FURNACE 
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where 1( , , )px r z t  denotes the vector of the state variables 
depending on r  and z  coordinates, 2 ( , )px z t denotes the 
state variable of the external tube dynamics which is directly 

Symbol Quantity Value 
Aw Area of the furnace wall  218 m2 

Cpg Average heat capacity of 

cracked gases 

8.5059 m3 

Cpt Heat capacity of  the tube 444 J/kg K 

Cpw Heat capacity of  the 

furnace wall 

1000 L/kg K 

Di Internal tube diameter  0.19 m 

Ea Activation energy 1.15×105 J/mol 

F Shape factor 1 

∆HEDC Heat of reaction -7.1×104 J/mol 

∆Hcomb Heat of combustion 4.25×107 J/mol 

k0 Kinetic constant 1.15×107 

kg Thermal conductivity of 

gases in tube 

2.655×10-2 W/m K 

kt Thermal conductivity of the 

tube 

20.5 W/m K 

L Tube length 300 m 

mt Tube weight 7.783×103 kg 

mw Mass of furnace wall 4.191×105 kg 

fm  Mass flow rate of the fuel  0-0.6 kg/s 

MwEDC EDC molecular weight 98.96 g/mol 

Pe Thermal Peclet number 8.57×105 –2.00×106 

Pr Prandl number 0.72 

R Gas constant 8.314 J/mol K 

Ri Internal tube radius 0.095 m 

Ro External tube radius 0.1 m 

Re Reynolds number 1.19×106 –2.78×106 

Vt Pipe volume 8.5059 m3 

gρ   Cracked gas density 35.43 kg/m3 

tρ   Tube density  8470 kg/m3 

σ   Stefan-Boltzman constant 5.67×10-8 W/m2 K 

µ   Viscosity of cracked gases  1.695×10-5 kg/m s 

ν  Feed velocity 5 m/s 
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affected by ox , ( )ox t  denotes the state variable which 
depend on time, y  denote the output variable, [0, ]z L∈  
and [0, ]or R∈  are spatial coordinates, [0, ]t ∈ ∞  is the time, 
and ( )u t  is the manipulated variable. 
 

III. CONTROL SYSTEM DESIGN 

In our case, the process model is highly complex due to 
coupled PDEs and ODE. The control objective is to regulate 
the output at the exit of the tube (y=L), the state in the 
subsystem (7.a), by adjusting the input (u) in the subsystem 
(7.b).  To reduce complexity of the controller design, in this 
work, the set of PDE in (7.a) described the internal tube 
dynamics will be used to create a tracking correlation 
between the output ( y ) and the distributed state variable 
related to the lumped dynamics ( 2px ).  The set of coupling 
PDEs-ODE in (7.b) described the external tube dynamics will 
be used to develop the I/O feedback controller that the 
control action ( u ) is obtained by solving closed-loop 
response of 2px .  A schematic diagram of the control system 
shown in Fig. 2 is proposed. The control system consists of a 
setpoint tracking calculator, I/O linearizing controller, and a 
finite-based, open-loop observer. More details of the control 
system design are given as follows.  

A. Setpoint tracking calculator  
The input/output linearization is a method that creates a 
linear relationship between input and output based on the 
coordinate transformation.  It is traditionally applied for the 
ODE system.  For the application of PDEs-ODEs system, let 
consider the system in (8). 
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 (9) 

The setpoint tracking calculator is applied to develop a 
correlation between 2py x− .  From the subsystem (7.a), the 
closed-loop response of the output at the center of the exit 
tube is in linear form as follows: 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
Fig. 2. Schematic diagram of the proposed control system.  
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( ) 1
,1 r

L L spy yε + =                           (10) 

where   is the differential operator, Ly  is the output at the 
position  r=0 and z=L, ,L spy  is the desired setpoint, ε  is the 
tuning parameter used to adjust the speed of the output 
response and 1r is the relative order of Ly  with respect to 

2px .  

 By substituting the time derivatives of (9) into (10) and 
setting all time derivatives of the state gradients to be zero, 
the closed-loop responses of the output can be presented in a 
compact form 

     1 1, 1, 1, 2 ,( , , , , )T p p r p rr p z p L spx x x x x yφ =                  (11) 

the tracking setpoint function (ν ) of  can be obtained by 
solving (11) for 2px , in following form: 

1 1, 1, 1, 2 ,( , , , , , )T p p r p rr p z p L spx x x x x yν ψ=               (12) 

B. Feedback I/O linearizing controller 

From the subsystem (7.b), the closed-loop responses of 
the state 2px at the position z=L are requested in linear form 
as follows:

 

 

( ) 2
21 r

pxβ ν+ =                           (13) 

where ν  is the tracking setpoint function, β  is the tuning 
parameter and 2r is the relative order of 2px with respect to 
u. 

We substitute the time derivative in (9) into (13) and set all 
time derivatives of the state gradients to be zero.  The 
closed-loop responses of the state 2px can be presented in a 
compact form 

1 2( , , , )T p p zzx x x uφ ν=                          (14) 

Thus, the feedback controller (u) is obtained by solving (14).  
The compact form of the controller equation is denoted by 
(15) 

1 2( , , , )p p zzu x x x ν= Ψ                          (15) 

C. Finite-based state observer  
The CFD technique is a useful tool to predict behavior of the 
system of the complex PDE problem by using the numerical 
calculation.  Thus, in this work, a CFD-based, open-loop 
state observer is developed to provide the estimation of the 
unmeasured process concentration, C , and the state 
derivatives. 

D. Integrator 
To compensate the process-model mismatch and the error 
from the estimate states, the first-order error dynamics in 
(16) is applied: 
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     (16) 

where Tε  is the output error, Tλ  is a positive parameter, and 

Tν is the corrected setpoint.  

IV. RESULT AND DISCUSSION 
The velocity with plug-flow pattern is primarily assumed 

in many literatures for a control of the tubular reactor.  
However, this assumption is proper for a high viscosity 
fluid.  To achieve a realistic prediction, the k ε−  turbulence 
model is applied with the developed 2D model, which the 
compared velocity profiles are shown in Fig.3. 

For the servo test, the gas temperature at exit tube is 
controlled at the desired setpoint ysp= 700 K. The initial 
conditions of the dynamics are CEDC(r,0,t) = 359.83 mol/l, Tg 
(r,0,t)=644 K, Tt(0,t)= 716 K, and Tw=808 K. The tuning 
parameters of the proposed control system are ε =8, β =8 
and λ =0.001. The closed-loop responses of the cracking 
furnace are illustrated in Figs. 4-6. The results show that     

 

 
 
Fig.3. The flow pattern of cracked gas inside the tube. 
 

 
 
Fig.4. The closed-loop response of the gas temperature at the 
center exit tube. 
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Fig.5. The closed-loop responses of the tube temperature at 
the exit and wall temperature.  

 

 
Fig.6. The control action of the manipulated input.  
 

the controller successfully forces the gas temperature at the 
desired setpoint. The changes of gas, tube and wall 
temperature at the initial period have a linear trend due to the 
influence from the constant of fuel gas rate at the upper 
limit.  The controller is then adjusted the fuel gas flow with a 
little fuzzy to put the gas temperature at the desired setpoint. 

V. CONCLUSION 
A new controller structure with I/O linearization 

technique is developed for the EDC cracking furnace, of 
which the advantages are a few tuning parameters and 
decrease on the complexity of the controller equation. With 
the importance of the distribution in r-direction of fluid flow 
in the tube, the k ε−  turbulent model is applied to the 
velocity. The controller is formulated with the 2D-PDEs and 
ODE into the setpoint tracking calculator and I/O feedback 
controller, and integrated with the first-order error dynamics 
and finite-based, open-loop observer. The simulation results 
show that the controller can force the control output at the 
desired setpoint effectively. 
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