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Robust gain-scheduled controller for linear parameter varying
systems
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Abstract—Proportional-integral-derivative (PID) controller
is the most widely used in industry due to its simplicity and
performance characteristics. However, a number of processes
with time-variant or nonlinear characteristics are difficult to
be handled with a conventional PID controller. To address
this problem, an enhanced PID controller exhibiting improved
performance than the conventional linear fixed-gain PID con-
troller is proposed. The algorithms proposed use a gain-
scheduling technique, and integrates robustness and explicit
input-output constraint-handling capabilities in the controller
design. Nonlinear processes are modeled as a linear parameter
varying (LPV) system. The gain-scheduled P controller is
designed by off-line solving robust optimal control problem
in order to construct a sequence of state feedback gains. The
associated sequence of nested invariant sets is used to define
the corresponding operating region of each state feedback gain
computed. At each control iteration, the smallest invariant set
containing the current state measured is determined, a corre-
sponding feedback gain is then implemented to the process.
Further, an interpolation algorithm is proposed to improve
control performances. The feedback gain implemented to the
process is determined by maximizing its norm subjected to a set
of constraints associated with the current invariant set. Stability
of a closed loop behaviour can be guaranteed. Simulation
example of a spherical level tank is used to illustrate the
applicability of the algorithms proposed. Comparison between
our algorithms and a conventional PI controller tuned by
existing technique is performed. The simulation results showed
that the proposed algorithms can stabilize the system while
satisfying input-output constraints, and provide a better control
performance than the conventional PI controller. Interpolation
algorithm can improve control performance while on-line
computation is still tractable.

I. INTRODUCTION

Proportional-integral-derivative (PID) is the most widely
used controller in industry for several decades because of
its simplicity and performance characteristics. Although a
conventional PID controller which uses fixed gain is often
sufficient, a number of processes with nonlinear character-
istics are often beyond the capabilities of a conventional
PID controller. Limitations of the conventional PID control
become obvious when applied to more complicated systems
such as those with a time-delay, poorly damped, highly
nonlinear and time-varying dynamics [1]. To address these
issues, the PID controller has evolved to include adaptive
features such as self-tuning and gain-scheduling.

Gain-scheduling requires insights on process behaviours
in order to define operating region and its optimal PID tuning
parameters. The parameters are stored and later recalled for
use in the controller, according to the prevailing operational
conditions represented by a custom scheduling scheme. A
traditional technique is to linearize the process around sev-
eral operating points and to use linear control tools to design
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a controller for each of these points. However, a transition
of operating regions might lead to instabilities if the PID
controller is not designed to make smooth transitions. Thus,
success of such an approach depends on establishing a
relationship between an original nonlinear system and a
linear system associated. Various techniques to design gain-
scheduled controllers have been proposed [2].

A mild nonlinear system can be efficiently represented
by a linear parameter-dependent description. Thus, linear
parameter varying (LPV) systems have recieved increasing
attention during last decades [3]. LPV model is a linear sys-
tem parameterized by scheduling parameters. The dynamics
depend on external time varying parameters. The future
trajectories are unknown a priori but states can be accurately
measured or estimated online. Therefore, information on the
current process model is available.

The extension of H. synthesis techniques to allow for
controller dependence on time-varying but measured param-
eters was studied in [4]. Thus, a higher control performance
can be achieved by incorporating measurements of these
parameters to the control algorithm. In [5], a bounding
technique based on parameter-dependent Lyapunov function
was used to design PD controllers. The proposed approach
represents generalization of the standard sub-optimal H..
control problem.

In [6], a design problem of gain-scheduled controllers
for LPV systems via parameter-dependent Lyapunov func-
tion was addressed. A gain-scheduled controller design for
discrete-time systems was proposed in [7]. The design of
gain-scheduled PI controller, when the uncertainty of the
system is assumed to be a difference between the nonlinear
model and the nominal linear model, was studied in [8].

Robust model predictive control (RMPC) is another
promising approach capable of determining optimal state
feedback gain for LPV systems. RMPC for linear time
varying (LTV) systems has been developed in [9]. However,
RMPC requires solving convex optimization involving linear
matrix inequalities and a computational complexity of the
optimization problem associated grows exponentially with
the number of vertice of polytopic uncertain set, therefore,
the problem on computational complexity limits wide ap-
plication of RMPC. An off-line RMPC for LPV systems
was introduced in [10]. Sequences of state feedback gains
corresponding to sequences of nested ellipsoidal invariant
sets are pre-computed off-line. At each control iteration,
the smallest ellipsoid containing the current state measured
is determined. The state feedback gain implemented to the
process is obtained by linear interpolation between the pre-
computed state feedback gains. An off-line RMPC algorithm
based on polyhedral invariant set has been developed in



[11]. A sequence of nested polyhedral invariant sets cor-
responding to a sequence of pre-computed state feedback
gains is constructed off-line. At each control iteration, the
smallest polyhedral invariant set containing the current state
measured is determined. The corresponding state feedback
gain is then implemented to the process

In this paper, a nonlinear single input single output
(SISO) system is considered. We present a framework for
a gain-scheduled controller design targeting at nonlinear
processes formulated as an LPV system. The paper is
organized as follows. In section 2, formulation of an LPV
system is discussed. In section 3, gain-scheduled controller
based on robust model predictive is presented. The proposed
algorithm is described in section 4. In section 5, we illustrate
an implementation of the algorithm proposed in a case study
of the spherical level tank. Finally, we conclude the paper
in the last section.

II. LINEAR PARAMETER VARYING SYSTEMS

A nonlinear process can be represented as a linear
parameter varying system. The most common approach is
linearization scheduling, based on Jacobian linearization
of the process at a number of equilibrium points. Typ-
ically, the parameterization corresponds to a fixed value
of scheduling parameter. The other approach is quasi-LPV
scheduling. Quasi-LPV scheduling does not involve any
Jacobian linearization. Plant dynamics are reformulated to
conceal nonlinearities as time-varying parameters used as
scheduling parameters. A discrete-time SISO LPV system
is described as in Eq. 1.

x(k+1) = a(p(k))x(k) +b(p(k))u(k). (D

where x(k) € R is a state of the plant and u(k) € R is a control
input. A scheduling parameter p(k) is assumed to be on-line
measurable at each control iteration k. In addition, a(p(k))
and b(p(k)) are assumed to be within a polytope Q,

Q = Co{[a1,b1],[az,b2], .., [ar, bL]}- 2

Co denotes a convex hull of [aj,b;] vertex. Any
[a(p(k)),b(p(k))] being inside the polytope Q is a convex
combination of all vertices such that

L
[a(p(k)),b(p(k))] = Y pj(k)[a;,bj], 3)
L
Y pi(k)=1,0< p;(k) < 1. )

III. ROBUST MODEL PREDICTIVE GAIN-SCHEDULING

In this work, a nonlinear system formulated as a discrete-
time LPV system is taken into account. The objective is to
find a state feedback gain for a control law

u(k+i/k) = Kx(k+i/k), ®)
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that stabilises the system and achieves the minimum worst
case performance cost while satisfying input and output
constraints.

An on-line robust model predictive control for linear
time varying (LTV) systems was introduced [9]. A control
objective is to minimize an upper bound on infinite horizon
worst-case performance cost subjected to input and state
constraints. The optimization problem associated with this
controller for the problem considered is shown in Egs. 6-10.

miny (6)
Y:y.q
[ 1 x(k)
L. >0 7
(k) q}— ’ @
— 1 1
q aiqg+by 01q {2y
aiq+ by q 0 0 0
02¢ 0 y 0|77
L C%y 0 0 Y
vi=1,2,...L, 8)
M2
Hrmax y} >0,Vi=1,2,...,N, ©)
Ly g
2

Xmax  @qHDY) S oy 0L 10
_alq+bly q } — b b) 90y b ( )

where 6 > 0 is a weighting factor of state, { > 0 is a weight-
ing factor of control input. The optimization problem is
solved and the control input u(k) = yg~'x(k) is implemented

to the process.

Theorem 1: Given an initial measured state x(k), the
control law obtained by solving the associated optimization
problem shown in Eqs. 6-10 assures robust stability to
the closed-loop system while satisfying input and state
constraints.

Proof: The satisfaction of Eq. 8 for the feedback gain
K ensures that [a; + bKx(k)] ¥ ¢ '[[a; + biKx(k)] — x(k)
v x(k) < — [x(k)Ox(k) + u(k)Cu(k)], VI = 1,2, ...,L.

Thus, V (k) = x(k)yq~'x(k) is a strictly decreasing Lya-
punov function and the closed-loop system is robustly sta-
bilized by the state feedback gain K. Eq. 7 also defines
the corresponding invariant set. Any states x € S, S = {x| —
1//g <x<1/,/q} can be stabilized by this state feedback
gain. In addition, the satisfaction of Eq. 10 guarantees that
(a; +by)g " (a; +byy) < x2s VI = 1,2, ...,L. Thus, the
future states move closer to the origin, and their norms are
always lower than |xyax|. Moreover, the satisfaction of Eq. 9
ensures that yg~'y < u2_ ., and a magnitude of future control
inputs are always lower than |up.x|. Thus, the corresponding
state feedback control law u(k) = Kx(k), K = yq~', assures
robust stability to the closed-loop system. ]

IV. THE PROPOSED ALGORITHM

A. Offline computation

e Choose a sequence of states x,,,,m = 1,2, ..., mpax.
For each x,, solve the optimization problem in
Egs. 6-10 by replacing x(k) with x, in order
to obtain the corresponding state feedback gain



K, = qum . X is chosen such that S, 11 C S,,.
Where, S, = {x| —1//qm < x < 1/\/qm}, and
Smt+1 = {x| —1//Gms1 <x<1/\/qu+1}- Moreover,

for each m # mp,x, the following inequalities must
be satisfied g,,' — (a7 +b;Kp11)q," (a1 + b Kpi1) >
0,vl =1,2,...,L to assure robust stability satisfac-
tion of a convex combination between K, and K, 1.
This condition is required in Algorithm 2 of online
computation. The state feedback gains are derived
based on the minimization of upper bound of infinite
horizon worst-case performance with input output
constraints satisfaction. The corresponding invariant

set Sy = {x| —=1/\/gm < x <1/,/qm} defines the
operating region of each feedback gain K,,.

B. Online computation

At each control iteration, x(k) is measured, the smallest
invariant set S, = {x| —1/\/gm < x <1/,/qn} containing
the current state measured is determined. The state feedback
gain K (k) for the control law u(k) = K (k)x(k) is determined
by using either Algorithm 1 or Algorithm 2.

Algorithm 1: If x(k) € S,,,, Vm < mp,y, the state feedback
gain K(k) = K,, for the control law u(k)=K(k)x(k) is
implemented to the process.

Theorem 2: Given an initial measured state x(k) € Sy,
the control law provided by Algorithm 1 assures robust
stability to the closed-loop system with input and state
constraints satisfaction.

Proof: Each K, is derived based on Theorem 1, thus
we prove theorem 2 the same way as we prove theorem 1.
The satisfaction of Eq. 8 for the feedback gain K,, ensures
that [a; + biKux(K)] Y 5 [lar + biKux(k)] — x(k) Yy
x(k) < — [x (k)ex( ) + u(k)lu(k)], VI = 1,2, ...,L. Thus,
V(k) = x(k)¥mq,,'x(k) is a strictly decreasing Lyapunov
function and the closed-loop system is robustly stabilized
by the state feedback gain K,,. Moreover, the satisfaction of
Eq. 10 guarantees that (a; + by, )q, (a1 +biym) < X2, VI
= 1,2, ...,L. Thus, the future states bound between —xmax
and xpy.x. Moreover, the satisfaction of Eq. 9 ensures that
Y Ym < ., and a magnitude of future control inputs
are always lower than |upmax|. Thus, the corresponding state
feedback control law u(k) Knx(k) drive the initial state to
Sm+1 toward the origin without input and state constraints
violation.

Any initial states x(k) € S, are guaranteed that all
future states remain in S, without input and state constraints
violation. Any initial states x(k) ¢ S, lead to the future
states that violate input and output constraints for at least one
realization of the uncertainty. Thus, the corresponding state
feedback control law u(k) = K,,x(k) assures robust stability
to the closed-loop system. ]

Algorithm 2: The state feedback gain K (k) is calculated
by linear interpolation between the pre-computed state feed-
back gains K, and K, | to obtain the largest norm of state
feedback gain.

If x(k) € S, and x(k) & Syt1,Ym < mpax — 1, the state
feedback gain K(k) = A(k)K,,+(1 — A(k))K,,+1 is obtained
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by solving the optimization problem in Eqs. 11-15. The
control law u(k)=K(k)x(k) is implemented to the process.

gl(ikl;l(k) an
S.t.
L
—1/v/am < Y pilk)(a; +biK (k)x(k) < 1/\/qm, (12)
i=1
— Umax < K(k)x(k) < Umax, (13)
K(k) = A(k)Kp+ (1 —=A(k))Kni1, (14)
0<A(k)<1,i=1,2,...,N. (15)

If x(k) € S, the state feedback gain K (k) = K,,,,,, for the
control law u(k)=K(k)x(k) is implemented to the process.

Theorem 3: Given an initial measured state x(k) € Sy,
the control law provided by Algorithm 2 assures robust
stability to the closed-loop system.

Proof: As quI - (Cl[ +b1Km+l)qr;1(al +b1Km+l) >0,
Vl=1,2,...,L are satisfied, a convex combination between
Ky and Ky 1, K(k) = A (k) Ky + (1 = A (k) K1, 0 < A (k) <
1, can robustly stabilize the closed-loop system with V (k)
= x(k)Yngq,, ' x(k) which is a strictly decreasing Lyapunov
function. The satisfaction of Eq. 13 guarantees that the
control input at current time step bounds between —upn,x and
Umax- EQ. 12 defines the current invariant set associated with
K,,. The satisfaction of Eq. 12 guarantees that under given
uncertainty a one step prediction x(k + 1) remains inside
the current invariant set. Thus, the state feedback control
law u(k) = K (k)x(k) obtained from solving the optimization
problem in Egs. 11-15 assures robust stability to the closed-
loop system. ]

V. SIMULATION OF SPHERICAL LEVEL TANK

In this section, we present an example that illustrates an
implementation of the proposed algorithms. The numerical
simulations have been performed in 2.3 GHz Intel Core
i-5 with 16 GB RAM, using SDPT3[12], Gurobi[13] and
YALMIP [14] within Matlab R2011b environment.

We consider the application of our approach to the
spherical level tank as shown in Fig. 1. A radius of the
tank is 0.5 m and the outflow from the tank depends on a
liquid level as F = 1.6971v/h. The system is described by
Eq. 16.

dh _ 1.6971h°° F

ot . 16
dt th — wh? Jr7rh—fch2 (16)

Where h is a water level in the spherical tank. F; is a
water flowrate fed into the spherical tank. Let h=h—he, and
F; = F; — F; .q. Where subscript eq denotes the corresponding
variable at equilibrium condition, A,;, = 0.5 m and F; ., =
1.2 m?/hr. The objective is to regulate / to the origin by
manipulating F;. The input constraint is symmetric 0.7 <
F; < 1.7 m®/hr. In addition, symmetric output constraint
—0.45 < h <0.45 is considered. We further assume that the
maximum difference between —1.6971/(xh!'> — xh>>) and
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Fig. 1. Schematic diagram of the spherical tank.

—1.6971/ (ﬂhéf - nhgj ) is small enough to be neglected.
Also the maximum difference between 1/(wh — mh?) and
1/(mhey — nhgq) is neglected. Thus, we describe our system
in terms of deviation variables as in Eq. 17.

dh e Lo 1 o
dt ~ wh'S—7mh?3"  mh—nh? "

A7)

By rearranging Eq. 17 along all four vertices of an
uncertainty set, the solution of Eq. 16 is also the solution of
the following differential inclusion

dh & - _
- € Y pi(k)[Ah+ B F, (18)
U
p1 =AY, (19)
p2=(1-2)y, (20)
p3=A(1-7), (21)
pa=(1-1)(1-7), (22)
1.6971
= 70545 008003 - s ) 29
Y= 37081 OO ) 24
where [, Bj] = [~2.9058 1.2732], [A, Bo] = [-50.8603
1.2732], [As B3] = [-2.9058 6.7013], and [A4 B4 =

[—50.8603 6.7013]. The discrete-time model is obtained by
discretization of Eq. 18 using Euler first-order approximation
with a sampling period of 0.0005 hr.

4
h(k+1) € Y pilAih(k) + BiFi(k)],
=1

where [A] B] = [0.9985 0.0006], [A; B,] = [0.9746 0.0006],
[A3 B3] = [0.9985 0.0034], and [A4 Bs] = [0.9746 0.0034].

(25)

The wighting parameters for control input and state are
£ =0.01 and 6 = 1, respectively.

A sequence of four invariant sets with associated state
feedback gains were generated by using the following states
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TABLE 1. THE OPERATING REGION AND THE STATE FEEDBACK

GAIN ASSOCIATED.

Operating region State feedback gain

—045<h <045 —1.1111
—035<h<035 —1.4286
—025<h<0.25 —1.6157
—0.01 </ <0.01 —1.6163
045 4 ° ]
049 o o Algorithm 1
S v Algorithm 2
0.3 -
E oy
| =02 i .
: . ¢ 9
01 i 0.15 0.20
0.0
T T L T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (hr)

Fig. 2. Regulated state of the spherical tank.

h = (0.95, 0.85, 0.75, 0.51), equivalently i = (0.45, 0.35,
0.25, 0.01). Table I shows operating regions and correspond-
ing state feedback gains constructed off line.

Simulation is performed to stabilize the system from the
deviated state of & = 0.95 (h = 0.45) to the origin. The
performance of each algorithm proposed is then compared
with a conventional PI controller tuned by SIMC method
[15]. Figure 2 depicts the performance of each algorithm
in terms of regulated state (h). A profile of h obtained
by Algorithm 1 is similar to a profile of /4 resulted from
Algorithm 2. A small picture inside Fig. 2 shows responses
of each algorithm at time from O to 0.2 hr. A slight difference
between responses of Algorithm 1 and Algorithm 2 is notice.
Algorithm 2 yields a slightly faster response with lower
performance cost than Algorithm 1 because the interpolation
technique used usually provides higher norm of state feed-
back gain. Both algorithms achieve less conservative results
as compared to PI controller. Moreover, PI controller leads
to a response with overshoot resulted from an integral action,
and it requires longer time to reach the origin.

Figure 3 shows profiles of control input £; obtained from
each algorithm. A profile of F; of Algorithm 1 is also similar
to that of Algorithm 2. A difference between control input
profiles of Algorithm 1 and Algorithm 2 can be clearly seen
in a small picture inside Fig. 3. A jerking in control input
is observed in the profile of Algorithm 1 at the time from 0
to 0.15 hr. The jerking is caused by a switching of feedback
gains. We can overcome this issue by using the interpolation
technique proposed in Algorithm 2. In PI control, control
input is saturated at the time from O to 0.35 hr.

Table II shows cumulative performance costs obtained
from each Algorithm. The lowest cumulative performance
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Fig. 3. Control input of the spherical tank.
TABLE II. CUMMULATIVE PERFORMANCE COSTS
N . . . .
izt (2(1)0x(i) + u(i) Cu i)
Algorithm The cummulative performance cost
PID 6.87
Algorithm 1 5.56
Algorithm 2 5.48

cost is obtained by using Algorithm 2. In addition, both
Algorithm 1 and Algorithm 2 produce lower cumulative
performance cost than PI controller.

For both Algorithms 1 and 2, most of computational
burdens are moved off-line so an on-line computation is still
tractable. The optimization problem involved in Algorithm
2 requires solving a linear programming. In contrast, Algo-
rithm 1 does not require solving any optimization problems.

We further investigate control performance of each con-
troller in a case where setpoint changes as step from 0.5
to 0.4, 0.6, 0.4 and 0.5 m. Figures reffig:output2 and
reffig:input2 show profiles of regulated state (%) and control
input (F;), respectively. The algorithms proposed perform

0.9 1 Setpoint
b e« PI
lo o Algorithm 1
0.8 s v Algorithm 2
8
0.7 A
Eos 3
< )
H
0.5 i
04
03
T T T
0 2 4 6

Time (hr)

Fig. 4. Regulated state of the spherical tank.
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F,(m® /hr)

Fig. 5. Control input of the spherical tank.

better than PI controller.

VI. CONCLUSIONS

We have proposed a framework for robust gain-scheduled
controller targeting at nonlinear processes formulated as an
LPV system. The proposed algorithms integrate robustness
and explicit input state constraint-handling capabilities in
the controller design. Feasibility and stability can be guar-
anteed. Simulation example of a spherical level tank is used
to illustrate an applicability of the algorithms proposed.
Comparison between our algorithms and a conventional PI
controller tuned by SIMC is performed. The proposed al-
gorithms can stabilize the system while satisfying input and
state constraints, and provide a better control performance
than a conventional PI controller. Interpolation algorithm can
improve control performance while on-line computation is
still tractable.
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