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Abstract— Detection of causality is an important and chal-
lenging problem in root cause and hazard propagation analysis.
A new information theory-based measure, transfer 0-entropy,
is proposed for causality analysis on the basis of the definitions
of 0-entropy and 0-information without assuming a probability
space. For the cases of more than two variables, a direct transfer
0-entropy concept is presented to detect whether there is a direct
information and/or material flow pathway from one variable to
another. Estimation methods for the transfer 0-entropy and the
direct transfer 0-entropy are addressed. The effectiveness of the
proposed method is illustrated by two numerical examples and
one experimental case study.

I. I NTRODUCTION

In a large-scale complex system, a simple fault may easily
propagate along information and material flow pathways and
affect other parts of the system because of the high degree
of interconnections among different parts in the system.
To determine the root cause(s) of certain abnormality, it is
important to capture the process connectivity and find the
connecting pathways.

Causality analysis provides an effective way to capture
the process connectivity since a causal map can represent
the direction of information and/or material propagation
pathways [1]. The basic idea of causality can be traced back
to Wiener [2] who developed a mathematical definition for
causality: Given two random variablesX andY , X could be
termed to ‘cause’Y if the predictability ofY is improved by
incorporating information aboutX . Granger [3] adapted this
definition into the experimental practice, namely, analysis of
data observed in consecutive time series. He formalized the
prediction idea in the context of linear regression models [3]:
X is said to have a causal influence onY if the variance
of the autoregressive prediction error ofY at the present
time is reduced by inclusion of past measurements ofX .
From the definition, we can see that the flow of time is
a key point in causality analysis. Therefore, the interaction
discovered by causality detection may be unidirectional or
bidirectional. This directional interaction is the major differ-
ence between causal influence and relations reflected by the
symmetric measures such as ordinary coherence and mutual
information.
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Inspired by Granger’s work, many advanced techniques for
causality detection have been proposed, such as the extended
and nonlinear Granger causality [4], predictability improve-
ment [5,6], nearest neighbors [7], and transfer entropy (TE)
[8–10]. It has been pointed out that TE is a very useful tool
in quantifying directional causal influence for both linear and
nonlinear relationships [11–13].

TE was initially based on the key concept of Shannon’s en-
tropy which is defined stochastically as the averaged number
of bits needed to optimally encode a source data setX with
the source probability distributionP (X) [14]. Shannon’s
entropy represents the average unpredictability in a random
variable. In other words, it is a measure of the uncertainty
associated with a random variable. For a discrete-valued
random variableX , assumeX hasn outcomes{x1, . . . , xn},
Shannon entropy is defined as [14]

H(X) = −

n
∑

i=1

p(xi) log p(xi),

where p(xi) denotes the probability mass function of the
outcomexi, the base of the logarithm is 2, and the unit is
in bits.

One reason for the definition of Shannon’s entropy is that
random variables in communication systems are generally
prone to electronic circuit noises, which obey physical laws
yielding well-defined distributions. In contrast, in industrial
processes that contain a lot of mechanical and chemical
components, the dominant disturbances may not follow a
well-defined probability distribution since they may not
necessarily arise from circuit noise [15]. Consequently, in
process control, disturbances and uncertainties are sometimes
treated as bounded unknowns or signals without a priori
statistical structure.

One natural question to ask is: without assuming a prob-
ability space, is it possible to construct a useful analogue
of the stochastic concept of the Shannon’s entropy? Hartley
entropy or 0-entropyH0 [16] for discrete variables, and
Rényi differential 0th-order entropy or Ŕenyi differential 0-
entropyh0 [17] for continuous variables provide an answer
to this question. If a random variable has a known range
but an unknown distribution, then its uncertainty can be
quantified by the logarithm of the cardinality (H0) or the
logarithm of the Lebesgue measure of its support (h0).
Another natural question is: without assuming a probability
space, is it possible to construct a useful analogue of the TE
for causality detection? This study is an attempt to provide
an answer to this question.

The main contribution of this paper is a new information
theory method to detect causal relationships between process



variables of linear or non-linear multivariate systems without
assuming a probability space. The basic idea of this causality
detection method was inspired by the concepts of the 0-
entropy and 0-information described in [15] by Nair.

II. D ETECTION OFCAUSALITY AND DIRECT CAUSALITY

In this section, a transfer 0-entropy (T0E) concept based
on 0-entropy and 0-information is proposed to detect causali-
ty between two variables. In addition to this, direct transfer 0-
entropy (DT0E) is proposed to detect whether there is direct
causal influence from one variable to another.

A. Preliminaries

Before introducing the concept of the T0E, we describe
the non-probabilistic formulations of range, 0-entropy, and
0-information.

A random variableY can be considered as a mapping from
an underlying sample spaceΩ to a setY of interest. Each
sampleω ∈ Ω can give rise to a realizationY (ω) denoted
by y ∈ Y. Then the marginal range ofY is defined as [15]

[[Y ]] = {Y (ω) : ω ∈ Ω}, (1)

where {·} indicates a set. Given another random variable
X taking values inX, the conditional range ofY given
X(ω) = x is defined as

[[Y |x]] = {Y (ω) : X(ω) = x, ω ∈ Ω}. (2)

The relationship between the marginal range ofY and its
conditional range givenX(ω) = x satisfies that

⋃

x∈[[X]]

[[Y |x]] = [[Y ]]. (3)

The joint range ofY andX is defined as

[[Y,X ]] = {(Y (ω), X(ω)) : ω ∈ Ω}. (4)

The joint range is determined by the conditional and marginal
ranges as follows:

[[Y,X ]] =
⋃

x∈[[X]]

[[Y |x]]× {x}, (5)

where× represents the Cartesian product.
Variables Y and X are said to be unrelated iff the

conditional range satisfies[[Y |x]] = [[Y ]], wherex ∈ [[X ]].
Given another random variableZ taken values inZ, variables
Y and X are said to be unrelated conditional onZ iff
[[Y |x, z]] = [[Y |z]], where(x, z) ∈ [[X,Z]] [15].

For example, Fig. 1(a) illustrates the case of two related
variablesY and X . For a certain valuex ∈ [[X ]], the
conditional range[[Y |x]] is strictly contained in the marginal
range[[Y ]]. Note that in this case the joint range[[Y,X ]] is also
strictly contained in the Cartesian product of marginal ranges,
namely,[[Y ]]× [[X ]]. Fig. 1(b) shows the ranges whenY and
X are unrelated. For anyx ∈ [[X ]], the conditional range
[[Y |x]] coincides with the marginal range[[Y ]]. Moreover, the
joint range[[Y,X ]] coincides with[[Y ]]× [[X ]].
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Fig. 1. Examples of marginal, conditional, and joint rangesfor related and
unrelated random variables (adapted from [15]). (a)Y andX are related;
(b) Y andX are unrelated.

Let | · | denote set cardinality andµ denote the Lebesgue
measure. A functionφ([[Y ]]) is defined as

φ([[Y ]]) =

{

|[[Y ]]| for discrete-valuedY,

µ[[Y ]] for continuous-valuedY,
(6)

where|[[Y ]]| indicates the set size of[[Y ]] for discrete-valued
Y , andµ[[Y ]] can be understood as the length of the range
[[Y ]] for continuous-valuedY . The uncertainty associated
with Y can be captured by the (marginal) 0-entropy defined
as

H0(Y ) = logφ([[Y ]]), (7)

where the base of the logarithm is 2 and the unit ofH0 is
in bits. Note that ifY is a discrete-valued random variable,
thenH0(Y ) represents the (marginal) Hartley entropy or 0-
entropy [16] satisfyingH0(Y ) ∈ [0,∞); if X is continuous-
valued, thenH0(Y ) indicates the (marginal) Ŕenyi differen-
tial 0-entropy [17] which satisfiesH0(Y ) ∈ (−∞,∞).

A worst-case approach is taken to define the conditional
0-entropy ofY givenX as follows [15,18]:

H0(Y |X) = ess sup
x∈[[X]]

logφ([[Y |x]]), (8)

where esssup represents the essential supremum.H0(Y |X)
can be understood as a measurement of the uncertainty that
remains inY afterX is known.

In order to measure the information aboutY gained from
X , a non-probabilistic 0-information metric,I0, from X to
Y is defined as follows[15,18]:

I0(Y ;X) = H0(Y )−H0(Y |X) = ess inf
x∈[[X]]

log(
φ([[Y ]])

φ([[Y |x]])
),

(9)
where essinf represents the essential infimum. From the

definition, we can see that the 0-information is the worst case
log-ratio of the prior to the posterior range set sizes/lengths,
and it can be shown thatI0(Y ;X) is always non-negative.
I0(Y ;X) represents the reduction in uncertainty aboutY

afterX is known; thus, it can be understood as the informa-
tion aboutY provided byX . Note that the definition of the
0-information is asymmetric, that is,I0(Y ;X) 6= I0(X ;Y ).

B. Transfer 0-entropy

The concept of 0-information provides an effective way to
measure the information aboutY provided byX . However,



the time flow information is not considered in this definition.
Since the time flow information is an important component
in causality detection, 0-information cannot be directly used
for causality analysis. To incorporate this we propose a
transfer 0-entropy concept for causality detection based on
the concept of 0-information.

Before introducing the concept of transfer 0-entropy, a
conditional 0-information fromX to Y given Z is defined
as follows:

I0(Y ;X |Z) = H0(Y |Z)−H0(Y |X,Z), (10)

where H0(Y |Z) and H0(Y |X,Z) denote conditional 0-
entropies defined in (8). The conditional 0-information mea-
sures the information aboutY provided byX when Z is
given.

Now consider two random variablesX and Y with
marginal ranges[[X ]] and [[Y ]] and joint range[[X,Y ]], let
them be sampled at time instanti to get Xi and Yi with
i = 1, 2, . . . , N , whereN is the number of samples.

Let Yi+h denote the value ofY at time instanti + h,
that is, h steps in the future fromi, and h is referred to
as the prediction horizon;Y(k)

i = [Yi, Yi−τ , . . . , Yi−(k−1)τ ]

and X
(l)
i = [Xi, Xi−τ , . . . , Xi−(l−1)τ ] denote embedding

vectors with elements from the past values ofY and X ,
respectively (k andl are the embedding dimensions ofY and
X , respectively);τ is the time interval that allows the scaling
in time of the embedded vector, which can be set to beτ = h

as a rule of thumb [9]. Lety(k)
i = [yi, yi−τ , . . . , yi−(k−1)τ ]

and x
(l)
i = [xi, xi−τ , . . . , xi−(l−1)τ ] denote realizations of

Y
(k)
i andX

(l)
i , respectively. Thus[[Yi+h|x

(l)
i ,y

(k)
i ]] denotes

the conditional range ofYi+h givenX(k)
i = x

(l)
i andY(k)

i =

y
(k)
i , and[[Yi+h|y

(k)
i ]] denotes the conditional range ofYi+h

givenY
(k)
i = y

(k)
i . The transfer 0-entropy (T0E) fromX to

Y is then defined as follows:

T
0
X→Y

= I0(Yi+h;X
(l)
i |Y

(k)
i ) (11)

= H0(Yi+h|Y
(k)
i )−H0(Yi+h|X

(l)
i ,Y

(k)
i ) (12)

= ess sup
y
(k)
i

∈[[Y
(k)
i

]]

log φ([[Yi+h|y
(k)
i ]])

−ess sup
(x

(l)
i

,y
(k)
i

)∈[[X
(l)
i

,Y
(k)
i

]]

log φ([[Yi+h|x
(l)
i ,y

(k)
i ]])

= log

ess sup
y
(k)
i

∈[[Y
(k)
i

]]

φ([[Yi+h|y
(k)
i ]])

ess sup
(x

(l)
i

,y
(k)
i

)∈[[X
(l)
i

,Y
(k)
i

]]

φ([[Yi+h|x
(l)
i ,y

(k)
i ]])

, (13)

where [[X
(l)
i ,Y

(k)
i ]] denotes the joint range ofX(k)

i and
Y

(k)
i ; [[Y(k)

i ]] denotes the joint range ofY(k)
i .

Since
⋃

x
(l)
i

∈[[X
(l)
i

]]
[[Yi+h|x

(l)
i ,y

(k)
i ]] = [[Yi+h|y

(k)
i ]], we

obtain that [[Yi+h|x
(l)
i ,y

(k)
i ]] is contained in[[Yi+h|y

(k)
i ]];

thus, the T0E is always non-negative. From the definition,
we can see that the T0E fromx to y is the conditional
0-information defined in (10). It measures the information
transferred fromX to Y given the past information ofY .
In other words, the T0E represents the information about a

future observation of variableY obtained from simultaneous
observations of past values of bothX andY , after discarding
information about the future ofY obtained from past values
of X alone. It is obvious that if T0E is greater than zero,
then there is causality fromX to Y ; otherwise, there is no
causal influence fromX to Y .

From the definition of T0E shown in (13), we can see that
the T0E is only related to ranges of the random variables
and is independent of their probability distributions. Thus,
we do not require a well-defined probability distribution of
the data set. This means that the collected sampled data does
not need to be stationary, which is a basic assumption for
the traditional transfer entropy method.

C. Direct transfer 0-entropy

The T0E measures the amount of information transferred
from one variableX to another variableY . This extracted
transfer information represents the total causal influencefrom
X to Y . It is difficult to distinguish whether this influence is
along a direct pathway without any intermediate variables or
indirect pathways through some intermediate variables [12].

In order to detect whether there is direct causality fromX

to Y or the causality is indirect through some intermediate
variables, a direct transfer 0-entropy (DT0E) fromX to
Y with intermediate variablesZ1, Z2, . . . , Zq is defined
in (14) whereZ(sj)

j,ij
= [Zj,ij , Zj,ij−τj , . . . , Zj,ij−(sj−1)τj ]

denotes the embedding vector with elements from the
past values ofZj for j = 1, . . . , q; z

(sj)
j,ij

denotes a

realization of Z(sj)
j,ij

; and (x
(l)
i ,y

(k)
i , z

(s1)
1,i1

, . . . , z
(sq)
q,iq

) ∈

[[X
(l)
i ,Y

(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq

]]. Note that the intermediate
variables are chosen based on calculation results from the
T0E [12]. Parameterss1, . . . , sq, i1, . . . , iq andτ1, . . . , τq in
(14) are determined by the corresponding calculations of the
T0E fromZ1, . . . , Zq to Y .

III. C ALCULATION METHOD

In this section, the calculation method for T0E and DT0E
is proposed. A method for determination of the confidence
levels of T0E is also addressed.

A. Range estimation

From the definition in (13), we can see that a key to T0E
estimation is to estimate the joint and conditional ranges.
For discrete-valued random variables, joint and conditional
ranges can be estimated by finding all possible realizations
of the variables. For example,[[X(l)

i ,Y
(k)
i ]] can be obtained

by finding all possible realization sets of(X(l)
i ,Y

(k)
i ); and

[[Yi+h|y
(k)
i ]] can be obtained by finding all possible realiza-

tions ofYi+h givenY
(k)
i = y

(k)
i , andφ([[Yi+h|y

(k)
i ]]) is the

count of these realizations. For continuous-valued random
variables, the estimation of ranges are not as straightforward
as the discrete-valued random variables since the realiza-
tion sets of the continuous-valued random variables are not
countable any more. Unfortunately, since most sampled data
obtained from industrial processes are continuous-valued, we



D0
X→Y = I0(Yi+h;X

(l)
i |Y

(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq

)

= H0(Yi+h|Y
(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq

)−H0(Yi+h|X
(l)
i ,Y

(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq

)

= log

ess sup
(y

(k)
i

,z
(s1)
1,i1

,...,z
(sq)

q,iq
)

φ([[Yi+h|y
(k)
i , z

(s1)
1,i1

, . . . , z
(sq)
q,iq

]])

ess sup
(x

(l)
i

,y
(k)
i

,z
(s1)

1,i1
,...,z

(sq)

q,iq
)

φ([[Yi+h|x
(l)
i ,y

(k)
i , z

(s1)
1,i1

, . . . , z
(sq)
q,iq

]])
.

(14)

need to figure out how to estimate the ranges for continuous-
valued variables.

According to (3) and (5), it can be shown that the
conditional ranges in (13) are fully determined by the joint
range[[Yi+h,X

(l)
i ,Y

(k)
i ]]. The joint range can be obtained by

the well-developed support estimation method based on the
concept of support vector machine (SVM) [19]. Details on
the support estimation method can be found in [20–22].

B. Confidence Level Determination of the T0E and DT0E

Small values of the T0E suggest no causality while large
values do. The detection of causality can be reformulated as
a hypothesis test problem. The null hypothesis is that the
T0E measure,T 0

X→Y , is small, that is, there is no causality
from X to Y . If T 0

X→Y is large, then the null hypothesis can
be rejected, which means there is causal influence fromX

to Y . In order to carry out this hypothesis testing, we may
use the Monte Carlo method [9] by constructing a surrogate
time series [23]. The constructed surrogate time series must
satisfy the null hypothesis that the causal influence from
X to Y is completely destroyed; at the same time, the
statistical properties ofX and Y should not change. In
order to construct the surrogate time series that satisfy these
two conditions, we propose a new surrogate time series
construction method as follows.

Let X and Y be sampled at time instanti and denoted
by Xi andYi with i = 1, 2, . . . , N , whereN is the number
of samples;M denotes the length of the training data set,
namely, the data size for T0E and DT0E calculations. Then,
a pair of surrogate time series forX andY is constructed
as

{

Xsurr= [Xi, Xi+1, . . . , Xi+M−1],
Y surr= [Yj , Xj+1, . . . , Xj+M−1],

(15)

wherei andj are randomly chosen from{1, . . . , N−M+1}
and‖j − i‖ ≥ e, wheree is a sufficiently large integer (e is
much larger thanh) such that there is almost no correlation
betweenXsurr andY surr.

By calculating the T0E fromNs surrogate time series
such thatλn = T 0

Xsurr→Y surr, n for n = 1, . . . , Ns, the
significance level is then defined as

sX→Y =
T 0
X→Y − µλ

σλ

> 3, (16)

whereµλ andσλ are the mean and standard deviation ofλn,
respectively. Similarly, the value ofsX→Y can also be used
as the significance level for the DT0E fromX to Y .

IV. EXAMPLES AND CASE STUDIES

The practicality and utility of the proposed method are
illustrated by application to two numerical examples and an
experimental data set.

A. Examples

We use simple mathematical equations to represent causal
relationships in the following two examples.

Example 1: Assume three linear correlated continuous
random variablesX , Y , andZ satisfying:

{

Yk+1 = 0.8Xk + 0.5Yk + v1k
Zk+1 = 0.6Yk + v2k.

whereXk ∼ N(0, 1); v1k, v2k ∼ N(0, 0.1); andY (0) = 3.2.
The simulation data set consists of 3000 samples. The initial
1000 data points are chosen as the training data and are used
for causality analysis.

For ranges estimation, we setv = 0.01 since the fraction
of outliers of the data is quite small. For determination of
γ, the initial 1000 data points are used for training and the
remaining 2000 samples are used for validation. Using the
cross validation approach, we find thatγ = 2−2 gives good
results.

Similar to the TE approach, there are four undetermined
parameters in the definition of the T0E in (13): the predic-
tion horizon (h), the time interval (τ ), and the embedding
dimensions (k and l). The procedure for these parameters
determination is similar to that for the TE method proposed
in [12]. After the parameters are determined, according to
(13) and (16), the T0Es between each pair ofX , Y , andZ
and the corresponding thresholds (see values within round
brackets) obtained via the Monte Carlo method are shown in
Table I. Note that the variables listed in column one are the
cause variables and the corresponding effect variables appear
in the first row. For surrogate time series construction, we
sete = 500, i.e., ‖j − i‖ ≥ 500 in (15), to ensure that there
is almost no correlation between each pair of the surrogate
data. For the remaining example and case studies, the same
value of e is assigned. If the calculated T0E is greater
than the corresponding threshold, then we may conclude
that the causality is significant; otherwise there is almostno
causal influence. Note that if the calculated T0E from one
variable to another is zero, then we do not need to calculate
the corresponding threshold since it is safe to accept the
null hypothesis that there is no causality. From Table I, we
can see thatX causesY , Y causesZ, and X causesZ



TABLE I

CALCULATED TRANSFER0-ENTROPIES AND THRESHOLDS(VALUES IN

ROUND BRACKETS) FOR EXAMPLE 1.

T 0
column 1→row 1 X Y Z

X NA 1.38 (0.08) 0.60 (0.08)

Y 0.03 (0.07) NA 1.00 (0.08)

Z 0 0 NA

Fig. 2. Information flow pathways for (a) Example 1 and (b) Example 2.

TABLE II

CALCULATED TRANSFER0-ENTROPIES AND THRESHOLDS(VALUES IN

ROUND BRACKETS) FOR EXAMPLE 2.

T 0
column 1→row 1 X Y Z

X NA 0.80 (0.07) 0.20 (0.06)

Y 0.03 (0.05) NA 0.55 (0.08)

Z 0 0 NA

becauseT 0
X→Y = 1.38, T 0

Y→Z = 1.00, andT 0
X→Z = 0.60

are greater than the threshold. Next we need to determine
whether there is direct causality fromX to Z. According to
(14), we obtainD0

X→Z = 0. Thus, we conclude that there
is no direct causality fromX to Z. The information flow
pathways for Example 1 are shown in Fig. 2(a).

This conclusion is consistent with the mathematical func-
tion, from which we can see that there are information
flow pathways both fromX to Y and fromY to Z, and
the information flow fromX to Z is indirect through the
intermediate variableY .

Example 2:Assume three nonlinear correlated continuous
random variablesX , Y , andZ satisfying:
{

Yk+1 = 1− 2(| 0.5− (0.8Xk + 0.4
√

| Yk |) |) + v1k

Zk+1 = 5(Yk + 7.2)2 + 10
√

| Xk |+ v2k.

where Xk ∈ [4, 5] is a uniformly distributed signal;
v1k, v2k ∼ N(0, 0.05); and Y (0) = 0.2. The simulation
data consists of 3000 samples. The initial 1000 data points
were chosen as the training data and were used for causality
analysis.

The T0Es between each pair ofX , Y , andZ are shown
in Table II. The values within round brackets denote the
corresponding thresholds. We may conclude thatX causes
Y , X causesZ, andY causesZ becauseT 0

X→Y = 0.80,
T 0
X→Z = 0.20, and T 0

Y→Z = 0.55 are larger than their
thresholds.

Thus, we need to first determine whether there is direct

causality fromX to Z. According to (14), we calculate the
DT0E from X to Z with the intermediate variableY and
obtain D0

X→Z = 0.23, which is larger than the threshold
0.06. Thus, we conclude that there is direct causality from
X to Z. Secondly, we need to detect whether there is true
and direct causality fromY to Z sinceX is the common
source of bothY andZ. We calculate the DT0E fromY to
Z with the intermediate variableX and obtainD0

Y→Z =
0.39, which is also larger than the threshold 0.08. Thus,
we conclude that there is true and direct causality fromY

to Z. The information flow pathways for Example 2 are
shown in Fig. 2(b). This conclusion is consistent with the
mathematical function, from which we can see that there are
direct information flow pathways fromX to Y , from X to
Z, and fromY to Z.

Compared with the traditional transfer entropy method, the
T0E is defined without assuming a statistical space and the
only issue is (conditional) ranges of variables. This means
that the time series does not need to be stationary, which is a
basic assumption for the traditional transfer entropy method.
The computational complexity for the T0E estimation is
relatively small since we do not need to estimate the joint
PDF. Another advantage of the T0E method is that the length
of the data does not need to be very large. From the examples
described above we can see that 1000 samples are sufficient
to give good results while for the transfer entropy estimation
the sample number is preferred to be no less than 2000
observations [9].

B. Experimental case study

In order to show the effectiveness of the proposed causality
detection method for capturing information and/or material
flow pathways, a 3-tank experiment was conducted. The
schematic of the 3-tank system is shown in Fig. 3. Water
is drawn from a reservoir and pumped to tanks 1 and 2 by a
gear pump and a three way valve. The water in tank 2 can
flow down into tank 3. The water in tanks 1 and 3 eventually
flows down into the reservoir. The experiment is conducted
under open-loop conditions.

The water levels are measured by level transmitters. We
denote the water levels of tanks 1, 2, and 3 byx1, x2,
andx3, respectively. The flow rate of the pumped water is
measured by a flow meter; we denote this flow rate byx4.
In this experiment,x4 is set to be a pseudo-random binary
sequence (PRBS). The sampled data of 3000 observations
were analyzed. Fig. 4 shows the normalized time trends of
the measurements. The sampling time is one second. Note
that this data set is not strictly stationary since it cannotpass
the stationarity test described in [14]. The traditional transfer
entropy method may not be suitable for this data set.

The initial 1000 data points are used as training data forγ

determination and for causality analysis. The calculated T0Es
between each pair ofx1, x2, x3, andx4 are shown in Table
III with the thresholds (see values within round brackets)
obtained via the Monte Carlo method. If the calculated T0E
is larger than the corresponding threshold, then we may
conclude that the causality is significant; otherwise there



Fig. 3. Schematic of the 3-tank system.
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Fig. 4. Time trends of measurements of the 3-tank system.

is no causality. We can see thatx1 and x2 causex3, and
x4 causesx1, x2, and x3. The corresponding connectivity
realization is shown in Fig. 5(a).

Now we need to determine whether the causality between
x1 and x3 and betweenx2 and x3 is true or spurious, as
shown in Fig. 5(b). To clarify this we first calculate the
DT0E from x1 to x3 with intermediate variablesx4 and
x2 and obtainD0

x1→x3
= 0, which means that there is no

direct information/material flow pathway fromx1 to x3 and
the direct link should be eliminated. Next we calculate the
DT0E fromx2 to x3 with intermediate variablex4 and obtain
D0

x2→x3
= 0.18, which is larger than the threshold 0.07.

Thus, we conclude that there is true and direct causality
from x2 to x3. As shown in Fig. 5(b), sincex4 causesx2,
x2 causesx3, andx4 causesx3, we need to further check
whether there is direct causality fromx4 to x3. According to
(14), we calculate the DT0E fromx4 to x3 with intermediate
variablex2 and obtainD0

x4→x3
= 0. Thus, we conclude that

there is no direct causality fromx4 to x3. The corresponding

TABLE III

CALCULATED TRANSFER0-ENTROPIES AND THRESHOLDS(VALUES IN

ROUND BRACKETS) FOR THE3-TANK SYSTEM.

T 0
column 1→row 1 x1 x2 x3 x4

x1 NA 0.05 (0.07) 0.14 (0.06) 0.04 (0.06)

x2 0.05 (0.06) NA 0.20 (0.07) 0

x3 0.03 (0.06) 0.04 (0.07) NA 0

x4 0.17 (0.06) 0.16 (0.07) 0.06 (0.05) NA
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Fig. 5. Information flow pathways for the 3-tank system basedon (a) and
(b) calculation results of T0Es which represent the total causality including
both direct and indirect/spurious causality; (c) calculation results of DT0Es
which correctly indicate the direct and true causality.

information flow pathways according to these calculation
results are shown in Fig. 5(c), which are consistent with
the information and material flow pathways of the physical
3-tank system (see Fig. 3).

C. Industrial case study

Another case study is a part of a flue gas desulfurization
(FGD) process at an oil company in Alberta [12]. The
schematic of this part of the process is shown in Fig. 6,
including a reactor, two tanks, and a pond. Tank 1 receives
the overflow from the reactor if the reactor overflows. The
liquid in Tank 1 is drawn into the reactor by Pump 1; the
liquid in the reactor is drawn into Tank 2 by Pump 2, and
the liquid level of the reactor is controlled by adjusting the
flow rate of the liquid out of Pump 2; the liquid in Tank 2 is
drawn into the pond by Pump 3, and the liquid level of Tank
2 is controlled by adjusting the flow rate of the liquid out
of Pump 3. These two level control loops imply that there
is bidirectional relationship between the levels and the flow
out of the tank due to material as well as information (due
to feedback) flow pathways.

We denote the liquid levels of the reactor, Tanks 1 and
2 by y1, y2, andy3, respectively. There is no measurement
of the flow rate of the liquid out of Pump 1. We denote the
flow rates of the liquid out of Pumps 2 and 3 byy4 and
y5, respectively. The sampled data of 3544 observations are
analyzed. Fig. 7 shows the normalized time trends of the
measurements. The sampling time is one minute.

The transfer 0-entropies between each pair ofy1, y2, y3, y4
andy5 are shown in Table IV with the thresholds (see values
within round brackets). The information flow pathways based
on the transfer 0-entropies are shown in Fig. 8, we need to
further determine whether the causality betweeny1, y2, y3,
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Fig. 6. Schematic of part of the FGD process.
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Fig. 7. Time trends of measurements of the FGD process.

TABLE IV

TRANSFER0-ENTROPIES FOR PART OFFGD PROCESS.

T 0
column 1→row 1 y1 y2 y3 y4 y5

y1
NA 0 0.03 0.16 0

(0.06) (0.07)

y2
0.15 NA 0.13 0.18 0

(0.05) (0.06) (0.06)

y3
0.12 0 NA 0 0.13

(0.06) (0.07)

y4
0.11 0 0.14 NA 0.02

(0.05) (0.06) (0.06)

y5
0 0.04 0.17 0 NA

(0.07) (0.06)

y4, andy5 is true and direct. The calculation results of DT0E
are shown in Table V. The information flow pathways based
on calculated direct transfer 0-entropies are shown in Fig.9.

We can see that the connecting pathways shown in Fig.
9 are consistent with the information and material flow
pathways of the physical process shown in Fig. 6, where
solid lines indicate material flow pathways and dashed lines
denote control loops. Note that as mentioned earlier, the
bidirectional causality betweeny1 and y4, and betweeny3
andy5 are because of the level feedback control loops.

Fig. 8. Information flow pathways for part of FGD process based on
calculation results of transfer 0-entropies.

TABLE V

CALCULATED DT0ES FOR PART OFFGD PROCESS.

Intermediate variable(s) DT0E

y3 → y1 y2, y4 0.02

y2 → y1 y4 0.34

y2 → y4 y1 0

y2 → y3 y1, y4 0.01

V. CONCLUDING REMARKS

A new information theory-based causality detection
method based on the T0E has been proposed without assum-
ing a probability space. Moreover, a direct causality detection
method based on the DT0E has been presented to detect
whether there is a direct information and/or material flow
pathway between each pair of variables. The range estimation
method for continuous-valued variables and the calculation
method for both T0E and DT0E have been addressed. The
practicality and utility of the proposed methods have been
successfully illustrated by application on two examples and
an experimental data set.

The outstanding advantage of the T0E method is that
the data does not need to follow a well-defined probability
distribution since the T0E is defined without assuming a
statistical space and the only issue is its range. This means
that the time series does not need to be stationary, which
is a basic assumption for the traditional transfer entropy
method. This point is clearly illustrated in the experimental
3-tank case study and the industrial case study as presented
in Section IV. The analyzed data set is not strictly stationary.
The T0E method can still find the information and/or material
flow pathways by using this data set. Another advantage
of the T0E method compared with the traditional transfer
entropy method is that the length of the data does not need
to be very large, for example larger than 2000. The reason
is that the range estimation is based on the concept of SVM
which can handle small sample data sets [24]. Based on our
experience, 500 samples are enough to give good results.
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Fig. 9. Information flow pathways for part of FGD process based on
calculation results of DT0E.
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