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Abstract— The model reference adaptive control (MRAC) de-
signed based on the fictitious reference iterative tuning (FRIT)
approach in an on-line manner has recently been proposed. The
FRIT method is an off-line control parameters tuning method
so that the plant output could follow the prescribed reference
model output from one-shot experimental input-output data
with no need for help from plant model. The MRAC based on
on-line FRIT employs a normalized gradient method for the
adaptive adjusting law. However, since the gradient algorithm
suffers from slow convergence rate. it is desirable to employ an
adaptive adjusting law with fast convergence rate. The paper
gives a normalized recursive least square (RLS) method for
the adaptive adjusting law for the model reference adaptive
control based on an on-line FRIT approach. In the traditional
MRAC, the RLS method shows faster convergence rate than the
gradient algorithm. The paper also proves the boundedness of
all signals in the closed loop system as well as asymptotically
tracking the reference model output. An effectiveness of the
proposed method is shown through a numerical example.

I. INTRODUCTION

The Fictitious Reference Iterative Tuning (FRIT)[1] are
one of the direct controller parameters design approaches,
such as VRFT (Virtual Reference Feedback Tuning)[2],
NCbT(Noniterative Correlation-based Tuning)[4], and unfal-
sified approach[5]. In the FRIT methods, the fictitious refer-
ence signal is parametrized by control parameters using the
one-shot experimental input-output data. Then, the control
parameters are optimized so that the reference model output
from the parametrized fictitious reference signal could follow
the closed loop output obtained from the one-shot closed-
loop experiment. The obtained control parameters makes the
closed loop transfer function exactly match the prescribed
reference model output.

The approach can avoid the time-consuming closed loop
experiments for control parameters tuning or system identi-
fication. However, since the control parameters are designed
in an off-line manner, once plant characteristics change,
the control performance may be deteriorated. On-line FRIT
methods which evaluates the performance index iteratively,
and updates the control parameters in an on-line manner, has
been proposed [6], [8], [7] in order to avoid the problem of
the variation of plant characteristics.

Masuda[6] gave an on-line FRIT method by repeating a
modified FRIT approach, where the identification model is
linearly parametrized in terms of control parameters. Wakasa
et al.[8] introduced a recursive least square method into the
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on-line FRIT approach in order to save the computation load.
However, these researches have not discussed the stability of
the closed system. The MRAC designed based on the ficti-
tious reference iterative tuning (FRIT) approach in an on-line
manner has recently been proposed[7]. The MRAC based on
on-line FRIT employs a normalized gradient method for the
adaptive adjusting law. However, since the gradient algorithm
suffers from slow convergence rate. it is desirable to employ
an adaptive adjusting law with fast convergence rate.

The paper gives a normalized recursive least square (RLS)
method[9] for the adaptive adjusting law for the model ref-
erence adaptive control based on an on-line FRIT approach.
In the traditional MRAC[3], [9], the RLS method shows
faster convergence rate than the gradient algorithm. The
paper also proves the boundedness of all signals in the closed
loop system as well as asymptotically tracking the reference
model output. An effectiveness of the proposed method is
shown through a numerical example.

II. PROBLEM STATEMENTS

Fig. 1. Closed loop system in the regulator problem

Consider a single-input, single-output, continuous-time,
time-invariant, one-degree-of freedom closed-loop system
with a disturbance signal at the input signal. shown in Fig. 1.
Let the plant model be denoted by P (s) in the form of the
transfer function. The argument s stands for a differential
operator, and the initial values of transfer functions are
assumed to be zero. In addition, r(t), u(t), and y(t) are the
reference signal, control input signal, and controlled output
signal, which are functions of time t.

Attention is restricted to the feedback controller C(ρ(t), s)
linearly parametrized in terms of adjustable control parame-
ters ρ(t). That is, the controller C(ρ(t), s) can be described
as

C(ρ(t), s) = ρ(t)Tφ(s) (1)

where ρ(t) is an n-dimensional control parameter vector
which are functions of time t, and φ(s) is also an n-
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dimensional vector whose elements are rational functions of
s representing a transfer function.

The proposed adaptive controller also assumes that all ele-
ments of φ(s) belong to proper and stable transfer functions.
The reference model is given by Pr(s) and the output of the
reference model by yr(t) = Pr(s)r(t).

Now, we assume that the control parameter vector ρd

exists so that the closed loop transfer function corresponds
to the reference model. That is, the following equation is
assumed to be satisfied:

Pr(s) =
P (s)C(ρd, s)

1 + P (s)C(ρd, s)
(2)

The control objective is to tune the control parameter
vector ρ(t) in an on-line manner so that the plant output y(t)
follows the reference model output yr(t) = Pr(s)r(t) with
no need for help from a plant model while the boundedness
of all signals in the closed loop system is assured.

III. CONTROL PARAMETERS TUNING USING FRIT
APPROACH

This section briefly reviews the conventional FRIT ap-
proach in the continuous-time formulation.

In the FRIT method, the control parameter ρd satisfying
(2) is identified from the input and output data u0 and y0
on the finite interval [0, T ] measured from the closed loop
system when an initial control parameter ρ0 is employed.

To this end, the FRIT method calculates the fictitious
reference signal r∗(ρ) which generates the initial collected
input and output signal u0 and y0 even when the control
parameter ρ ̸= ρ0 is employed. The following equations are
fictitious reference signal r∗(ρ).

r∗(ρ) = C(ρ, s)
−1

u0 + y0 (3)

The plant output y0 can be regarded as the output of the
closed loop system where the ideal controller C(ρd) and the
fictitious reference signal r∗(ρd) were employed. Hence, it
follows from (3) and (2) that:

y0 =
P (s)C(ρd, s)

1 + P (s)C(ρd, s)
r∗(ρd)

= Pr(s)r
∗(ρd)

= Pr(s)C(ρd, s)
−1

u0 + Pr(s)y0 (4)

FRIT identifies the ideal control parameter vector ρd based
on the identification model (4) using one-shot experimental
input-output data u0 and y0. In detail, let ŷ(ρ) be defined
as:

ŷ(ρ) = Pr(s)C(ρ, s)−1u0 + Pr(s)y0 (5)

and determine the optimal control parameter vector which
optimizes the following integrated square error between ŷ(ρ)
and y0:

JF (ρ) =

∫ T

0

(ŷ(ρ)− y0)
2dt (6)

The optimal parameter vector:

ρ∗ = arg

(
min
ρ

JF (ρ)

)
(7)

is the control parameter vector determined using the FRIT
approach.

When the assumption that the parameter vector ρd exists,
namely (2) is satisfied, it follows from simple calculations
that the performance index (6) become:

JF (ρ) =

∫ T

0

(
C(ρd, s)− C(ρ, s)

1 + P (s)C(ρd, s)

1

C(ρ, s)
y0

)2

dt (8)

Hence, the determined control parameter vector (7) in the
FRIT approach turned out to be ρd, which makes the
performance index JF (ρ) be identical to zero.

IV. ADAPTIVE PARAMETER TUNING USING A
NORMALIZED LEAST SQUARE METHOD

The first, the identification model linearly parameterized in
terms of control parameter is introduced from (4). Multiply
both side of the equation (4) by C(ρd, s) and arrange the
equation, we get

C(ρd, s) (1− Pr(s)) y0 = Pr(s)u0 (9)

Using the linearly parametrized controller defined in (1),
(9) becomes.

ρT
dφ(s) (1− Pr(s)) y0 = Pr(s)u0 (10)

The identification model (10) is obviously satisfied when
the input and output signal u0 and y0 on finite interval [0, T ]
are replaced by u(t) and y(t) which are measured signal at
the time t in an on-line manner. Hence, (10) becomes

ρT
dφ(s) (1− Pr(s)) y(t) = Pr(s)u(t) (11)

Using the identification model (11) and replacing the de-
sired control parameters ρd by adjustable control parameters
ρ(t), the following identification error ε(t) is defined

ε(t) = ρ(t)Tξ(t)− η(t) (12)

where ξ(t) and η(t) are defined as

ξ(t) = φ(s)(1− Pr(s))y(t) (13)
η(t) = Pr(s)u(t) (14)

The next theorem gives the adaptive adjusting law using
a recursive least square method assuring the boundedness of
the control parameters[9].

Theorem 4.1: The following adaptive adjusting law as-
sures the boundedness of the control parameters ρ(t)

d

dt
ρ(t) = −g

P (t)ε(t)ξ(t)

1 + γξ(t)TP (t)ξ(t)
(15)

d

dt
P (t) = −g

P (t)ξ(t)ξ(t)TP (t)

1 + γξ(t)TP (t)ξ(t)
(16)

where g, γ is a positive real number, and ξ(t) and ε(t) are
defined in (13) and (14). In addition, the following equations
are satisfied.

ρ(t) ∈ L∞ (17)
d

dt
ρ(t) ∈ L2 ∩ L∞ (18)

ε(t)√
1 + ξ(t)TP (t)ξ(t)

∈ L2 ∩ L∞ (19)
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From Theorem 4.1, we can see that a new adaptive
adjusting law (15) and (16) has been proposed, which assures
the boundedness of the adjustable parameters. However, the
theorem 4.1 does not mean that the plant output asymptoti-
cally track the reference model output, and the all the signals
in the closed loop system are bounded. The next section
discusses on the stability analysis.

V. STABILITY ANALYSIS

To begin with, let’s focus on the relation between the
tracking error

e(t) = y(t)− yr(t) (20)

and the identification error ε(t) calculated from (12).
By simple calculation, the tracking error (20) and the

identification error ε(t) can represented in the following way.

e(t) =
P (s)

1 + P (s)C(ρd, s)
v(t) (21)

ε(t) =
P (s)C(ρ(t), s)

1 + P (s)C(ρd, s)
v(t) (22)

where
v(t) =

C(ρd, s)− C(ρ(t), s)

1 + P (s)C(ρ(t), s)
r(t) (23)

From (21) and (22), it follows that

e(t) =
1

C(ρ(t), s)
ε(t) (24)

Then, let ρ∗ be denoted as the control parameters into
which the adjustable control parameters ρ(t) converge.
Namely, the following equation is satisfied.

lim
t→∞

∥ρ̃(t)∥ = 0, ρ̃(t) = ρ(t)− ρ∗ (25)

From Theorem 4.1, it is assured that there exists ρ∗ as a
limit of the the adjustable control parameters ρ(t).

Using ρ∗ and (1) and (24) can be rewritten into

e(t) =
1

C(ρ∗, s)

(
ε(t)− ρ̃(t)Tφ(s)e(t)

)
(26)

The following theorem gives the proof of the stability
of the closed loop system incorporated with the adaptive
adjusting law (15) and (16). The proof can be done by using
the similar procedure which is conducted for proving stability
of MRACS(Model Reference Adaptive Control) shown in
[3].

Theorem 5.1: Assume the following conditions.

1)
1

C(ρ∗, s)
is asymptotically stable.

2) All elements of φ(s) are asymptotically stable.
Then, all the signals of the closed loop system

y(t) = P (s)u(t) (27)
u(t) = C(ρ(t), s)(r(t)− y(t)) (28)

and the adaptive adjusting law (15) and (16) are assured to
be boundedness, and the control error (20) asymptotically
goes to zero.

For the preparation, the following definitions[3] are given.

Definition 5.1: PC[0,∞] is defined as the set of all real
piecewise continuous functions defined on the interval [0,∞)
which have bounded discontinuities.

Definition 5.2: Let x, y ∈ PC[0,∞]. We denote y(t) =
O[x(t)] if there exist positive constants M1,M2, and t0 ∈
R+ such that |y(t) ≤ M1|x(t)|+M2, ∀t ≥ t0.

Definition 5.3: Let x, y ∈ PC[0,∞]. We denote y(t) =
o[x(t)] if there exist a function β(t) ∈ PC[0,∞], and t0 ∈ R+

such that y(t) = β(t)x(t), ∀t ≥ t0, and limt→∞ β(t) = 0.

(Proof of Theorem 5.1) From Theorem 4.1, it follows
that the adjustable control parameters ρ(t) is bounded.
Hence, all the signals of the closed loop system belong to
PC[0,∞].

Then, we assume that the signal y(t) grows in an un-
bounded manner. The proof will lead the assumption into
contradiction, and show that the y(t) is a bounded signal.
From (19), it follows that

ε(t) = β(t)
√
1 + ξ(t)TP (t)ξ(t), β(t) ∈ L2 ∩ L∞ (29)

Since φ(s) are asymptotically stable from the assumption of
the Theorem 4.1, and Pr(s) is also asymptotically stable, the
following equation is satisfied.

∥ξ(t)∥ = O

[
sup
τ≤t

|y(τ)|
]

(30)

From (29) and (30) and Lemma 2.9 in [3], it follows that

ε(t) = o

[
sup
τ≤t

|y(τ)|
]

(31)

From Lemma 2.11 and d
dt ρ̃(t) ∈ L2, it follows that

ρ̃(t)T
1

C(ρ∗, s)
φ(s)e(t)− 1

C(ρ∗, s)
ρ̃(t)Tφ(s)e(t)

= o

[
sup
τ≤t

|e(τ)|
]

(32)

From (25) it follows that

ρ̃(t)T
1

C(ρ∗, s)
φ(s)e(t) = o

[
sup
τ≤t

|e(τ)|
]

(33)

From (20), (26), (29), (30), (31), (32), and (33) it follows
that

e(t) = o

[
sup
τ≤t

|e(τ)|
]

(34)

Clearly, (34) contradicts e(t) = O
[
supτ≤t |e(τ)|

]
. Hence,

y(t) is a bounded signal. From (28) and φ(s) are asymptot-
ically stable, u(t) is also a bounded signal. Hence, all the
signal of the closed loop system is assured to be bounded.
In addition, noting that (29) and the boundedness of ξ(t), it
can leads to limt→∞ ε(t) = 0. Therefore, from (26), it can
be concluded that limt→∞ e(t) = 0.

The following assumptions of Theorem 5.1 may be rather
restrictive.

1

C(ρ∗, s)
is asymptotically stable
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However, it is not so restrictive in the case where the number
of the control parameters is less than or equal to three
because the assumption is satisfied if all the sign of the
control parameters are positive. If the projection algorithm
is employed to the adaptive adjusting law (15) and (16) in
order to keep all the sign of the control parameters to be
positive, the assumption can be satisfied straightforwardly.

VI. A NUMERICAL EXAMPLE

Consider the following 3rd order stable minimum phase
plant model.

P (s) =
2

s3 + 3s2 + 3s+ 1
(35)

The reference signal is given by

r(t) =

{
1 t ∈ [40k, 40k + 20]
−1 t ∈ [40k + 20, 40(k + 1)]

k = 0, 1, 2, · · · (36)

In the simulation, the following controller is considered.

C(ρ(t), s) = ρTφ(s) (37)
ρ(t)T =

[
kP (t), kI(t), kD(t)

]
(38)

φT(s) =
[
1, 1

s+α ,
s

τs+1

]
, τ > 0

(39)

kP (t), kI(t), and kD(t) correspond to adjustable propor-
tional, integral, and differential gain, respectively. τ is a small
positive real number: τ = 0.01, which stands for a time
constant of the approximate differentiation. α is also a small
positive real number: α = 0.01, which stands for an inverse
of time constant of the approximate integrator.

The reference model is given by

Pr(s) =

219.9s2 + 264.1s+ 104

s5 + 103s4 + 304s3 + 523.9s2 + 367.1s+ 105
(40)

The reference model corresponds to the closed loop transfer
function when the desired control parameters are kP d =
1.3046, kId = 0.5070, and kDd = 1.0865 are employed.
Namely, the simulation considers the case where the assump-
tion (2) is satisfied.

The Fig. 2 is a simulation result when the proposed
RLS adaptive controller is applied, where the initial control
parameters are

kP (0) = 0.3, kI(0) = 0.2, kD(0) = 0 (41)

and the adaptive gain in (15) and (16) is set to be P (0) =
100I and γ = 10. From the figure, the relatively large
control error between the plant output and the reference
model output in the beginning of the simulation, but the error
quickly goes to zero. Hence, we can see that the proposed
adaptive control works well shows a good convergence
property. The Fig. 3 shows that the plant input signal in
the simulation. From the figure, we can see that the input
signal remains bounded, which shows that the stability of
the closed loop system is assured.

The Fig. 4 shows the tuned control parameters in the
simulation. From the figure, the tuned parameters quickly
converge to the constant values, respectively:

kP (300) = 1.3040, kI(300) = 0.5070,

kD(300) = 1.0830

These parameters almost correspond to the true values which
make the closed loop transfer functions is the given reference
model transfer function Pr(s). Hence, we can see that the
adaptive adjusting law properly works in the propose method.

The Fig. 5 shows the identification error ε(t) shown in
(12) and the control error e(t). It should be noted that the
identification error ε(t) rapidly goes to zero.

Fig. 6, Fig. 7, Fig. 8 and Fig. 9 are the simulation results[7]
using the gradient algorithm for the adaptive adjusting law.
Obviously, it follows that the RLS case shows even better
convergence rate.
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Fig. 2. Plant output in the proposed adaptive control and the reference
model output using the RLS algorithm
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Fig. 3. Plant input in the proposed adaptive control using the RLS algorithm

VII. CONCLUSION

The paper gives a normalized recursive least square
method for the adaptive adjusting law for the model reference
adaptive control based on an on-line FRIT approach. The
boundedness of all signals in the closed loop system as well
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Fig. 4. The tuned control parameters in the proposed adaptive control
using the RLS algorithm
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Fig. 5. The identification error ε(t) and control error e(t) using the RLS
algorithm
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Fig. 6. Plant output in the proposed adaptive control and the reference
model output using the gradient algorithm
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Fig. 7. Plant input in the proposed adaptive control using the gradient
algorithm
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Fig. 8. The tuned control parameters in the proposed adaptive control
using the gradient algorithm
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Fig. 9. The identification error ε(t) and control error e(t) using the gradient
algorithm
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as asymptotically tracking the reference model output were
proved. An effectiveness of the proposed method was shown
through a numerical example comparing with the simulation
results[7] using the gradient algorithm for adaptive adjusting
law.

In the proposed method, the controller has to be repre-
sented as linear combination of proper and stable transfer
function. However, the integrator does not belong to the
class of the controller which the paper has discussed. Hence,
strictly to say, the adaptive PID gains tuning cannot be treated
by the proposed method. The point as well as the case of
the presence of disturbances remain future works.
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