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Abstract— We utilize the particle filter algorithm to develop
a fault isolation approach based on general observer scheme
(GOS) in nonlinear and non-Gaussian systems. The proposed
fault isolation scheme is based on a set of parallel particle
filters each sensitive to all faults except one. The performance of
the proposed approach is compared to an alternative approach
called dedicated observer scheme (DOS) with respect to the
measurement and state noise variances. The proposed scheme
is also illustrated through an implementation on a benchmark
polyethylene reactor system.

I. INTRODUCTION

FDI is a significant and challenging problem in the
modern chemical engineering discipline. As the demand of
high quality chemical products increases, more and larger
chemical processes in order to meet that global energy
demand. As consequence the control systems associated
with those processes become more and more complicated.
While automation can enhance safety, improve reliability,
and increase profitability [15]. At the same time, it increases
vulnerability of the processes to control system failures
which have direct impact to the safety of human beings,
economy, and environment pollution.

If the abnormal process behaviours are well diagnosed
and well dealt with, the US petrochemical industry alone
could save annually up to $10 billion [12]. [16] reported that
the same industry looses over $20 billion per year due to
inappropriate reaction to abnormal process behavior. So, in
order to meet safety standards and reduce the environmental
impacts, it is important that the faults are diagnosed as soon
as possible before they lead to disasters [10].

A few incidents that have direct impacts to economy,
environment, and human lives are listed below [10].
• Bhopal disaster, India, 1984
• Piper Alpha disaster, Scotland, 1988
• British Petroleum (BP) disaster, Gulf of Mexico, 2010

However, these incidents can not be completely prevented
but at least the consequences of faults could be avoided
using a suitable fault diagnosis system. The FDI system
should have the ability to detect any variation from the
nominal behavior of the process and give enough time
to take corrective action before the diaster can take place
[19]. As consequence, the FDI community is putting more
attention in developing a reliable fault diagnosis system.

The main objective of any FDI method is to monitor the
system operation and to raise an alarm when any change
occurs in the process and to determine the location and
time of the change [19]. Essentially, the model-based fault
detection and isolation schemes are carried out using two
steps. The first step is the residual generation which is not
easy to design specially when the process has unmeasured
state variables [14]. Usually the residuals are generated
assuming that the model being used is linear and the noise
is Gaussian [7]. Furthermore, suboptimal filters such as
extended Kalman filters (EKF), and unscented Kalman filters
(UKF) are used when the system being model is assumed
to be nonlinear. These filters are not often satisfactory and
usually lead to high missed alarm and false alarm rates. In
this work, an algorithm called a particle filter is proposed
in the design of the model-based fault isolation. It is based
on the sequential monte carlo method (SMC)and does not
need any linerization of the process or the Gaussianity of
noise [15].

recently, more attention has been paid to FDI problems
in nonlinear systems due to the increasing demand for
higher safety and reliability of chemical plants. As well as
the growth in computational capabilities which has made
statistical intensive methods such as sequential Monte Carlo
techniques more practical. For more details of the use of
the SMC on FDI problem, one can read ([14], [15], [9],
[17], [11]). In this paper, we utilize the power of particle
filter to compare the robustness of the FDI approach based
on general observer scheme against the dedicated observer
scheme in non-linear/non-Gaussian stochastic systems.

This paper is structured as follows. In Section II, the
model-based fault isolation problem is formulated. In Section
III, the particle filter filter algorithm used to generate the
residuals is discussed. A brief description of general observer
scheme used for fault isolation, is given in section IV. In
Section IV-A, the performance of the the proposed algorithm
is tested on a poly ethene reactor systems. Lastly, some
conclusions and future work is presented in Section V.

II. PROBLEM STATEMENT

This work is an extension to our previous work [2] where
we assumed that there are N possible known faults that may
occur in the process and there are N + 1 models {Mi}N

i=1,
where M0 corresponds to the nominal process model and Mi,
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for i = 1,2, ...,N, represents the ith faulty model. The FDI
approach considered in [2] uses a bank of particle filters
running in parallel where each model {Mi}N

i=1 is designed
to be sensitive to a known single fault and excited by
all output measurements yi which is known as dedicated
observer scheme (DOS) [18]. In this work we consider a
different approach know as general observer scheme (GOS)
where every model is excited by all outputs except one which
is the sensor to be monitored. The standard design procedure
of any FDI approach consists of the following two steps:
• Fault detection (FD): which takes a decision on the

occupance of any deviation in the nominal model, M0,
to a corresponding known faulty models {Mi}N

i=1 and
determine the time of occupance.

• Fault isolation (FI): which determines which {Mi}N
i=1 of

the possible known faulty models has happened.
The process dynamics and the known possible faults being

monitored on the system can be designed using the following
general discrete stochastic nonlinear state space model:

xi
k = f i(xi

k−1,u
i
k−1,ν

i
k,θ

i) (1)

yk = gi(xi
k,u

i
k,ω

i
k,θ

i) for i = 0 to N (2)

f i and gi represent the state and measurement dynamic
functions, respectively. k denotes a time instant. xk is the
hidden state vector while yk is the measurements vetoer. The
hidden state vector is assumed to have a known initial proba-
bility density function p(xi

0). The state and measurement nice
sequences are defied respectively as ν i

k and ω i
k with known

probability density functions with zero mean. The vector
θ i represents a vector of constant values as well as other
process measurement which are assumed to be constant.
The measurement and the state noises are assumed to enter
the process in a linear manner while in the classical FDI
approaches are assumed to enter in linear fashion. Therefor
the measurement equation (Eq.2)can be written as,

yk = gi(xi
k,u

i
k,θ

i)+ω
i
k. (3)

The fault can be simply detected and isolated by gener-
ating the residuals which are the differences between the
process output and the predicted output. The one step-ahead
predictions from (Eq.3) can be written as,

ŷi
k = gi(xi

k|k−1,u
i
k,θ

i) (4)

where xi
k|k−1 is the one step-ahead prediction of the state,

ŷi
k is the one-step ahead prediction of the output. Then the

prediction error or the residual can be simply written as

r̂i
k = yk− ŷi

k. (5)

In the case that there is no fault the residual will be equal to
zero or more precisely the measurement noise encountered
in the process ω0

k . The residuals are usually evaluated using
on of the statistical techniques i.e. cumulative sum test
statistic (CUSUM), sequential probability ratio test (SPRT),

generalized log-likelihood ration (GLR), or log-likelihood
ratio (LLR).

III. PARTICLE FILTER

The main idea behind the particle approximations is to
generate a number of samples of random variables from
an importance density function with the same or larger
density function. The density function is then approximated
using a sum of Dirac delta functions weighted appropriately.
For instance, a target density function p(x) with a random
variable x can be approximated by sampling x(i) from an
important density function q(x) and then approximating the
target density as

p(x) =
N

∑
i=1

w(i)
δ (x− x(i)) (6)

where N is the number of particles generated and w(i)

are appropriate weights. This idea can be easily extended to
find the density function of the hidden states given a series
of measurements up to the current time instant. outputs,
p(xt |y1:t ,θ) is called a filter. Applying Bayes’ rule in a
straightforward manner, one can derive recursive expressions
for the density function of the filter. The following predictor
density function can be derived using Bayes’ rule,

p(xt |y1:t−1,θ) =
∫

p(xt ,xt−1|y1:t−1,θ)dxt−1

=
∫

p(xt |xt−1,θ)p(xt−1|y1:t−1,θ)dxt−1 (7)

Now using the predictor and (7), one can write the following
expression for the filter,

p(xt |y1:t ,θ) =
p(yt |xt ,θ)p(xt |y1:t−1,θ)∫

p(yt |xt ,θ)p(xt |y1:t−1,θ)dxt
(8)

The filter density can be evaluated recursively by substituting
(7) in (8). The above integrals needed to estimate the filter
density are often intractable, and need to be approximated.
Although numerous approximations are available, in this
paper a particle filter approach is used. The basic idea behind
particle filters is to approximate a density function using
dirac-delta functions. The filter density at t − 1, could be
approximated as

p(xt−1|y1:t−1,θ) =
N

∑
i=1

w(i)
t−1|t−1δ (xt−1− x(i)t−1) (9)

where w(i)
t−1|t−1 are weights proportional to the filter density

at x(i)t−1 and δ (.) is a dirac-delta function. Substituting (9)
in (7), an approximation of the predictor can be obtained as
follows,

p(xt |y1:t−1,θ) =
N

∑
j=1

p(xt |x( j)
t−1,θ)w

( j)
t−1|t−1 (10)
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Similarly, substituting (10) in (8), one can approximate the
filter density function ([13])

p(xt |y1:t ,θ) =
N

∑
i=1

w(i)
t|t δ (xt − x(i)t ) (11)

where x(i)t are chosen from an importance sampling function
p(xt |y1:t−1,θ), and therefore weights are given by

w(i)
t|t =

p(yt |x(i)t ,θ)
N

∑
j=1

p(yt |x( j)
t ,θ)

(12)

Particle Filter Algorithm
1. Initialization: Generate N samples of the initial state

x1 from an initial distribution, p(x1). Set w(i)
1|1 =

1
N for

i ∈ {1, · · · ,N}. Set t = 2.
2. Prediction: Sample N values of xt from the distribu-

tions p(xt |x(i)t−1,θ) for each i.
3. Update: Using (12), find the weights of filter density,

w(i)
t|t .

4. Resampling: Resample N particles from the set
{x(1)t , · · · ,x(N)

t } with the probability of picking x(i)t

being w(i)
t|t . Assign w(i)

t|t =
1
N for all i.

5. Set t = t +1. Repeat the above steps (2), (3), and (4)
for t ≤ T .

IV. PROPOSED ALGORITHM

In this work, the fault detection algorithm used identify
any changes in the model is taken from [2] by monitoring
the vector θ which inclose process parameters and other
process variables that are assumed to be constant.

Once the fault is successfully detected, then the fault must
be isolated in order to locate a particular fault from others
within a monitored system. Basically, fault is detected using
a single residual set, however, model-based fault isolation
can be accomplished using a bank of residuals based on one
of the following two frameworks:
• Structure residual
• Directional residual
In this work we used the structure residual approach in

isolating the faults. The main idea behind this approach
is to use a bank of structured residuals instead of one
residual. Those residuals are designed in such a way that
each sensitive to some faults while insensitive to other faults.
Basically, two steps are required to design and implement
this approach. First, is to appoint the relationship between
the residuals based on the sensitivity and insensitivity to
different faults that may occur in the process. Second, is to
design residual generators based on the relationship specified
in the first step [1]. The structure residual approach can be
designed in two different ways: dedicated residual scheme
and general residual scheme.

A. Dedicated residual scheme
In dedicated residual scheme which was introduced
by [5], one measurement is fed into each residual
generator which are designed to be only sensitive to
single faults [4] as shown in Fig.1 or to be sensitive
to all faults except one [18]. It is also well known in
literature as dedicated observer scheme (DOS). There
are two restrictions arise in this type of multiple ob-
server/filter state estimation based FDI scheme. First,
since each observer/filter in the scheme is driven by
only one output measurement, the states of the process
should be completely observable through each sensor
or actuator, which is not always the case in practical
applications. Second, multiple and simultaneous faults
are difficult to identify specially in large processes [8].
If all possible faults are to be isolated, a dedicated
residual set can be designed according to the following
fault sensitive condition:

ri(t) = G( fi(t)); i ∈ {1,2, . . . ,N} (13)

where G(·) stands for a function relation and N is
the number of fault to be isolated within the process.
The following threshold logic as in [1] will be used to
decide if there is any fault occur in the system:

ri(t)> ξi =⇒ fi(t) 6= 0 (14)

where ξi(i = 1,2, . . . ,N) are predetermined thresholds
for each residual ri(i = 1,2, . . . ,N). The threshold
values selected in a way that the false alarm and missed
alarm rates are minimized.
Furthermore, In [3], the authors have extended the
work done by Clarks to actuator fault isolation using
exactly the same principlke.

B. General residual scheme
An alternative approach to dedicated residual scheme
is the general residual scheme which is also known as
general observer scheme (GOS). In this approach every
residual is designed to be sensitive to all faults except
one [1] i.e.

r1(t) = G( f2(t), . . . , fN(t))
...
ri(t) = G( f1(t), . . . , fi−1(t), fi+1(t), . . . , fN(t))
...
rN(t) = G( f1(t), . . . , fN−1(t))

(15)

The isolation task can be archived using simple thresh-
old testing according to the following logic:

ri(t)≤ ξi
r j(t)> ξ j

∨
∈ {1, . . . , i−1, i+1,N}

}
⇒ fi(t) 6= 0; (16)

In this paper, we will utilize the particle filter approxi-
mation to examine the robustness of the above two schemes
in terms of state and measurement noise variances using a
polyethylene Reactor System.
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Fig. 1. Model-based FDI based on dedicated observer scheme.

Fig. 2. Model-based FDI based on general observer scheme.

A. Application to A Polyethylene Reactor System

1) Process Description: The example considered in this
paper is taken from [6]. Ethylene, comonomer, hydrogen,
inerts, and catalyst are fed to the reactor at a temperature
of Tf eed as shown in Fig.3. The unracted gases are cold
down using a cold-water heat exchanger which are then fed
back to from the top of the reactor. The cooling rates are
adjusted by mixing both the cold and warm water streams.
All the definition of all parameters and process variables
used in equations (17) and (18) are given in [6] and the
steady state data of the reactor process is given in Table
I. Two manipulated inputs are considered in this study
which are the feed temperature Tf eed , and the inlet flow rate
of ethylene FM1. A mathematical model that describe the
dynamic behaviour of the reactor system are derived using
mass and energy balances can take the following form:

d[In]
dt

=
FIn− [In]

[M1]+[In]bt

Vg

d[M1]

dt
=

FM1 −
[M1]

[M1]+[In]bt −RM1

Vg

dY1

dt
= Fcac− kd1Y1−

RM1MW1Y1

Bw
dY2

dt
= Fcac− kd2Y2−

RM1MW1Y2

Bw
(17)

dT
dt

=
H f +Hg1−Hg0−Hr−Hpol

MrCpr+BwCppol
dTw1

dt
=

Fw

Mw
(Twi−T w1)−

UA
MwCpw

(Tw1 −T g1)

dTg1

dt
=

Fg

Mg
(T −T g1)−

UA
MgCpg

(Tw1 −T g1)

where

bt = VpCv
√

([M1]+ [In]) ·RR ·T −Pv

RM1 = [M1] · kpo · exp
[
−Ea

R
(

1
T
− 1

Tf
)

]
· (Y1 +Y2)

Cpg =
[M1]

[M1]+ [In]
Cpm1 +

[In]
[M1]+ [In]

CpIn

H f = FM1Cpm1(Tf eed−T f )+FInCpIn(Tf eed−Tf )(18)
Hg1 = Fg(Tg1 −Tf )Cpg

Hg0 = (Fg +bt)(T −Tf )Cpg

Hr = HreacMW1RM1

Hpol = Cppol(T −Tf )RM1MW1

TABLE I
PROCESS PARAMETERS AND STEADY STATE VALUES FOR THE

POLYETHYLENE REACTOR

Parameter Value Unit
Vg 500 m3

V p 0.5
Pv 17 atm
Bw 7×104 kg

kp0 85×10−3 m3
mol.s

Ea (9000)(4.1868) J
mol

Cpm1 (11)(4.1868) J
mol.K

Cv 7.5 atm−0.5 mol
s

Cpw ,CpIn (103)(4.1868), (6.9)(4.1868) J
kg.K

Cppol (0.85×103)(4.1868) J
kg.K

kd1 0.0001 s−1

kd2 0.0001 s−1

MW1 28.05×10−3 kg
mol

Mw 3.314×104 kg
Mg 6060.5 mol
MrCpr (1.4×107)(4.1868) J

K
Hreac (−894×103)(4.1868) J

kg
UA (1.14×106)(4.1868) J

K.s
FIn ,FM1

,Fg 5,190,8500 mol
s

Fw (3.11×105)(18×10−3) kg
s

Fs
c

5.8
3600

kg
s

Tf ,T
s
f eed ,Twi 360,293,283.56 K

RR 8.20575×10−5 m3 .atm
mol.K

R 8.314 J
mol.K

ac 0.548 mol
kg

[In]s 439.68 mol
m3

[M]s 326.72 mol
m3

Y1 ,Y 2 3.835,3.835 mol
Ts ,Tw1 ,Tg1s 356.21,290.37,294.36 K
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Fig. 3. Schematic the polyethylene reactor process.

B. Simulation Results and Discussion

In this section, we assume that there are three different
possible faults { f1, f2, & f3} may occur in the process as
shown in Table.II

TABLE II
FAULT SCENARIOS FOR THE POLYETHYLENE REACTOR SYSTEM

Fault Steady-State Faulty-State Time Interval
F1:FIn, 5 7 mol/s 400−600
F2:Fg 8500 9000 mol/s 400−600

F3:Tf eeds 293 305 K 400−600

The two fault scenarios are simulated using data corrupted
with different measurement and state noise variances in order
to examine the robustness of the GOS against the DOS in
isolating these two faults. In case 1, the measurement and
state noise variances in this simulation are assumed to be

Qν1 = 10−3



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and

Qω1 = 10−3×



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

respectively and the faulty biased flow rate sensor, FIn, is
reading a value of 7 mol/s instead the true value given
in Table I. The polyurethane reactor was simulated for
1000 samples, and the fault was introduced at k = 400 and
removed at k = 600. By comparing the residuals, the plot in
Fig.4 shows how does the DOS failed to isolate the faults
while the plot in Fig.5 shows how did the GOS was able

Fig. 4. Residuals generated using particle filter approach for the biased
flow rate sensor FIn for the polyethylene reactor process based on DOS
using Qν1 and Qω1.

Fig. 5. Residuals generated using particle filter approach for the biased
flow rate sensor FIn for the polyethylene reactor process based on GOS
using Qν1 and Qω1.

to isolate the fault clearly with the above measurement and
state noise variances.

In case 2, the same fault scenario was used and the simu-
lation was carried out using a smaller state and measurement
noise variances i.e.

Qν2 = 10−5



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and

Qω2 = 10−5×



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

respectively. Fig.6 and Fig.7 show the ability of the both
schemes in isolating the fault correctly with smaller noise
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Fig. 6. The plot shows the residuals generated using particle filter approach
for the biased flow rate sensor FIn for the polyethylene reactor process based
on DOS using Qν2 and Qω2.

Fig. 7. The plot shows the residuals generated using particle filter approach
for the biased flow rate sensor FIn for the polyethylene reactor process based
on GOS using Qν2 and Qω2.

variances.

The performance of the proposed algorithm is directly
proportional to the number of samples used in the particle
filter. However, increasing the sampling size will increase the
computational load.

V. CONCLUSIONS

A general model-based fault isolation approach for
stochastic non-linear non-Gaussian systems has been devel-
oped using general observer scheme (GOS). The simulation
results show excellent performance of the proposed approach
against the dedicated observer scheme (DOS) in higly non-
linear system. In future, we intend to extend to develop an
algorithm capable of isolating actuator faults.
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