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Abstract— This paper presents a novel method for detection
and estimation of multiple oscillation frequencies and ampli-
tudes present in a time series. The method is based on the
Fourier Series decomposition of the time series utilizing the
principle of linear regression technique. First, the frequencies of
oscillations are estimated and then their amplitudes are found.
Statistical hypothesis tests are performed on the oscillation
amplitudes to determine the number of significant frequencies
present in a time series. A new oscillation index is defined
which is bounded between 0 and 1 and signifies the strength of
oscillation. The impact of oscillation on the variable or on the
control loop is determined from a new index called, Relative
Oscillation Amplitude in Percentage (ROAP). The proposed
method is evaluated extensively using simulated examples and
industrial data.

I. INTRODUCTION

Large process plants, such as oil refineries, power plants
and pulp mills, are complex integrated systems, containing
thousands of measurements, hundreds of controllers and tens
of recycle streams. The integration of energy and material
flow, required for efficiency, results in the spread of fluctua-
tions throughout a plant. The fluctuations force the plant to
be operated further from the economic optimum that would
otherwise be possible, and thus cause decreased efficiency,
lost production and in some cases increased risk. Because of
the scale of operation of process plants, a small percentage
decrease in productivity has large financial consequences. It
can be extremely difficult to pinpoint the cause of these fluc-
tuations. In the most difficult case, the fluctuations are in the
form of oscillations. Often times oscillations go unnoticed by
the operators because they look at many variables together
in the DCS console in a large range ordinate scale. Also,
oscillations have no defined beginning and end. Therefore,
it is important to detect oscillations, their amplitudes and
frequencies as a part of loop performance audit work in an
automatic fashion. Once the oscillations are detected and
their impacts or strengths are identified, their root cause
should be located,isolated and resolved. Finding the cause
of oscillations is a tedious and labor-intensive task. Once
the cause is understood, removal of the oscillations is usually
straightforward. Therefore, it is important to detect oscilla-
tions, estimate their periods and quantify their strength. A
tool that can automatically detect oscillations and their period
and determine the degree of strength of the oscillation from
their amplitudes is much desired by the process engineers.
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Two types of oscillation detection methods appeared in lit-
erature. The first kind focuses on the detection of oscillation
by a loop by loop analysis [12], [4]. The second category
considered the plant-wide nature of oscillations [3], [2], [9],
[10], [5]. To detect oscillations in process measurements and
identify signals with common oscillatory behavior, use of
spectral principal component analysis [11] or autocorrelation
functions (acf) [10] is suggested. [13] have also proposed
a technique that takes into account the interactions between
control loops.[6] used adjaceny matrix to diagnose root cause
of plantwide osccillation Power Spectral Density(PSD)and
Auto Correlation Function (ACF) based oscillation detection
method followed by a model based approach for identifying
and quantifying the root-cause of the oscillations is appeared
in [7]. The methods appeared in literature can deal with one
oscillation at a time. For detection of multiple oscillations,
they require filtering of data which involves filter design
that may require user’s input. This study developed an
automatic method for detecting multiple oscillations, their
periods and amplitudes in time series data obtained from
routine operation of any process.

II. DETECTION OF OSCILLATIONS

A simple oscillation can be represented using the equation
of a sinusoid:

y(t) = Asin(or + ) ()

As shown in Equation 1, an oscillation can be characterized
with three parameters namely its amplitude, frequency and
phase. Another important property of oscillation is that it
is periodic, which essentially signifies that at least theo-
retically the half of a period contains full information for
characterizing an oscillation. This property holds for any
regular periodic signal or time series. Now, a time series
containing multiple oscillations is usually also periodic in
nature. However, it may or may not be visible depending
on the number of sinusoids and noise in the signal. Such
a time series can be decomposed into sinusoidal periodic
components based on Fourier Series analysis. Any such a
signal or time series, y(), can be decomposed as:

y(t) =A0+ZA,'COS(COJ+¢,') 2)

i=1

where, Aq is the non-zero or dc component, A;’s are ampli-
tudes of sinusoids having frequencies @;’s and ¢;’s are phase.
The main idea of this paper is to estimate each component
of Equation 2 at a time. Since it is practically impossible
to estimate amplitudes, frequencies and phases for infinite



number of terms/components of Equation (2), only the first
‘m’ number of terms are estimated. Therefore, Equation (2)
can be rewritten as:

y(t) =Ao+ A cos(wit+ ¢1) +Azcos(wat + ¢n) + ...

A COS(Ol + Byr) +£(1) @)

£(t) is the error due to omission of terms after the m'"
term. As the chemical process units acts as a filter for
higher order frequencies, from the experience of the author,
it would be sufficient to write the equation up to the tenth
term, i.e., m=10 [1]. The actual value of m, that is the
actual number of sinusoids needs to be estimated and the
method for it is discussed in Section V. Iterative Auto-
Regressive Moving Average (ARMA) technique with Least
Squares Linear Regression has been employed to estimate
the frequencies, amplitudes and phases of Equation (3).

III. ESTIMATION OF FREQUENCY BY AN ITERATIVE
ARMA TECHNIQUE

Maximum likelihood and Autoregressive Moving Average
(ARMA) techniques are two popular methods for estimat-
ing the frequency of a sinusoid that may be present in a
time series. Maximum likelihood techniques for estimating
frequency are computationally intensive and requires good
initial estimates. Good initial estimates are often difficult to
obtain. Therefore, a method which works with relatively poor
initial estimates are desired. ARMA based method is such
a technique whis is robust and works with poor initial esti-
mates. In this study, Quinn & Fernandes [8] technique based
on ARMA method has been used. This method is based on
the fact that sinusoids are the solutions to the second order
difference equations whose auxiliary polynomials have all of
their zeros on the unit circle. Thus this method places the
outset poles on the unit circle, and iteratively achieves an
estimator. So, There is a second order filter which annihilates
a discrete-time sinusoid at a given frequency. If any given
time series, y(¢) satisfies

y(t) = Acos(A 14 ¢) +&(1) €y

where, &(¢) is a white noise sequence. Then, it can be said
that there is a sinusoid with frequency A /27 in the time

series data.

A second order filter of type (1 — 2zcos(®’) + z%)~!
applied to a signal will annihilate a (discrete-time) sinusoid
at a given frequency and makes it ring when the frequency
o' is near the true frequency. Thus, if a time trend y(7)
satisfies Equation 4, it also satisfies

y(t) —2cosy(t —1)+y(t—2) =&(t) —2cosw&(t— 1)+ E(t—2) (5)

Therefore, the time series y(¢) satisfies an ARMA(2,2) equa-
tion, which does not have a stationary or invertible solution.
This representation suggests that @ may be estimated by
iterative ARMA-based techniques. Suppose that we wish to
estimate o and 8 in

Y(O) =Byt =1)+y(t=2) =c(t) —al(t—1)+&(—2) (6)
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while preserving o = 8. If o is known, and the & are inde-
pendent and identically distributed, then 3 can be estimated
by Gaussian maximum likelihood, that is, by minimizing

L €2 g () =L H{E () —BET—1)+E( =)} ()

with respect to 8, where £(t) = y(¢r)+a&(r—1)—E(r —
2) and &(r) = 0, < 0. In other words, &(¢) is the output
signal while by passing y(¢) as input signal through a filter
as given by Paq,]] g As this is quadratic in 8, minimizing
the value is the regression coefficient of &(¢) +&(r —2) on

E(r—1),
PV HE)HEG-2)EG—1)
ey ot
=o+hr(a)

I y(néi-1)
AEEIC))

®)

We then put o equal to this value and re-estimate 3 using
Equation (8) and continue until o and B are sufficiently
close. Then, estimate @ from the equation o = 2cos ®.

This algorithm can be summarized as below:

1) Put oy =2cos®;, where @, is an initial estimator of

the true value @y. This can be estimated from power
spectrum.

2) For j>1,put &(r) = y(r) + oi§(t—1)—E(t—2),
t=0,...,N—1 where {(t) =0, <O0.

ynEE-1)

T £2(-1)

4) If ’ﬁj—aj‘ is suitably small, estimate @ =
cos™!(B;/2). Otherwise, let a;.; = fB; and go to
step 2.

3) Put f; = o +2

The factor 2 in step 3 is introduced for rapid convergence.
Once the frequency is estimated, the amplitudes and phases
can be estimated using least-square regression method.

IV. LEAST SQUARES LINEAR REGRESSION METHOD FOR
ESTIMATING AMPLITUDES AND PHASES

Data are available as time series sampled at a fixed interval
of time. Least-square regression technique is used to estimate
each component of any time series data y(¢f), shown in
Equation (9).

y(t) = iA,- cos( it + ¢;) + €(1)
t=0

€))

For example, if y is the time series data, y; = A cos(w;t +
¢1) will be first estimated. Therefore, let us write,

y = Ag+Ajcos(@it+¢)+e;
= Ao+ acos(wit)+ Bsin(wr) +e;

where, o = Aj cos(¢;) and f = —A| sin(¢; ). Equation (10)
contains four unknowns namely Ag, &, ®; and 3. The fre-
quency @; will be estimated first by using the technique
discussed in the last section. If @; is known, parameters
of Equation (10) can be calculated using simple linear
regression techniques. Predictions of y can be made from
the regression model,

(10)



$ = Ao+ dcos(wr) + B cos(or) (11)

where Ay, & and ﬁ denote the esimated values of Ag,
and f, ¥ denotes the predicted value of y. Each observation
or sample of y will satisfy

yi = Ao+ occos(m;) + B sin(wt;) +e;

The least square method calculates values of Ag, & and S,
that minimizes the sum of the squares of the errors SSE for
an arbitrary number of data points, N:

N
SSE =Y ¢}
i=1

Using least-squares regression technique, it can be shown
that the least-squares estimates of Ag, @ and f8 is as follows:

Ao
P ~1
(/X\ =D ' (o)E(w)
where
N N eos(oy ) N sin(ey 1)
Dey) = | TNl eos(op0) Vo cos?(op1) TV sin(@y 1) cos(oy 1) (12)
N—1 N—1 N—1 2
£ o sin(wy 1) Lo sin(@y 1) cos(wy 1) X, sin (wy1)
N
N—1
E(m) = | ¥,_ y(t)cos(anr) (13)

Yo y(t) sin(ant)

Thus, A, ®; and ¢1 of first term of Fourier series ex-
pansion are gstimated. Now, the residuals can be found
from y(t) — y(¢). From the residuals, the second sinusoidal
components can be estimated. Similarly, all m terms of

equation 3 can be estimated.

V. DETERMINATION OF SIGNIFICANT NUMBER OF
OSCILLATION COMPONENTS OR SINUSOIDS, ‘M’

In practice, all signals contain noise. Therefore, the power
spectrum used for an initial estimate of frequencies will have
peaks that can be mistakenly identified as a sinusoid. To test
whether there is a sinusoid or not, consider the subset of
sinusoidal models

y(t) = u+Acos(Ajt+9)+x(t), 1=0,1,....,N—1 (14)

where A; =2mj/N but j is unknown and x(r) is Gaussian
and an independent sequence, and therefore ‘white’. It is not
practically possible to estimate all sinusoidal components in
the Equation 14. Null hypothesis test was employed to see
whether an error signal may contain sinusoid or not in the
Equation 14. Hence, We wish to test

Ho:A; =0 (15)

against

Hi:A; >0 (16)

A test which has usually good asymptotic properties and
simple to derive is the likelihood ratio test, which rejects the
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null hypothesis on large values of the ratio of the maximum
likelihood under H; to the maximized likelihood under Hj.
The former is just

~Ylog(276}) - ¥
while the latter is
~Ylog(2763) - ¥

where
65 =y Ly {v(1) =3
7= LIEN (1) — 91 — maxi<j<n Iy (A;)]

and n= |(N—1)/2]. We thus rejects Hy if 63/67 is too
large, or, equivalently if Fisher’s g factor is too small.
Fisher’s g factor as defined by

maxi < j<nly(®;)
Yo H{y() — 732

was used in the test. We thus rejects Hy if g is too small.

g= )

VI. SIMULATION EXAMPLE

The purpose of this section is to evaluate the proposed
oscillation detection technique in a controlled simulated
environment where everything is known. An analytical signal
is generated using the following formulation

x1(k) =sin(2x w* fi % k) + sin2xwx frxk +¢)
+ sin(2xpi* fxxk+¢3) + d(k) (18)
where, fi =0.01, f, =0.12, f3 =0.30, ¢ = 7/3, ¢3 =
2xm/3, and d(k) is a random noise whose variance can

be adjusted to increase or decrease the signal to noise ratio
(SNR). The SNR is defined as:

variance of noise free signal
SNR =

. - (19)
variance of noise
Ten time series data for varying signal to noise ratios have
been generated and are shown in Figure 1. The time series
in the topmost panel has the SNR of 22.18 and the bottom-
most signal has a SNR of 0.23. This means the noise in the
bottom-most panel is 5 times more than the actual signal.
Since in practice, the number of sinusoids are not known
a priori, here five sinusoids were estimated. The estimated
amplitudes, frequencies and phases are shown in Table I.
As shown in this Figure, the frequencies f; f» and f3 are
the 3 frequencies that were used to construct the signal.
Other two frequencies f1 and f5 are also estimated but their
amplitudes are much smaller compared to the amplitudes
of the other three frequencies. As the noise increases, the
magnitudes of these spurious frequencies also increase and
this makes sense. In order to decide whether the estimated
frequencies are significant, statistical hypothesis tests were
carried out. The test described in Section V was applied
to each time series and Fisher’s discriminant factor,g, was
calculated. These calculated g values are plotted in Figure 2.
As shown in Figure 2, the threshold or critical value of g can
safely be chosen as 10 below which the estimated sinusoids



Fig. 1. Time Trends of Analytical Signals
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TABLE I
ESTIMATED FREQUENCIES, AMPLITUDES AND PHASES OF FIVE
SINUSOIDS

SNR|| fa | f2 | 3 | fa | f5 | A1 | A2 | A3 | AA | A

phi | ph2 | ph3 | pha | phs | SSE

22.1§| 0.010 0.300 0.120 0.074 0.422| 0.99 1.00 1.03 0. 0.06 -1.42 -1.56 157 154 -0.97 33

5.52| 0.010 0.300 0.120 0.232 0.151] 1.02) 1.04 102 011 0.10 -1.50 1.46 151 -1.17 035 13:

2.8 0.010 0.300 0.120 0.102 0.053| 1.00 1.10 099 0.16 0.15 -1.53 -1.46 1.56 -0. -1.14 25.

1.43| 0.010 0.120 0.300 0.070 0.199) 1.05 101 088 0.27 0.21 -1.52 1.34 -1.48 0.55 0.54 500

0.99| 0.010 0.300 0.120 0.357 0.185| 1.01 0.93 097 0.27 028 148 133 -140 -0.65 0.7 71§

0.6§| 0.010 0.300 0.120 0.227 0.356] 0.97 1.03 1.20 0.41 0.37] -1.42 -1.47 1.32 -0.75

0.47)| 0.010 0.120 0.300 0.408 0.055] 1.11 1.01 0.84 043 037 1.24 -1.38 -1.3] -0.80 0.45 1503

0.300/ 0.016 0.25:

0.024 0.352]

0.293 0.1

can be treated as spurious. In practice or for real life data, it
is often fruitless task to analyze data for which the SNR is
below 1. Therefore, for analysis of real industrial data, the
threshold value of g can be chosen as 25 as suggested by
the close examination of Figure 2.

Fig. 2. Fisher’s Discriminant Factor, g

40
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VII. QUANTIFYING IMPACT OF OSCILLATION

Oscillations can be regular or irregular. It can have sinusio-
dal component with a single frequency or multiple frequen-
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cies. If plotted, the oscillatory signal or time series with a
single or multiple frequencies are easily visible by naked eye.
However, for process industries where thousands of variables
are logged every minute, it is not practical to plot each
variable and detect oscillations visually. This necessitates an
automatic method for quantifying the regularity of oscillation
and its strength.

A. Oscillation Index

A new oscillation index is defined based on the Fisher’s
discriminant factor, g described in Section V. The new
oscillation index is defined as
8critical

Ool=1-
Z 8significant

(20)
where, OI is the oscillation index, g isicas 1S the threshold
value of g below which there is no oscillation and gg;eni ficant
are the values of g for which the null hypothesis in Equa-
tion 15 is rejected, i.e., g values for significant oscillatory
components. By definition, the OI is bounded between 0 and
1. An OI value close to zero means there is no oscillation,
while a value close to 1 means a very strong oscillation. If
there is no significant oscillation, the OI value is set to O.

B. Strength of Oscillation

In industrial practice, many variables may be somewhat
oscillatory. The oscillation index value may be high but
the oscillation itself may not deserve attention because of
its small amplitude compared to the mean value of the
signal. Therefore, the determination of relative amplitude of
oscillation as compared to its mean value is important. This
can be calculated using the following equation.

Amplitude of fundamental frequency
Mean of the variable

ROAP = *100%

(2D
where ROAP is the Relative Oscillation Amplitude in Per-
centage. The definition of ROAP may appear fragile as it
implies that an oscillation of same amplitude for a particular
variable with a mean of 400 unit is less severe than that
with a mean of 40 unit. This observation stands valid in
industrial practice. In reality, the process engineers look at
the oscillation amplitude and compare it with the nominal
value. The threshold value for ROAP will depend on the type
or critical nature of the loop. From the author’s experience
with industrial data analysis, an oscillation with a ROAP
value of above 0.1 should not be neglected and deserves
attention by the maintenance people.

VIII. INDUSTRIAL EXAMPLE

This section evaluates the proposed oscillation detection
methodology using an industrial data set from an ammonia
plant. The method has been successfully applied in a few
chemical plants. For the sake of brevity, result for 11 tags are
presented here. Figure 3 shows the time trends and power
spectra of these 11 variables. Data were collected at 4 s
time interval. The results of oscillation detection algorithm
are shown in Table II. Tag 1, UIFIC104BPV, does have
some oscillations but not very strong. The power spectrum



of this tag shows a peak at frequency 0.1. The OI obtained
for this loop is 0.51 indicating a mild oscillation while the
ROAP value is 0.11 indicating an insignificant variation in
amplitude due to this oscillation. The time trend of Tag
2 indicates some sensor problem likely. The trends show
some rectangular nature for some time and for some time it
remains constant. There is no defined oscillation in this loop.
The oscillation index is 0.07 only. Tag 3, variable UIFIC132,
shows a complex oscillation. From the time trend and power
spectra, it is visible that there are at least two oscillation - one
with large oscillation period and another with high frequency
or small oscillation period. The oscillation diagnosis metric
in Table II shows that the dominant oscillation period is 70
samples or 280 s. The oscillation amplitude is 14.04 which
is only 0.11 percent of the mean value of 13129. Therefore,
the ROAP value is 0.11 indicating this oscillation may not
be very significant because of its low amplitude though the
presence of multiple oscillation in this loop indicates the
poor condition of this loop. The time trend and power spectra
of Tag 4 shows that this tag does not have any oscillation.
The oscillation detection algorithm correctly calculates a 0
value of OI for this loop as shown in Table II. The time
trend and power spectra of Tag 5, UIFIC201, shows a strong
oscillation. The OI index for this loop is 0.71. The ROAP
value for this loop is 0.81 indicating a significant impact
of this oscillation on this loop and it deserves attention
of maintenance people for possible maintenance. Tags 6, 9
and 10 (UIFIC305PV, UILIC311PV,UILIC316PV) contain
a low frequency oscillation. The OI values for these variables
are 0.81, 0.77 and 0.86, respectively indicating the presence
of a dominant oscillation with oscillation period of 159,
157 and 188 samples, respectively. The ROAP values for
these variables are 0.31, 0.22 and 0.39, respectively. The
high ROAP values indicate the impact of oscillation on the
performance of these loops cannot be neglected and should
be diagnosed for further actions. Tags 7 and 11 have a very
low frequency oscillation with a period of 515 and 641
samples, respectively. Since only 512 samples were used
to run the oscillation detection algorithm, these results may
have less reliability. Currently, for such cases the algorithm
or program issues a warning message, 'Data length is shorter
than oscillation period. Longer data length should be used or
downsample the data’. For tag 8, the oscillation period is 509
samples and OI value is 0.88 indicating a strong oscillation.
The data window used in the analysis barely contains one
oscillation period. The algorithm is good enough to correctly
detect this oscillation from this one oscillation period long
data. This was possible because of the periodic nature of
oscillation. As stated earlier, the half of a oscillation period
data theoretically contains all information for characterizing
an oscillation.

IX. CONCLUSIONS

This paper presents a novel method for detection of a
single or multiple oscillations in time series data or in process
data in one step. There is no need of use intervention or
filtering the data for detecting multiple oscillations. The
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Fig. 3. Time Trends of an Industrial Dataset
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TABLE 11
RESULTS OF OSCILLATION DETECTION ALGORITHM FOR INDUSTRIAL

DATA SET
Loop No. | PV mean| PV std Osc Ampltd |[ROAP Osc Period| OSC. Index
UIFIC104 | 38003 54.18 38.33 0.10 10 0.51
U1FIC131 4 0 0 0.00 10 0.07
U1FIC132 | 13129 14.51 14.04 0.11 70 0.72
U1FIC133 900 1.89 0 0.00 0 0
U1FIC201 259 241 2.09 0.81 10 0.71
U1FIC305 1333 3.59 4.09 0.31 159 0.81
U1FIC609 2712 19.43 9.97 0.37 515 0.36
U1Lc219 50 0.09 0.11 0.22 509 0.88
U1LIc31 55 0.11 0.12 0.22 157 0.77
U1LIC316 71 0.22 0.28 0.39 188 0.86
U1LICe07 29 0.08 0.07 0.24 641 0.78

method is based on the Fourier decomposition of time series
data utilizing the principles of linear regression techniques.
The proposed method can estimate amplitudes, frequencies
and phases of sinusoidal components present in a time series.
The time series does not need to be sinusoidal. The method
is robust enough to detect oscillation even from a very noisy
time series data. Two indices namely Oscillation Index (OI)
and Relative Oscillation Amplitude in Percent (ROAP) are
defined. The OI shows the regularity of oscillation and ROAP
signifies the impact of oscillation in the particular variable.
The method was successfully evaluated using simulated and
industrial data sets.
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