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Abstract— Clustering approaches have been widely used in
process control community for unsupervised classification ben-
eficial for further analysis, modeling and optimization. Process
data generally involve far more dimensions than needed; this
phenomenon is called as data rich but information poor” and
becomes obstacles for reasonable classification. Therefore, it
is desirable to use latent variable models such as principal
component analysis (PCA) to lower the dimension of data.
Traditional clustering models, however, are directly established
on the data and make no allowance for latent subspace, which
would cause inaccuracy in unsupervised data classification. In
recent years deep neural networks (DNN) have proved effective
for developing latent variable models, which is termed as the
“deep learning” technique. In this paper, we propose a novel
clustering approach based on a combination of DNN and
traditional /K -means method. DNN is responsible for latent
subspace description within the data, and the K-means method
is used for clustering in the derived latent subspace. The
proposed method has better generalization performance due to
its strong nonlinear representation ability, and it is especially
favored in the case of high-dimensional data with significant
correlations. The efficacy of the proposed method is addressed
on two benchmark data sets in comparison with traditional
clustering approaches.

I. INTRODUCTION

Multi-mode characteristics are commonly incurred in in-
dustrial processes mainly because they are operated under
several different conditions [1]. Clustering techniques have
established themselves as effective tools dealing with multi-
mode phenomena. The main motivation of clustering is to
classify data into different clusters according to certain simi-
larity criteria. Data belonging to the same cluster are seen as
yielding the same simpler local distribution. Therefore a task
dealing with complicately distributed data can be desirably
simplified to several sub-tasks because of their simple local
structures. Over the last few decades, clustering methods
have been intensively applied in a proliferation of process
control tasks, including system identification [2], [3], soft
sensor development [4] and process monitoring [5].

The structure determination and parameter estimation of
clustering models have always been prevailing issues to
researchers, and diversified clustering models have already
been proposed. The K-means was the first algorithm for
clustering purposes proposed over 50 years ago and it
still gets extensively used at present [6]. The Euclidean
metric and Mahalanobis distance metric are typically used
in K-means for evaluating the distance between samples
and cluster centers. Consequently, K-means can only find
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Fig. 1. Example of K-means performances in different scenarios: (a)
spherical clusters; (b) non-spherical clusters.

spherical or hyper-ellipsoidal clusters, and fails to handle
non-convex clusters, as shown in Fig. 1. In this regard, some
extentions have been proposed such as kernel K-means in [7]
and support vector clustering (SVC) in [8]. They use kernel
tricks to project data onto a high-dimensional feature space
and further cluster data in the feature space. The feature
space, however, is often of extremely high or even infinite
dimension, hence data distribution in the feature space cannot
be explicitly described. This gives rise to difficulties in
further analysis. Moreover, the kernel matrix computation
becomes inconvenient and even intractable in the context of
massive data.

Another clustering approach dealing with non-convex
clusters is self organizing map (SOM) by [9]. It reduces
data to a two-dimensional visualized structure by means
of neural networks and further clusters data on the two-
dimensional space. SOM has found wide applications in
process visualization and fault isolation. Nevertheless, SOM
lacks adequate representation capability dealing with high-
dimensional data because all data are forced to spread on
a two-dimensional space with some important information
ignored.

In industrial processes, evident correlations are involved
in high dimensional process data. The dimension of data
is usually much higher than its effective dimension, which
is termed as “data rich but information poor” [10]. This is
mainly due to two reasons. First, the popularity of distributed
control systems (DCSs) makes it possible to archive large
amounts of data. Second, visible variations of data are caused
by a smaller number of inherent process changes. Therefore,
latent variable models, such as principal component analysis
(PCA), are broadly employed to describe the latent subspace
that explains most variances of data. It is latent variables
that reflect the nature of data structure. Traditional clustering
approaches, however, are not dependent on those intrinsic
latent variables and thus fail to take underlying features into
considerations.

Consequently, traditional approaches may lose efficacy



in the presence of high dimensional process data that are
heavily correlated, and it is necessary to develop clustering
models on the basis of low dimensional latent subspace of
special interest. To this end, a novel clustering method based
on latent subspace description has been proposed. In recent
years, deep neural networks (DNN) have gained increasing
attention in machine learning area [11], [12], [13], and have
been successfully applied to dimensionality reduction and
nonlinear feature subspace description because of their re-
markable representation ability. In this study, such nonlinear
subsupace clustering method mainly includes two steps. In
the first step, the nonlinear subspace is extracted by using
DNN. In the second step, the K-means-based clustering
performed on the derived subspace is further integrated with
DNN learning, in which the objective functions of both
clustering and dimensionality reduction are combined and
optimized together. In this way, the clustering model not only
classifies data into different categories but also maintains the
latent subspace containing most information in data.

The rest of this paper proceeds as follows. In the next
section a brief review of K-means and the DNN based
dimensionality reduction approach is presented. In Section
III, the proposed latent subspace clustering model is given
and its learning algorithm is detailed. In Section IV, the
proposed method is tested on two benchmark datasets in
machine learning community in comparison with traditional
clustering approaches, followed by a brief conclusion in
Section V.

II. PRELIMINARIES

A. K-means clustering revisit

The K-means clustering assumes in a priori that there
are K clusters C = {Cy,C3, - ,Ck}. Given a set of n-
dimensional samples {x, 3, -+ ,zyN}, K-means aims at
minimizing the within-cluster sum of squares:

K
argmcinz Z [T — 1] |%,

k=12, €Ck

(1)

where p;, is the mean of cluster Cj. Because minimizing
(1) is known as an NP-hard problem, K-means can only
converge to a local optimum. One effective strategy to
avoid local optimum is to run K-means several times with
random initialization and choose the one with least within-
cluster sum of squares. The K -means algorithm includes the
following iterative steps:

Step 1. Initialize K cluster centers {Cy,Ca, - ,Ck}
randomly.

Step 2. Assign each sample to its nearest cluster center
and update the new partition.

Step 3. Derive new cluster centers {p;, }(k=1,2,---
according to the current partition.

Step 4. If cluster partition changes, go back to Step 2.
Otherwise, stop the algorithm.
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B. Nonlinear subspace description using deep neural net-
works

1) Auto-encoder: An auto-encoder is a two-layer neural
network with a hidden layer and an output layer [12]. Let «
be an n-dimensional input vector with elements x; € (0,1)
and h be an m-dimensional vector of the hidden layer. Fig.
2 gives a sketch of an auto-encoder. The hidden layer h is
calculated as

h = sigm(W7Tx + b), )

where sigm (u) is the element-wise sigmoid activity function:

T

1 1
)

T [T+ep(-u) 1T+ exp(—upm)

sigm(u)

W € R™™andb € R™*! are a coefficient matrix and a
bias vector, respectively. The vector & of the output layer
has dimension n, the same as the input vector. The output
layer vector is calculated as

“4)

where W is the same coefficient matrix as defined in (2)
and c is a bias vector [12]. Notice that each element x; of
the input vector x is limited to the range (0, 1). Therefore,
such an auto-encoder is termed as a binary auto-encoder. To
deal with input values in an unlimited range, a Gaussian
auto-encoder is formulated as:

& = sigm(Wh + ¢),

h = sigm(WTx +b),

5
x=Wh+c, )

where x; € R. The auto-encoder aims at reconstructing
its inputs in the output layer by minimizing the following
reconstruction error function:

J(0) = [l - &|]%, (6)

where 6 represents the network parameters § = {W, b, c}.
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Fig. 2. Sketch of an auto-encoder

Traditional back-propagation can be used to train auto-
encoders. In this study, the gradient descent approach is
adopted with parameters randomly initialized. Notice that
the auto-encoder is forced to learn an identity mapping in
order to keep most information in the hidden layer.
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Fig. 3. Layer-wise training procedure of DNN: (a) initialize the auto-
encoder 01 ; (b) train the auto-encoder 62 based on h1; (c) adjust the weights
of DNN according to the reconstruction criterion.

2) Deep neural network based latent subspace descrip-
tion: Neural networks have already been utilized to deal
with the dimensionality reduction problem two decades ago.
Kramer proposed a five-layer neural network called the au-
toassociative neural network, which comprises an encoding
network and a decoding network [14], [15]. Unfortunately,
such autoassociative neural network is very difficult to train
because of its complicated structure. The deep neural net-
work (DNN), however, overcomes the difficulty successfully
[11]. DNN is a generalized multi-layer model including one
visible layer and several latent layers, which is made up
of several auto-encoders that are connected in series. Fig.
3 gives a simple example of a five-layer DNN.

The learning of a DNN is a greedy process. As shown in
Fig. 3, the auto-encoder 6, is trained first, and the second
auto-encoder - is inserted to the latent layer hq of 6.
Auto-encoder 65 takes the latent layer hy in 6y as its input
vector and the goal is to reconstruct h; in its output layer.
Such a procedure can be repeated as many times as desired.
The entire DNN is established by layer-wise training of
each individual auto-encoder. It is highlighted that in DNN
learning, high-level latent layers for high-level features are
developed based on low-level latent layers for low-level
features. It makes DNN a hierachical model with latent
variables.

After training each individual auto-encoder, the DNN
needs to be fine-tuned by reconstructing its input in the
output layer. Notice that each auto-encoder realizes approx-
imated input reconstruction; therefore parameters of DNN
only need minor adjustments to make output resemble its
input and a conjugate gradient (CG) optimization is adopted.
In general, the hidden layer in the middle of DNN is set
to have the lowest dimension, amounting to a “bottleneck”
layer. Therefore the bottleneck layer with lowest dimension
can be seen as a nonlinear subspace that explains most
variance within data.
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Fig. 4. Latent subspace derived from a five-layer DNN

III. CLUSTERING BASED ON NONLINEAR
LATENT SUBSPACE DESCRIPTION

A. Model and Objective

Assume that the DNN has (2L + 1) layers, and the
coefficient matrix and the bias vector in each layer are
defined as W, and b; (I = 1,2,---,2L), respectively. In
practice, the input values of DNN are unlimited; thus the
Gaussian auto-encoder is served as an input auto-encoder.
The rest auto-encoders are naturally binary auto-encoders
and back-propagation is performed when a new auto-encoder
is added to the DNN. Each hidden layer can therefore be
expressed as

ho =x,
hl = Sigm(WlThl—l + bl)’l = 172a T 72L - 17
hop = Wy hop—1 + bar.

)

The reconstructed output of DNN is defined as & = hop,
whereas the bottleneck layer of special interest is defined as
v = hy. For simplicity, we denote the encoding network
from input x to bottleneck layer v as v = G(x), which
has parameters {W;,b;}(I = 1,---,L), and the decod-
ing network from bottleneck layer v to its reconstruction
output & is defined as & = H(v), which has parameters
{Wi,b)}(l=L+1,---,2L), as shown in Fig. 4. Assume
that there are N samples in the training set, denoted as
{x1,x2, -+ ,xN}. The learning objective of DNN, namely,
the minimization of the reconstruction error, is represented
as:

1 & | X
Jp = N ZZ:; |2; — ;||* = ¥ Z 1 H (G (1)) — i (8)

i=1

After a latent subspace is derived by training deep neural
network, clustering is to be executed on the latent subspace
v. The idea of K-means is employed, and an alternative
cluster measure to (1), namely, the Davies-Bouldin validity
index [16], is used. Assume that pu,, is the center of cluster



C}, and Ty, is the number of elements in C. The learning
objective of clustering is then defined as:

K
_ 1 Sk +S;
Jo = % kzzjl max{ My, 9

where S}, is defined as the distance inside each clusters:

j#k},

1
Sk: = Z ”'Um_“'k”Q
Tk vV €CK (10)
1
== X 6@ -l
G(wnz)eck

and My,; is defined as the distance between two clusters Cj,
and Cj:

(1)

Such two metrics will prevent the bottleneck layer to be
over-concentrated or over-dispersed, which is helpful for the
stability of the training algorithm.

It can be seen from (9)-(11) that simply minimizing Jo will
adjust parameters of the encoding network G(a), without
updating parameters of the decoding network H(v). For
this reason, the whole DNN cannot guarantee a desirable
reconstruction of its inputs, leading to the destruction of the
latent subspace. As a consequnce, the latent subspace based
clustering will become unreliable. It is reasonable that the
latent subspace can be maintained during the clustering pro-
cedure. Here a combined clustering objective J is adopted:

My = ||y, — 15l

J =Ji+ A, 12)

where A\ is a regularization parameter that balances the
reconstruction objective and the clustering objective. On
one hand, if )\ is too small, the combined objective would
take little consideration about clustering and simply reduces
the data dimension. On the other hand, if A is too large,
the latent subspace cannot be properly preserved and thus
clustering would be no good. Therefore it is necessary to
properly choose the regularization parameter A, and the
cross-validation strategy can be used.

B. Details of parameters adjustments

It can be seen that the reconstruction criterion J; deals
with both G(x) and H (v), while the clustering criterion .J5 is
only relevant with the encoding network G(x). To minimize
the reconstruction criterion Ji, the adjustment of weights can
be readily obtained via traditional back-propagation [17]. As
for the clustering criterion, the partial derivative of Js is
detailed as follows:

0J2

0v,y,

Ky — Um
Tk - Sk - My j(y

=(k+1)- 13)

where v, = G(x,,) € C, ny, is the number of times that
cluster (), serves as the nearest cluster to other clusters and
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Choose the structure of DNN.

I

Preprocess the data. Scale each dimension
of data to zero mean and unit variance.

I

Train each auto-encoder in a layer-wise
way.

I

Stack all auto-encoders to make a DNN,
and fine-tune it with back-propagation.

l

Randomly initialize K cluster centers

(b 1 B

l

Determine the membership of each sample
by the distances in the latent subspace.

I

Perform the conjugate gradient
optimization in only one epoch.

I

Update new cluster centers according to
current memberships.

l

Judge if the combined loss function | N |
converges.

Iy

End

Fig. 5. Flowchart of DNN-based latent subspace clustering process.

j (k) = argmax;{(Sk + Sj)/My; | j # k}. Then, the
derivative to the parameters {W;,b;}(I = 1,---, L) of the
encoding network G(-) can be formulated as:

N

dJs _i % ov; 11 I

an _N i—1 Bvi 8W17 7 T

aJ. 1 l; 0Jy O (1
2 _ - 2 9V, _q .

aTl_N;avi 8bl’l Lo Ly

where the terms dv;/0W; and Ov,;/0b; can be obtained by
the chain rule in the traditional back-propagation algorithm.

C. Latent subspace clustering based on DNN training

Because clustering is dependent on a well established
latent subspace, the DNN should be built at the beginning.
Afterwards, the combined objective in (8) can be pursued. If
the network is at first optimized according to the combined
objective J directly, it will get easily trapped into local
optima because of structual complexity. The entire procedure
of the algorithm is summarized in Fig. 5.



TABLE I
CLUSTERING ERROR RATES ON TWO BENCHMARK DATASETS (%)

Our Method | K-means | SVC | SOM
IRIS dataset 2 10.67 9.33 2.67
WDBC dataset 4.04 8.96 9.31 5.80

I'V. SIMULATION CASE STUDIES

In this section, two benchmark datasets, namely, the IRIS
dataset and the Wisconsin diagnostic breast cancer (WDBC)
dataset in [18], are used to testify the efficacy of the proposed
method in comparison with traditional clustering methods.

The IRIS benchmark dataset describes iris plant features
with four-dimensional samples. It contains 150 samples clas-
sified into three different categories. The WDBC dataset de-
scribes 30 features of the cell nuclei drawn from an image of
a fine needle aspirate (FNA) of a breast mass. It includes 569
samples from two classes. Both datasets can be downloaded
from http://archive.ics.uci.edu/ml/datasets/. All samples are
classified into different clusters in an unsupervised manner.
Because the class information is in a priori available, they
can be used to calculate the numbers of falsely clustered
samples and further give the error rate.

For IRIS dataset, a 4-15-8-3-8-15-4 DNN with seven
layers is established, while a 30-100-50-20-50-100-30 DNN
with five layers is developed for WDBC dataset. Because
clustering in latent subsupace involves randomness, the learn-
ing process is repeated 100 times and the result with the best
clustering performance is selected.

In this study, three traditional clustering approaches, name-
ly, K-means, SVC, and SOM, are tested on two benchmark
datasets for comparison purposes. Due to randomness in the
training process of K-means and SOM, each of them is
trained 100 times in the same way as our method and result
with the best performance is selected. For SVC, the outlier
parameter is 0.01 and the Gaussian kernel parameter is 1,
according to cross-validation. For SOM, the topology size is
3 x 3. Table 1 gives the comparison results of our method
as well as other three approaches. It can be seen that K-
means gives the worst clustering results for both datasets,
because it cannot deal with abnormal clusters. Our method
and SOM, which are based on neural network techniques,
clearly outperform the other two methods because neural
networks enjoy powerful capability to represent complex
clusters. In addition, our method achieves a smaller error
rate than SOM, mainly because clustering is based on the
derived latent subspace while SOM makes no allowance for
latent information behind data.

Because the bottleneck layer of DNN for IRIS dataset
is three-dimensional, it is convenient to visualize the latent
subspace. Fig. 6(a) shows the latent subspace distribution
after fine-tuning DNN but without clustering, and Fig. 6(b)
shows the latent subspace distribution after clustering. On
one hand, it is revealed in Fig. 6(a) that the latent subspace
contains salient cluster information, even without using a
clustering criterion. It demonstrates that DNN effectively
reduces data dimension with most information maintained,
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thereby making clustering easier on a lower-dimensional
subspace. On the other hand, by comparing Fig. 6(b) with
(a), it can be seen that after clustering, samples in the same
cluster gathers closely.

a1
(a) (b)

Fig. 6. Latent subspace distribution on IRIS dataset: (a) after DNN training
but before clustering; (b) after clustering

In addition, we have attemped to skip the training phase
of DNN and directly optimize the combined criterion for
comparison purposes. It is found that in both IRIS and
WDBC datasets, the networks are prone to local optima
and have significantly poor generalization ability than our
proposed strategy. This verifies the necessity of a pre-trained
DNN in the latent subspace based clustering.

V. CONCLUSION

This paper proposed a clustering algorithm based on DNN.
Once the DNN structure is defined, only one parameter
remains in our algorithm, allowing it to obtain various solu-
tions. A unique advantage of our algorithm is clustering of
reduced-dimensional data that contains most of information
in the original data. The novelty of our algorithm lies in
that, the two stage training steps integrate the clustering
index with reconstruction error, which make the unsupervised
learning more intentional.

From experiments, we noticed the remaining nonlinearity
in the bottleneck layer after DNN construction, which could
lead to other nonlinear clustering methods to DNN. In addi-
tion, inspired by supervised learning of DNN, the clustering
index may be helpful to determine the DNN’s structure and
learning process.
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