
Adaptive Trajectory Control of Robot Arm Based on Smooth
Projection Adaptive Law and Nonlinear friction Compensation

Keietsu Itamiya1, Takuto Shibayama2, Ryohei Tomimura2 and Masataka Sawada3

Abstract— This paper proposes an adaptive trajectory control
method for a 2DOF planar rigid link robot arm with arbitrary
link length. The transient response can be improved by a
dynamic certainty equivalent controller with nonlinear friction
compensator and a dead zone adaptation law to be robust
to bounded friction compensation error. Also, the adaptation
law accompanies with a smooth projection algorithm which
not only confines adjustable parameters of adaptive controller
into a certain convex set to guarantee a positive definiteness of
estimated inertia matrix but also ensures the differentiability
of those. The convex set is designed by taking into account
the existence region of the parameters of the robot arm with
expected loads.

I. INTRODUCTION

An adaptive trajectory control system for a robot ma-
nipulator is well known as a powerful control system to
be robust to parameter uncertainties; for example, these are
caused by a large fluctuation of tip load, accuracy of iden-
tification experiments and so on. Various adaptive trajectory
control methods [1], [2] have been proposed. The control
law proposed by Middleton et al. [2] is superior to them
from the view point of transient response of trajectory error.
It corresponds to the current adaptive control based on a
dynamic certainty equivalent (DyCE) principle. However, the
control law requires strictly both the positive definiteness of
estimated inertia matrix and the differentiability of adjustable
controller parameter. Sawada et al. [3], [4] proposed a
smooth projection adaptation law in order to satisfy these
condition. Tomimura et al. [5], [6], [7], [8] proposed a design
method of restraining area of the adjustable parameters in
order to be able to use the adaptive law of [3], [4] to a robot
arm with any link length. Also, Shibayama et al [9] proposed
a friction direct compensation method based on a nonlinear
PI control input in a context of adaptive trajectory control
system for 2DOF planar rigid link robot arm.

In this paper, the effect of the combination of these method
will be examined. Hence, this paper proposes an adaptive
trajectory control method for a 2DOF planar rigid link robot
arm with arbitrary link length. The transient response can be
improved by a dynamic certainty equivalent controller with

1Keietsu Itamiya is with Faculty of Electrical and Electronic Engineering,
National Defense Academy, 10-20, Hashirimizu 1-Chome, Yokosuka 239-
8686, Jpapan itamiya@nda.ac.jp

2Takuto Shibayama and Ryohei Tomimura are with Electronic Engi-
neering Course, Graduate School of Science and Engineering, National
Defense Academy, 10-20, Hashirimizu 1-Chome, Yokosuka 239-8686, Japan
em51004@nda.ac.jp, em51003@nda.ac.jp

3Masataka Sawada is with Electronic Department, Air Staff Of-
fice, 5-1, Ichigaya Honmura-cho, Shjinjuku, Tokyo 162-8804, Japan
asdd1206@aso.mod.go.jp

Fig. 1. Definitions of parameters and variables in 2DOF planar rigid link
robot arm

nonlinear friction compensator and a dead zone adaptation
law to be robust to bounded friction compensation error.
Also, the adaptation law accompanies with a smooth projec-
tion algorithm which not only confines adjustable parameters
of adaptive controller into a certain convex set to guarantee
a positive definiteness of estimated inertia matrix but also
ensures the differentiability of those. The convex set is
designed by taking into account the existence region of the
parameters of the robot arm with expected loads.

II. CONTROLLED OBJECT AND PROBLEM
STATEMENT

A. Controlled Object

The controlled object considered here is a 2 degree of
freedom (2DOF) planar rigid link robot arm. The inverse
dynamics model is presented as

τ = M(ρ, q)q̈ +C(ρ, q, q̇)q̇ + φ(q̇) (1)

where τ := [τ1, τ2]
T is the torque vector, q := [q1, q2]

T, q̇
and q̈ mean the link angle vector, the link angular velocity
vector and the link angular acceleration vector, respectively.
φ(q̇) means the friction term. Also, ρ := [ρ1, ρ2, ρ3]

T is the
parameter vector which depends upon link length (l1, l2),
link mass (m1, m2), load mass ms at the tip of 2nd link,
moment of inertia (I1 I2) around center of gravity of each
link and length (r1 r2) from rotation axis to center of gravity
of each link (see Fig. 1). Then, its elements are defined as

ρ1 : = I1 + I2 +m1r
2
1 + (m2 +ms)(l

2
1 + l22) (2)

ρ2 : = I2 +m2r
2
2 +msl

2
2 (3)

ρ3 : = m2r2l1 +msl1l2 (4)

These are clearly positive constant.
Vectors M(ρ, q)q̈ and C(ρ, q, q̇)q̇ are The term on

inertia torque and the term on centripetal or Corioli’s torque,
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respectively. Then, The inertia matrix M(ρ, q) and the
matrix C(ρ, q, q̇) are defined as

M(ρ, q) :=

[
ρ1 + 2ρ3 cos q2 ρ2 + ρ3 cos q2
ρ2 + ρ3 cos q2 ρ2

]
(5)

C(ρ, q, q̇) :=

[−2ρ3q̇2 sin q2 −ρ3q̇2 sin q2
ρ3q̇1 sin q2 0

]
(6)

It is well known that M(ρ, q) is always positive definite
matrix for any q2.

The first term in right-hand side of (1) can be written as
linear representation with respect to ρ. Hence, the inverse
dynamics model can be represented as

τ = A(q, q̇, q̈)ρ+ φ(q̇) (7)

where

A(q, q̇, q̈) :=

[
q̈1 q̈2 κ1

0 q̈1 + q̈2 κ2

]
(8)

κ1 := (2q̈1 + q̈2) cos q2 − (q̇2 + 2q̇1)q̇2 sin q2 (9)

κ2 := q̈1 cos q2 + q̇21 sin q2 (10)

Assumptions 1: It is assumed that
(A1) Available signals are τ , q and q̇.
(A2) ρ is unknown but the upper bound m̄s of ms, the

following positive constants ρi0min, ρi0max (i =
1, 2, 3), ljmin and ljmax (j = 1, 2) are known a
priori;

ρi0min ≤ ρi0 ≤ ρi0max (11)
ljmin ≤ lj ≤ ljmax (12)

where ρi0 means the special parameter ρi when
ms ≡ 0.

(A3) The friction function φ(·) := [φ1(·), φ2(·)]T is
unknown but the positive constant ci (i = 1, 2)
which satisfy

|φi(q̇i)| ≤ ci · (1 + |q̇i|) (13)

are known a priori.
(A1) is a standard assumption in a trajectory control. An-
gular velocities q̇i may be obtained from difference data on
rotary encoders. (A2) is a reasonable assumption since ρ is
unknown with load change and existence intervals of ρi in
case of ms ≡ 0 (no load) can be obtained by repeating iden-
tification experiments. (A3) is also appropriate assumption
without loss of generality when ci is a conservative upper
bound (relatively large positive number) though obtaining a
sharper bound (ci is small) may be difficult.

B. Problem Statement

For a 2DOF planar rigid link robot arm, the control
objective considered here is to design a stable trajectory
control system which satisfies following properties;

(O1) It is robust to parameter uncertainties including
large fluctuation of tip load.

(O2) The influence of friction in the control system is
effectively and quickly compensated.

(O3) The transient response of trajectory error is reduced
more quckly and the steady-state trajectory error is
sufficiently small.

III. ADAPTIVE TRAJECTORY CONTROLLR

Now, we propose here the following adaptive trajectory
controller in order to achieve the control objective mentioned
above.

A. Synthesis of Control Torque

The control torque is adaptively synthesized by the dy-
namic certainty equivalent control law with nonlinear friction
direct compensator as follows;

τ =M(ρ̂, q)(q̈r −KD
˙̃q −KPq̃)

+C(ρ̂, q, q̇)q̇ + τa + τn (14)

where ρ̂ is the adjustable controller parameter which corre-
sponds to ρ, qr is a desired link angle which has second
derivative, the triplet (qr, q̇r, q̈r) is designed by a trajectory
planning and the inverse kinematics solution, q̃ means the
trajectory error q − qr, and

τa := Af
˙̂ρ− Ṁ(ρ̂, q)ef (15)

τn :=

[
τn1
τn2

]
:=

[
c1 ·(1 + |q̇1|) z1 cos z1
c2 ·(1 + |q̇2|) z2 cos z2

]
(16)

A variable with subscript f represents the filtered output.
Hence, for example, xf means the output of low pass filter
ẋf = −fxf + x where the band width f > 0 is the design
parameter.

Remark 1: It is well known that he matrix signal Af can
be realized with only q and q̇.

Remark 2: The auxiliary input τa removes the effect of
˙̂ρ from the error dynamics of control system. Therefore,
a fast adaptation can be achieved. The auxiliary input τn
plays central role in order to compensate the effect of friction
torque as possible.

Gains KP and KD are positive definite diagonal matrices
which are set so that the ideal control error equation ef :=
(¨̃q)f +KD( ˙̃q)f +KP(q̃)f = 0 gives the specified transient
response.

Then, the gain z := [z1, z2]
T is tuned as follows;

z :=βP + βI (17)

βP := ( ˙̃q)f (18)

β̇I =KPq̃f +KD( ˙̃q)f ; βI(0) = βI0 (19)

B. Error dynamics

Let x := [xT
1 , x

T
2 ]

T be

ẋ1 = −fx1 + q̃ ; x1(0) = 0 (20)

ẋ2 = −fx2 + ˙̃q ; x2(0) = 0 (21)

462



Then, according to the proposed controller, the error
dynamics of control system becomes;

ẋ =

[
O I

−KP −KD

]
x

+

[
O
I

]
M−1(ρ̂, q) {−Af ρ̃+ ξf} (22)

ż = M−1(ρ̂, q) {−Af ρ̃+ ξf} (23)

where
ξ̇f = −fξf + {τn − φ} (24)

Therefore, it can be seen from (22), (23) that x converges
to zero if ż tends to zero and also x becomes small signal
if ż goes to sufficiently small limit cycle.

Hence, the auxiliary input τn and the adaptation law
proposed in the next subsection play central role.

C. Tuning of adjustable parameter

Adjustable parameter ρ̂ and ˙̂ρ are updated by the robust
adaptation law with smooth projection algorithm and dead
zone as follows;

˙̂ρ = γ0(J
1/2) · Γ(ρ̂) ·

(
−∂J

∂ρ̂

)T

; ρ̂(0) ∈ C (25)

where

J :=
1

2

∫ t

0

e−λ(t−σ)

∥∥∥∥ τ̃f (σ) −Af (σ)ρ̂(t)

N

∥∥∥∥
2

dσ

(26)

γ0(J
1/2) :=

⎧⎨
⎩

0 (J1/2 < D)

−1 + J1/2/D (D ≤ J1/2 < 2D)
1 (J1/2 ≥ 2D)

(27)

Γ(ρ̂) := TΦ(ρ̂)TT/N0 (28)

T : =

⎡
⎣ mT

1

mT
2

mT
3

⎤
⎦
−1

(29)

Φ(ρ̂) := diag{γ1mT
1 ρ̂, γ2m

T
2 ρ̂, γ3m

T
3 ρ̂} (30)

N0 : = [ η0 + trace{ΦTΦ} ]1/2 ; η0 > 0 (31)
τ̃ := τ − τn (32)
N :=

√
η +m ; η > 0 (33)

ṁ = −μm+ μ · (‖q̇‖2 + ‖q‖2 + ‖τ‖2 + ‖τn‖2)
(34)

where γi > 0 (i = 1 ∼ 3), μ is a design parameter satisfying
0 < μ < 2f [10].

The continuous switching function γ0(J
1/2) (see Fig. 2)

functionalizes parameter update laws as a robust adaptation
law with dead zone. λ > 0 is a design constant which means
forgetting factor; it is known that the estimation become
sensitive when λ is relatively large and a relatively small
λ contributes to improve the convergence property of ρ̂. The
positive constant D is the dead zone width and it is chosen

Fig. 2. The definition of switching function γ0(J1/2)

by trial and error in advance so as to satisfy the following
inequality;

D > sup
t

ζ (35)

where

ζ :=

(∫ t

0

e−λ(t−σ)‖ξf/N‖2dσ
)1/2

(36)

The matrix Γ(ρ̂) achieves a smooth projection function
which means that adjustable parameters are constrained to
the specified convex set C and their differential values always
exist. The set C is defined as

C := {ρ̂ | Φ(ρ̂) 	 0} (37)

Parameters m1, m2 and m3 defining C are designed be-
forehand with the procedure shown in the next section.

Remark 3: The adaptation law (25) can be represented as
follows. Hence, ˙̂ρ is defined as the equation below and ρ̂ is
updated by solving numerically the differential equation;

˙̂ρ = γ0(J
1/2)Γ(ρ̂)[p−Rρ̂ ] ; ρ̂(0) ∈ C (38)

where

ṗ = −λ1p+AT
f τf/N ; p(0) = 0 (39)

Ṙ = −λ1R+AT
f Af/N ; R(0) = O (40)

IV. DESIGN OF CONVEX SET C

The estimated inertia matrix M(ρ̂, q) has to be non-
singular for guaranteeing stability of control system based on
(22) and (23). Also, M(ρ, q) is originally a positive definite
matrix and ρi > 0 (i = 1 ∼ 3). Then, the set C0 on ρ̂-space
which satisfies M(ρ̂, q) 	 0 and ρ̂i > 0 (i = 1 ∼ 3) is the
following convex set;

C0 :=

{
ρ̂

∣∣∣∣∣
(
ρ̂2
ρ̂1

− 1

2

)2

+

(
ρ̂3
ρ̂1

)2

<

(
1

2

)2

,

ρ̂1 > 0, ρ̂3 > 0

}
0 (41)

The set is shown in Fig. 3. Unfortunately, a smooth projec-
tion algorithm which constrains ρ̂ to the convex set having
a curved surface like C0 and guarantees the existence of ˙̂ρ
has not been proposed so far.

The positive gain matrix Γ(ρ̂) in (28) has the ability which
constrains ρ̂ to the convex set C and guarantees the existence
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of ˙̂ρ. C is a subset of C0 and it has a triangular pyramid
form if mi (i = 1 ∼ 3) are designed properly.

Therefore, we propose a design method to determine the
optimal mi in advance by the following procedure;

Step 1: Find the existence region Ct from prior knowledge;
ρi0min, ρi0max (i = 1 ∼ 3), ljmin, ljmax (j = 1, 2)
and m̄s.

Step 2: Search the special set C having largest Lebesgue
measure which satisfies two conditions;
(C1) Ct ⊂ C ⊂ C0

(C2) A separation distance between Ct and C is
greater than some given value

Step 3: Adopt (m1, m2, m3) corresponding to the C
selected in Step 2 as the optimal value.

Then, Ct on the normalized (ρ̂2/ρ̂1, ρ̂3/ρ̂1) plane is esti-
mated as shown in Fig. 4. The small hexagon of the lower
part in Fig. 4 means the existence region of ρ when ms ≡ 0.

Also, an example of containment relationship among Ct,
C and C0 is illustrated in Fig. 5.

V. ANALYSIS OF CONTROL SYSTEM

A. Stability

The following lemma and theorem are hold with respect
to the adaptation loop and the main feedback loop respec-
tively.

Lemma 1: (Stability of adaptation loop) The adapta-
tion loop constructed by the adaptation law satisfies the
following properties;

(P1) ρ̂(·) ∈ L∞
(P2) γ0(J

1/2(·))J1/2(·)/N0(·) ∈ L1

(P3) ˙̂ρ ∈ L2 ∩ L∞
(P4) ρ̂ converges some constant and J1/2 enters
within the dead zone D as time increases.

Proof: These properties can be derived from the fact that the
following inequality holds;

V̇ (ρ̃) ≤ −c · γ0(J1/2) · J1/2/N0 ≤ 0 (42)

Fig. 3. The convex set C0

Fig. 4. Existence region of the true value ρ based on prior knowledge on
the normalized plane

where the positive definite function V (ρ̃) and the parameter
estimation error ρ̃ are defined as

V (ρ̃(t)) =
3∑

i=1

1

γi

{
α̂i−αi ln

(
α̂i

αi

)}
(43)

ρ̃ := ρ− ρ̂ (44)

[α1, α2, α3]
T := T−1ρ (45)

[α̂1, α̂2, α̂3]
T := T−1ρ̂ (46)

and c is a positive constant which satisfies

J1/2 − ζ > c (47)

The rest can be proven in the same way as [3], [4], [10].
Q. E. D.

Theorem 1: (Stability of main loop) All variable in
the control system which consists of (1), (14) and (25)
are bounded under properties of the lemma 1 if the dead
zone can be chosen sufficiently small such that D < D∗

where D∗ is some constant depending on the property
of controlled object and it can be derived according to
the same procedure proposed in [10].

Proof: The proof is abbreviated for simplicity since it can
be done in the same manner as [3], [4], [10] . Q. E. D.

Fig. 5. Ct, C and C0
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B. Performance

In this subsection, the performance improvement mecha-
nism of the proposed control system is outlined.

From (22), q̃ and ˙̃q converges to zero while following
transient response that is specified by KP and KD if −Af ρ̃+
ξf is L2 signal. Unfortunately, q̃ and ˙̃q can never converge
to zero since −Af ρ̃+ξf does not belong to L2. However, a
better control performance may be expected if ż = −Af ρ̃+
ξf becomes small signal as time increases since x can be
regarded as the output of asymptotically stable system having
the bounded input −Af ρ̃+ ξf .

On the other hand, the adaptive loop guarantees the
convergence of ρ̃ and(∫ t

0

e−λ(t−σ)

∥∥∥∥−Af (σ)ρ̃+ ξf (σ)

N(σ)

∥∥∥∥
2

dσ

)1/2

< D (48)

after a certain large time. Therefore, a better performance
may be expected since the dead zone width D can be chosen
as a possibly small constant.
D is usually selected through trial-and-error so as to

satisfy (P4) of the Lemma 1. Hence, (35) holds if it is
satisfied. Therefore, it means that the lower limit of the
settable D depends on ζ. From the discussion above, it is
understood that small ζ (it means that ξf is small) leads to
a good control performance in a steady state. So that, in the
following, it will be shown that the presence of τn included
in the control input of the proposed method satisfies this
requirement.

Notice that

ż ≈ M−1(ρ̂, q)

⎡
⎣

c1
f
(1 + |q̇1|)

{
z1 cos z1 − φ1(q̇1)

c1·(1+|q̇1|)

}

c2
f
(1 + |q̇2|)

{
z2 cos z2 − φ2(q̇1)

c2·(1+|q̇2|)

}
⎤
⎦

(49)
if Af ρ̃ is sufficiently small according to the adaptation law

and f is relatively large.
Therefore, further roughly speaking, it may be considered

that the solution of (zi, żi) has similar dynamics to the
following;

żi = k ·
{
zi cos zi − φi(q̇i)

ci · (1 + |q̇i|)
}

; k > 0 (50)

Also, Note ∣∣∣∣ φi(q̇i)

ci · (1 + |q̇i|)
∣∣∣∣ ≤ 1

and The form of zi cos zi − φi(q̇i)
ci·(1+|q̇i|) with

φi(q̇i)/ci · (1 + |q̇i|) = −0.7 is illustrated by Fig. 6.
Indeed, under certain conditions, (‖z‖, ‖ż‖) in a numerical
example has been obtained as Fig. 7. Therefore, a better
performance of the proposed control system is expected.

An example is illustrated in Fig.
reffig:trajectory1 and Fig. 9 when the proposed controller
is used and friction exists. On the other hand, the corre-
spoding example is also shown in Fig. 10 when any friction
compensation is not applied.

-10 -5 0 5 10
-10

-5

0

5

10

Fig. 6. Characteristics of zi cos zi and φi(qi)/ci(1 + |q̇i|)

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35
0

0.01
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0.05
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0.07

Fig. 7. Phase plane trajectory of ‖ż‖ and ‖z‖

VI. CONCLUSIONS

This paper proposes an adaptive trajectory control method
for a 2DOF planar rigid link robot arm with arbitrary link
length. The transient response can be improved by a dy-
namic certainty equivalent controller with nonlinear friction
compensator and a dead zone adaptation law to be robust
to bounded friction compensation error. Also, the adaptation
law accompanies with a smooth projection algorithm which
not only confines adjustable parameters of adaptive controller
into a certain convex set to guarantee a positive definiteness
of estimated inertia matrix but also ensures the differentia-
bility of those. The convex set is designed by taking into
account the existence region of the parameters of the robot
arm with expected loads.

0.25 0.3 0.35
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x[m]

y
[m

]

Fig. 8. Tip trajectory (line) and desired trajectory (dashed line) when
nonlinear PI control input is used and the angular velocity is π[rad/s]
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Fig. 9. Error norm of Tip trajectory and desired trajectory when nonlinear
PI control input is used and the angular velocity is π[rad/s]
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Fig. 10. Tip trajectory (line) and desired trajectory (dashed line) when a
friction compensation is not used
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