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Abstract — In this paper, the authors have designed and 
implemented a state estimation scheme, using an 
interacting multiple model based derivative free Kalman 
filter algorithm for a stochastic nonlinear hybrid system. 
The switched non-linear system considered for the 
simulation study is a non-isothermal continuous stirred 
tank reactor which can be operated in one of the three 
modes. It should be noted that the mode transition is 
triggered when a higher yield is desired. Simulation 
studies have been carried out to assess the efficacy of the 
proposed state estimation scheme on the simulated model 
of the chemical reactor. 

I. INTRODUCTION 

Recursive estimation of state variables of a continuous 
stirred tank reactor namely reactor concentration and 
temperature are very important from the view point of 
process monitoring and advanced process control. It may be 
noted that Kalman update based filters (UKF and EnKF) 
and particle filters have been proposed for hybrid systems 
[7], [10]. The feature of the hybrid system is its multimodal 
structure which switches between discrete modes with 
continuous dynamics. Excellent review articles on state and 
parameter estimation have been reported recently in the 
literature [11], [14].  
 
Recently, a fault detection and monitoring scheme for non-
isothermal chemical reactor with uncertain mode transitions 
using deterministic observer for each mode have been 
proposed [1]. In the above problem, the uncertainty in the 
mode transition arises due to the lack of a prior knowledge 
of either the timing or the sequence of transitions between 
the constituent modes [1]. Modeling, analysis and control of 
the hybrid system have gained much importance among the 
research community [2], [3], [4], [5], [9]. The use of moving 
horizon based state estimation for hybrid system has been 
reported in [12]. Design and implementation of a 
Continuum and Non-continuum State Estimator for the 
Distillation Column have been reported in [10]. Recently 
state estimation of two-tank hybrid system using an 
interacting multiple-model algorithm has been proposed in 
[6]. A novel derivative free estimator based nonlinear model 
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predictive control schemes for an optimal control of 
autonomous hybrid system has been proposed in [7]. With 
the exception of few references, to the best of the authors’ 
knowledge formulation of state estimation scheme for 
stochastic hybrid process control system using an interacting 
multiple-model based derivative free Kalman filter 
algorithm has hardly received any attention in the process 
control literature. 
 
In this work, we develop a state estimation scheme for non-
isothermal continuous stirred tank reactor which is subjected 
to stochastic state disturbances and measurement noise using 
an UKF based interacting multiple-model algorithm.The 
organization of the paper is as follows: Section II describes 
the process description and section III deals with interacting 
multiple-model algorithm. Simulation studies have been 
reported in section IV and concluding remarks in section V. 

II. PROCESS DESCRIPTION 

   The schematic diagram of the hybrid non-isothermal 
chemical reactor is shown in Fig.1 [1]. The reactor can be 
operated in one of the three modes (r=1, 2, 3). Irreversible 
exothermic chemical reaction has been taking place inside 
the reactor with A being the reactant species and B being the 
desired product. The governing mass and energy balance 
equations of the reactor for various modes are shown as 
follows: 

MODE – 1 

In mode 1, the reactor is provided with feed inflow rate F1, 
molar concentration CA1 and temperature TA1 of the reactant 
species A.  

1
A A1 A 0 A

F -EC = (C - C ) - k exp C
V RT

 
 
 

   (1) 

 1 r 1
A1 0 A

p p

F -ΔH Q-ET = T -T + k exp C +
V ρc RT ρc V

 
 
 

    

MODE – 2 

In mode 2, the reactor is supplied with another feed with 
inflow rate as F2, molar concentration CA2 and temperature 
TA2 as shown in Fig.1. 
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  (2) 

MODE – 3 

Third feed with reactant species ‘A’ having inflow rate as 
F3, molar concentration CA3 and temperature TA3 has been 
added to the reactor in mode 3, as shown in Fig.1. 

1 2
A A1 A A2 A

3
A3 A 0 A

F F
C = (C - C ) + (C - C )

V V
F -E+ (C - C ) - k exp C
V RT

 
 
 



 (3) 

 

 

1 2
A1 A2

3 3r
A3 0 A

p p

F F
T = (T - T) + T -T

V V
F Q-ΔH -E+ T - T + k exp C +
V ρc RT ρc V

 
 
 



 

Based on the desired requirement of the yield, the mode 
transition has been initiated and the reactor switches 
between these modes. V is the volume of the reactor, k0 is a 
constant, E and ∆Hr are activation energy and the enthalpy 
of the chemical reaction respectively. R is the gas constant, 
heat capacity cp , ρ is the density of the fluid inside the 
reactor and Q is the rate of heat input provided to the 
reactor.  

TABLE   I:  PROCESS PARAMETERS 

Parameter Value 

F1 
F2 
F3 

CA1 
CA2 
CA3 
TA1 
TA2 
TA3 

TA1
nom 

Q1
nom 

Q2
nom 

Q3
nom 

V 
R 

∆Hr
nom 

k0 
E 
Ρ 
cp 

4.998        m3/h 
12.998      m3/h 
16.998      m3/h 
4.0            kmol/m3 

4.5            kmol/m3 

5.0            kmol/m3 

295.0        K 
320.0        K 
340.0        K 
300.0        K 
0               kJ/h 
187,768    kJ/h 
367,978    kJ/h 
1.0            m3 

8.314        kJ/kmol. K 
-5.0 x 104 kJ/kmol 
3.0 x 106   h-1 

5.0 x 104   kJ/kmol 
1000.0       kg/m3 

0.231         kJ/kg. K 

Cs
A1 

Cs
A2 

Cs
A3 

Ts 

3.59           kmol/m3 
4.23           kmol/m3 
4.60           kmol/m3 
388.57       K 

 

Unscented Kalman filter has been designed for each mode, 
r=3 using standard Unscented Kalman filter algorithm as 
reported in the Appendix-A [8]. The parameters associated 
with the chemical reactor are reported in Table I.The 
parameters associated with the UKF are reported in Table II.  

 

III. THE INTERACTING MULTIPLE MODEL ESTIMATOR: IMM-
UKF [13, 15, 6] 

In this subsection, we describe the steps involved in 
obtaining state estimates of switched non-linear system 
using the IMM approach. The IMM algorithm consists of ‘r’ 
interacting derivative free Kalman filters operating in 
parallel as shown in Fig.2. The IMM-UKF based state 
estimation scheme is shown in Fig.1. At discrete time ‘k’ the 
state estimate is computed using ‘r’ Unscented Kalman 
filters, with each UKF using a different combination of the 
previous model-conditioned estimates (mixed initial 
condition).The steps involved in the design and 
implementation of IMM based state estimation scheme are 
as follows:  

A. Mixing probability  
The probability that the mode iM was in effect at instant                
k-1 given that jM is in effect at k conditioned on k-1Y  is 

 
k-1

i|j i jλ (k-1|k-1) = P[M (k -1)|M (k), Y ]  

ij i
i | j r

ij i
i=1

P μ (k-1)
λ (k-1|k-1)= i,j=1,2,...r

P μ (k-1)
      (4) 

Where i|jλ (k-1|k-1)  is mixing probability, ijP is the assumed 
transition probability for the Markov chain according to 
which the system model switches from model i to model j, 

iμ (k-1) is the model probability. The input to the filter 
matched to model j is obtained from an interaction of the ‘r’ 
derivative free Kalman filters, which consists of the mixing 
of estimates (i)x̂ (k-1|k-1)  with the weights i|jλ (k-1| k-1) , 
called the mixing probabilities. 

B. Interaction and Mixing 
r

0j i
i| j

j=1
(k-1|k-1)= (k-1|k-1)λ (k-1|k-1) ;i=1...rˆ ˆx x   (5) 
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Fig.2. Interacting Multiple Model Filter (Three Mode) 

 
The covariance is computed as 

r
0j i

i | j
j=1

i 0j

i 0j T

P (k-1|k-1)= λ (k-1|k-1)[ P (k-1|k-1)

+[ (k-1|k-1)- (k-1|k-1)]
[ (k-1|k-1)- (k-1|k-1)] ]

ˆ ˆx x
ˆ ˆx x



 (6) 

The likelihood functions corresponding to all derivative free 
Kalman filters are computed according to 

-1j j j T
yy

j

r j
yy

exp -0.5 (k) P (k) (k)
Λ (k)=

(2π) |P (k)|

γ γ             (7) 

In the above equation, j (k)γ j
yyP (k)  are the innovation and 

innovation covariance matrix of jth UKF. 

C. Mode Probability update 
Mode probability update is computed as  

r
j

ij i
i=1

j r r
j

ij i
j=1 i=1

Λ (k) P μ (k-1)
μ (k)= j=1,2,...r

Λ (k) P μ (k-1)

 
 
 
 
 
 



 
  (8) 

D. State estimate and covariance combination 
r

j
j

j=1

j
r

Tj j j
j=1

(k|k)= (k|k)μ (k)

P (k|k)
P(k|k) = μ (k)

ˆ ˆ ˆ ˆ+ x (k|k)-x (k|k) x (k|k)-x(k|k)

ˆ ˆx x

 
 
        




 

(9) 

IV.  SIMULATION STUDY 
The efficacy of the proposed state estimation scheme has 
been analyzed on the switched non-linear system subjected 
to mode transitions. The reactor is operated at the unstable 
operating point in each mode by maintaining the 
temperature (T) at 388.57 deg. K using a PI controller.It 
should be noted that the mode transition is triggered when a 
higher yield is desired [1]. 

 

TABLE II. PARAMETER ASSOCIATED WITH UKF 

Parameter Value 

Measurement 
noise 

covariance 
Matrix R  

41.0e 0
0 1

 
 
  
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Process noise 
covariance 
Matrix jQ  

52.5e 0
30 2.5e

 
 
 
 

j 1, 2,3  

Markov chain 
Transition 
Matrix Pij  

0.90 0.05 0.05
0.05 0.90 0.05
0.05 0.05 0.90

 
 
 
  

 

, and    1, 0 and 0 

Initial error 
covariance

jP (0 | 0)  

52.5e 0
30 2.5e

 
 
 
 

j 1, 2,3  

 

Initial state 
vector 

jX̂ (0 | 0)  

T3.59 388.57      j 1  

T4.23 388.57       j 2  

T4.60 388.57       j 3  

Mode 
probability 

(0 | 0)  

                        
T1 / 3 1/ 3 1 / 3    

The evolution of true and estimated state variables using an 
IMM-UKF algorithm is reported in Fig.3 From the Fig.3b 
and Fig.3d it can be inferred that the IMM-UKF based state 
estimation scheme is able to generate fairly accurate filtered 
estimates of state variables of  non-isothermal reactor 
namely  reactor concentration and reactor temperature. The 
mode probability update is reported in Fig.4.   
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Fig.3. a) Evolution of true and estimated value of 
concentration b) Evolution of measured and estimated value 
of concentration c) Evolution of true and estimated value of 
temperature d) Evolution of measured and estimated value 

of temperature 
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Fig.4. Mode probability update of IMM-UKF based 

estimation scheme 

V. CONCLUDING REMARKS 
IMM-UKF based state estimation scheme has been designed 
and implemented on the simulated model of the 
nonisothermal chemical reactor exhibiting mode transition. 
From the simulation studies, it is observed that the IMM-
UKF based state estimation scheme is able to generate 
accurate state estimates of reactor concentration and reactor 
temperature. 
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APPENDIX - A 

UNSCENTED KALMAN FILTER ALGORITHM 

Generation of sigma points is as follows: 

A set of 2L+1 sigma points, (k 1| k 1,i)χ    with the 
associated weights, W(i)  are chosen symmetrically about 

(k 1| k 1)x̂    as given below. 

(k 1| k 1,0) (k 1| k 1);ˆχ x      

 
i

(k 1 | k 1,i) (k 1 | k 1) (L )P(k 1 | k 1)

i 1,...,L

ˆχ x         


 

 
 

i L
(k 1 | k 1, i) (k 1 | k 1) (L )P(k 1 | k 1)

i L 1, ..., 2L

ˆχ x


         

 
 

m

c 2 2

c m

W (0) ;
L

W (0) (1 ); (L ) L
L

1W (i) W (i) ; i 1,..., 2L
2(L )




 


         


  
 

 

Where   is a secondary scaling parameter,   is a factor 
determining the spread of sigma points around 

(k 1| k 1)x̂    and is usually set between 1e-4 to 1. The 
parameter   is used to incorporate prior knowledge of 
distribution of x and for Gaussian distribution its optimum 
value is 2. The 2L+1 sigma points have been derived from 
the state (k | k 1)x̂    and covariance of the state 
vector P(k 1 | k 1)  , where L is the dimension of the state 
vector. 
Implemenatation of UKF algorithm is as follows: 
 
In the prediction step, the sigma points are propagated 
through the nonlinear process model to obtain the predicted 
set of sigma points as 

 
k t

(k 1) t

(k | k 1, i) (k 1 | k 1, i) F ( , i) d ;

i 0, ...., 2L

χ χ χ


 

      



 (A.1) 
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Predicted Mean is given by 
2L

m

i 0
(k | k 1) W (i) (k | k 1,i)x̂ χ



           (A.2) 

Predicted covariance matrix is computed as follows 
2L

c

i 0

T

P(k | k 1) W (i){ (k | k 1, i) (k | k 1)}*

{ (k | k 1, i) (k | k 1)} Q

x̂

ˆχ x

χ


    

   

   (A.3) 

Sigma points are redrawn using the predicted mean as given 

below 

(k | k 1,0) (k | k 1);ˆχ x     

 
i

(k | k 1,i) (k | k 1) (L )P(k | k 1)

i 1,...,L

ˆχ x       


 

 
i L

(k | k 1,i) (k | k 1) (L )P(k | k 1)

i L 1,...,2L

ˆχ x


      

 
 

The Predicted observation is given by 
2L

m

i 0
(k | k 1) W (i)*C (k | k 1,i)ŷ χ



           (A.4) 

The computation of Innovation covariance and cross 

covariance is as follows: 

2L
c

yy
i 0

T

P (k) [W (i){H[ (k | k 1,i)] (k | k 1)}*

{C[ (k | k 1,i)] (k | k 1)} ] R

ˆχ y

ˆχ y







   

   

        (A.5) 

2L
c

xy
i 0

T

P (k) W (i){ (k | k 1,i) (k | k 1)}*

{C[ (k | k 1,i)] (k | k 1)}

ˆχ x

ˆχ y







   

  

     (A.6) 

The innovation is computed as follows: 

(k) (k) (k | k 1)ˆγ y y   .    
The Kalman gain matrix K(k) can be determined as follows 

1
xy yyK(k) P (k)P (k)               (A.7)                                               

The updated State and Covariance matrix are computed 

using the following equations 

(k | k) (k | k 1) K(k)* (k)ˆ ˆx x γ                                  (A.8) 

yy
TP(k | k) P(k | k 1) K(k)*P (k)K (k)        (A.9)       

 

 

  

 

Fig.4. Switched Non-isothermal Continuous Stirred Tank Reactor 
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