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Abstract—Biomechanical modeling of the musculoskeletal 

system has become an important issue in human motion analysis. 

The scope of this paper is focused on the optimization of long 

jump landing using musculoskeletal system. In the long jump, 

athletes are affected by the dynamics of the sand pit that is 

different from a hard surface in the landing phase. Therefore, in 

order to obtain a good landing motion, it is necessary to analyze 

the dynamics of the sand and athlete simultaneously. The aim of 

this study is to obtain an optimal landing motion in the long 

jump by Multi-Objective Genetic Algorithm using a long jump 

model. This simulation model is composed of two elements, 

which are a musculoskeletal model and a landing pit model. The 

human body model is based on a multi body model containing 

eight rigid links and nineteen Hill-type muscles. The sand pit is 

modeled as particles assembly. Generally, it is very 

time-consuming to calculate an optimal motion and a particle 

calculation. Here, this paper proposed a floating sand pit model 

which is suited to the optimization of the landing motion. As 

examples, we performed two optimization problems which have 

different objective functions, and compared with each other. 

I. INTRODUCTION 

Computational approaches using musculoskeletal models 
are used to study human movement and performance in lately 
[1]-[4]. Constructing a musculoskeletal model requires 
several different scientific disciplines, including 
biomechanics, anatomy, multi-body dynamics and computer 
science, among others. In particular, a forward dynamics 
simulation is needed to generate a dynamic human motion. 
The aim of this study is to create an optimal dynamic human 
motion in sports and exercise using the musculoskeletal 
system. From a sports performance point of view, movement 
optimization is of great interest to athletes, coaches, 
researchers and doctors. The scope of this paper is focused on 
the optimization of long jump landing motion. 

The long jump has been a popular track and field event 
since the Ancient Greece Olympics. Athletes run up to a 
take-off board and without going past it jump as far as they 
can into a landing pit. The long jump is a dynamic event that 
comprises of the following four phases: approach run up, 
take-off, flight through the air, landing. Several studies have 
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reported that approach velocity is highly related to 
performance [5], [6]. These studies have focused on approach 
and take-off phases in the long jump. However, in order to 
achieve the greatest jump distance, athletes should perform an 
optimal motion during flight and landing phases in addition to 
approach and take-off phases. To avoid injury in the landing 
phase, the landing area is filled sand that remain lose and give 
way easily during landing. Therefore, athletes are affected by 
the dynamics of the sand that is different from a hard surface. 
In order to obtain a good landing motion in the simulation, it is 
necessary to analyze the dynamics of the sand and athletes 
simultaneously. Little has been reported on the creating an 
optimal motion considering the effect of sand dynamics in the 
landing phase. 

The purpose of this paper is to obtain the optimal landing 
motion in the long jump by modeling a human body and a sand 
pit, and simulate it coupling the human model and the sand pit 
model. The human body was modeled as a system of rigid 
bodies including muscle models to simulate the forward 
dynamics, and the sand pit was modeled as particles assembly 
using the discrete element method (DEM). Regarding the 
optimization of human motions using these models, DEM 
simulation are very time-consuming. Thus, this paper 
proposes the floating sand pit model which is suited to the 
optimization of the landing motion in the long jump. As 
examples of the long jump simulation using these models, we 
performed two optimization problems which have different 
objective functions. One of two optimization problem 
evaluated axial joint forces in addition to objective functions 
used by other problem. Two different optimal motions were 
presented and axial joint contact forces were compared with 
each other. 

II. MUSCULOSKELETAL MODEL 

A. Rigid body dynamics 

The human body using in this study is modeled as a system 
of rigid bodies in the xy-plane. The model consists of eight 
rigid links and seven joints. The eight links represent the 
following eight body segments: the arm, the forearm, the hand, 
the upper body, the thigh, the shank, the foot and the toe. 

The equation of motion for the entire body is the sum of 
the equations for each segment. A constraint on the positions 

of rigid bodies is represented by a constraint function (q,t). 
This constraint is the function of the time and the position 
vector q. Position constraints can be divided into equality 
constraints (e.g., two bodies are connected by the joint). The 
constraint equation in this system is written as: 

 0),( tqΦ  (1) 
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This equation is differentiated twice in order to introduce the 
accelerations: 
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where J is the constraint Jacobian matrix. The total force 
acting on the system is the sum of the external forces Q

A
 and 

the constraint forces J
T
 . Here, is the coefficient vector 

whose components are called Lagrange multipliers. 
Combining the Newton-Euler equations with the constraint 
equations, we get the following differential algebraic 
equations 
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which we can solve for the acceleration and the Lagrange 

multipliers. Here, M is the mass-matrix and is the additional 
term in the acceleration constraint that depends on the 
velocities. This equation was solved with a forth order 
Runge-Kutta numerical integration. However, it is 
well-known that this method has mild instabilities and drift 
problems, and consequently stabilization techniques have 
been proposed. In contrast to (2), Baumgarte proposed the 
modified function N that is defined to be 

 02 2  ΦΦΦN    (4) 

where  and are constants to begin with [7]. The new 

constraint (4) is analytically equivalent to Φ =0. In this study, 
we utilized Baumgarte’s technique to solve the stability 
problem for the numerical integration of constrained rigid 
body system. 

The joints themselves exhibit resistance to movement 
because of the properties of cartilage and the shapes of the 
contacting articular surfaces. Conventionally, the joint passive 
resistance is modeled as an elastic element as spring and a 
viscous element like a rotary damper [8]. The viscous 
resistance effects constantly during a motion. The elastic 
resistance effects largely at the limit of range of motion of a 
joint. These two resistances can be expressed as follows: 
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where p is the joint passive resistance, θ is the joint angle, θlim 
is the joint limit, k is the spring constant and c is the damping 
coefficient. 

B. Muscle model 

In this study, we utilized the muscle-like elastic actuators 
for a model based on the Hill-Stroeve muscle model [9], [10] 
which is a simplified version of the model of Winters and 
Stark [11]. For the purpose of modeling the muscle, 
algorithms refer to the force-length, and force velocity curves 
of the muscle. Figure 1 shows the musculoskeletal model of 
the entire body. This model consists of 19 muscle models and 
the above-mentioned rigid bodies. The muscle included in the 
model were the DLTc (anterior deltoid), BIC (biceps), BRA 

(brachialis), ECRl (extensor carpi radialis longus), DLTs 
(posterior deltoid), TRI (triceps), ANC (anconeus), FCR 
(flexor carpi radialis), IL (iliacus, psoas), RF (rectus femoris), 
VAS (vasti), TA (tibialis anterior), EXTDG (extensor 
digitorum longus, extensor halluces longus), GLM (gluteus 
maximus), HAM (medial hamstrings, biceps femoris long 
head), BFs (biceps femoris long head), GAS (gastrocnemius), 
SO (soleus) and FLXDG (flexor digitorum longus, flexor 
halluces longus).  

Muscle force depends on the muscle length, velocity and 
activation; therefore, muscle force f is a function of muscle 

length l (= l(t)), muscle velocity  l  (= dl / dt) and activation a, 

such that: 

 max)()(),,( FlFlFallaf cevcecelce    (6) 

where Flce, Fvce, Fmax, lce (= lce(t)) and l ce (= dlce / dt) is the 

force-length relation, the force-velocity relation, the 
maximum isometric force, the length of contractile element 
and the contractile element velocity, respectively. The length 
and velocity of the muscle are given by: 
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with lr the rest length and rij the moment arm. The parameters 
rij specify the moment arms of muscle i (i = 1, ... ,19) with 
respect to joint j (j = 1, ... ,7). The rest positions of the joints 
(where passive torque is zero) is denoted θrj. The net joint 
torques exerted by the muscle are: 
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The moment arm values were determined by data provided 
by Meek [12] and Yamazaki [13]. The maximum isometric 
force was calculated from measured physiological 
cross-sectional area (PCSA) and a specific tension of 61 
N/cm

2
 for all muscles [14]-[16]. Figure 2 shows the schematic 

diagram of the musculoskeletal system. The muscle activation 
a is obtained by the optimization. The calculated muscle force 
is converted to the net joint torques, and then the joint torques 
and the joint passive resistances are inputted into the system of 
the rigid bodies. In short, the muscle activations generate the 
movement of each joint through several functions. 

III. SAND PIT MODEL 

A. Discrete Element Method 

The sand pit is modeled as particles assembly using the 
discrete element method. DEM was introduced by Candall 
[17] for the analysis of rock mechanics problems and is being 
increasingly used to simulate the mechanical behavior of 
granular materials [18]. This method can describe the 
dynamics of individual particles. The model is composed of 
discrete particles that displace independent of one another, 
and interact only at contacts or interfaces between the 
particles. The particles collision model consists of several 
forces, including a spring force which forces the particle apart, 
and a dashpot force which causes damping. The motion of the 
particles is calculated by solving the Newton-Euler equations. 
In this study, the musculoskeletal model and this sand pit 
model were coupled together to solve the optimization 
problem of the long jump landing motion. 

B.  Floating sand pit model 

Generally, DEM simulation is very time-consuming. The 
simulation time mainly depends on the critical time step and 
the particle number. Considering the long jump landing pit, 
particles are distributed over a large area. But in reality, to 
simulate this area using DEM would involve so many 
calculations that it is not considered practical. Therefore, in 
order effectively to perform the optimization regarding the 
landing motion, it is necessary to reduce calculation cost for 
DEM simulation. Here, this paper proposes the floating sand 
pit model which is suited to the optimization using DEM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

simulation. The most attractive feature of this model is that it 

is not necessary to simulate the whole landing area, which 

reduces significantly the computational burden. Concerning 

the optimization of the landing motion, to calculate the 

specific area which is the neighborhood of the landing point is 

enough for it because analyzing the behavior of all sand 

particles is not important for motion optimization. This 

specific area is sequentially moved from backward place to 

forward place in accordance with the movements of the 

human model to prevent an increase of the number of particles. 

This means that the particle number is maintained constant 

during the landing simulation.  

Figure 3 shows particles behavior by coupled simulation 

of the human model and the proposed floating sand pit model. 

The yellow particle represents a fast particle. This simulation 

started with the following some initial conditions; the human 

position was the origin, the horizontal velocity was 8.53 m/s, 

the vertical velocity was 3.52 m/s and muscle activations were 

set to zero over the simulation. It also confirmed that the 

coupled simulation considering the interaction between the 

human model and the sand pit model was achieved, and 

particles were moved from backward place to forward place. 

Rigid Body Dynamics Integr. Integr. 

Moment Arm 

Maximum Isometric 

Force 

a(t) 

Fmax 

f(t) (t) x,y, 
.. 

. 

.. .. 
x,y, 
. . . 

x,y, 

Flce(t) 

Fvce(t) 

Force-Length Relation 

Force-Velocity Relation 

Joint Passive Resistance 

l(t) 

l(t) 
. 

r 

Muscle Activation 

p(t) 

Figure 3.  Coupled simulation using floating sand pit model. 

Figure 2.  Schematic diagram of forward dynamics simulation using musculoskeletal system. 
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IV. OPTIMIZATION OF LANDING MOTION 

A. Multi-Objective Genetic Algorithm 

Genetic Algorithms are search algorithms inspired by the 
mechanics of genetics and natural selection [19], [20]. These 
algorithms are a versatile tool, which can be applied to solve 
several complex optimization problems, because they are easy 
to implement to non-differentiable functions and discrete 
search. Regarding multi-objective optimization, several 
multi-objective genetic algorithms have been proposed in 
recent years [21]-[25]. In particular, Improving the Strength 
Pareto Evolutionary Algorithm (SPEA2) proposed by Zizler 
[26] has been reported to perform well in searching. SPEA2 is 
the improved algorithm of SPEA (Strength Pareto 
Evolutionary Algorithm) [27], which uses a regular population 
and an archive. The overall algorithm is as follows [26]: 

Step 1:  Initialization: Generate an initial population P0 and 
create the empty archive A0. 

Step 2:  Fitness assignment: Calculate fitness values of 
individuals in Pt and At. (t is number of iteration) 

Step 3:  Environmental selection: Copy all nondoninated 
individuals in Pt and At to At+1. If size of At+1 exceeds 
archive size then reduce At+1 by means of the 
truncation operator, otherwise if size of At+1 is less 
than archive size then fill At+1 with dominated 
individuals in Pt and At. 

Step 4:  Termination: If T ≤ t or another stopping criterion is 
satisfied then set nondoninated individuals to the set 
of decision vectors. Stop. (T is maximum number of 
generations). 

Step 5:  Mating selection: Perform binary tournament 
selection with replacement on At+1 in order to fill the 
mating pool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6:  Variation: Apply recombination and mutation 
operators to the mating pool and set At+1 to the 
resulting population. Increment generation counter 
and go to Step 2. 

In contrast to SPEA, SPEA2 uses a fine-grained fitness 
assignment strategy which incorporates density information. 
In this paper, SPEA2 was used to search optimal design 
variables which are human parameters in the long jump 
landing. The design variables of the optimization problem are 
the muscle activations, which are plotted at 7 points per one 
muscle from 0 to 1.2 seconds at 0.2-second intervals. Thus, the 
number of design variables is 133. An interval between two 
points is interpolated using cubic spline interpolation. 
Individuals are represented as bit strings, where each bit 
corresponds to one decision variable. Each control point is 
represented by 10 bits; therefore, one individual has 1330 
bit-length. The population size and end generation were set to 
30 and 200. Recombination of two individuals is performed 
by two-point crossover. Point mutations are used where each 
bit is flipped with a probability of 0.02. In this section, we’ll 
show two optimization results as examples, which are 
evaluated different objective functions.  

B. Result of evaluating two objective functions (case: 1) 

Two objective functions were considered in this 
optimization. The first objective function J1 was set to 
maximize the jumping distance from a take-off board because 
the objective of the long jumping is to try and jump as far as 
possible. The second objective function J2 was set to minimize 
the sum of squares of the muscle activations to solve the 
problem of multi-muscle and joint redundancy. It can be 
formulated as follows: 

 dta
t

J
f

t

t

i

i

f
 




0

19

1

2

2

1
 (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landing point 

Time  0.75 [sec] 0.80 [sec] 0.85 [sec] 0.90 [sec] 0.95 [sec] 1.00 [sec] 

Figure 5.  Optimal landing motion evaluated three objective functions at 200 generation (case: 2). 

Figure 4.  Optimal landing motion evaluated two objective functions at 200 generation (case: 1). 
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where tf is the evaluation time. This simulation started with the 
same initial conditions as section III-B. Figure 4 shows the 
optimal landing motion at 200 generation in this simulation 
(case: 1). The vertical dotted line indicates the landing point in 
this jumping. In fig. 4, it was observed that the upper body was 
leaning forward in the landing phase. This trend can be seen 
particularly in weaker athletes and female athletes. After 0.76 
seconds from simulation start, the human model landed in the 
sand pit. 

C. Result of evaluating three objective functions (case: 2) 

In addition to objective functions used by case: 1, one 
another objective function was considered in this optimization. 
The third objective function J3 was set to minimize the 
maximal axial joint contact force to prevent the excessive load 
on joints in the landing phase. Figure 5 shows the optimal 
landing motion at 200 generation in this simulation (case: 2). 
It was observed that the hip was grounded at the end of the 
landing different from the result shown in fig. 4. Here, the 
human model landed in the sand pit after 0.80 seconds. 

D. Discussion 

Figure 6 shows typical muscle activations of the lower 
extremity in case: 1. In the landing phase, after 0.76 seconds 
from simulation start, typical muscles were activated slightly 
except the HAM. The VAS was activated and increased 
quickly, and the HAM was increased gradually thereafter. 
Thus, the human model was able to raise the upper body by 
activating the HAM constantly during the landing phase. 
Activating the VAS after the landing means that the human 
model kept the knee straight during landing phase. It seems 
that the knee joint was loaded the excessive load. On the other 
hand, other muscles were activated to produce coordinated 
contractions. Figure 7 shows typical muscle activations of the 
lower extremity in case: 2. In contrast to case: 1, the HAM was 
activated slightly during the landing phase. The VAS, RF and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IL were activated rather than case: 1 at an earlier landing 
phase. It is suspected that the flight time was prolonged by 
activating these muscles to jump as far as possible. In the 
landing phase, the BFs and GAS activations were increased. It 
seems that an impact on the knee joint was relieved by 
bending the knee joint.  

 Figure 8 shows two different optimization results which 
are axial joint forces of the lower extremity over the long jump 
simulation. As shown in fig. 8a, axial joint forces had two 
major peaks during the landing phase, and had a higher peak 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.  Typical optimized muscle activation signals in lower extremity 

over long jump simulation in case: 1. 
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Figure 8.  Axial joint contact forces in lower extremity over long jump 

simulation . 
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Figure 7.  Typical optimized muscle activation signals in lower extremity 

over long jump simulation in case: 2. 
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value than case: 2 (fig. 8b). It confirmed that the cause of 
reducing axial joint contact forces is owing to slightly bending 
the knee on the landing time. To evaluate axial joint contact 
forces, we obtained the optimal landing motion to avoid injury. 

V. CONCLUSION 

In this work, we introduced the long jump model for the 
optimal landing motion. This simulation model comprises the 
human body model including 19 muscles, and the sand pit 
model which is suited to the optimization. As examples of the 
long jump simulation using this model, two different 
optimization problems regarding the long jump landing was 
solved with SPEA2. The results indicate that owing to slightly 
bending the knee on the landing, a competitor can prevent 
excess loads on lower extremity joints. 

This simulation model can be applied to different 
situations in the long jump landing. As an example, we can 
perform the optimization that is assumed using the wet sand 
pit in rain weather by changing the parameters of the sand pit 
model. 
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