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A New Information Theory-Based Method for Causality Analysis*

Ping Duan, Sirish L. Shah, Tongwen Chehand Fan Yang

Abstract— Detection of causality is an important and chal- Inspired by Granger’s work, many advanced techniques for
lenging problem in root cause and hazard propagation analysis. causality detection have been proposed, such as the extended
A new information theory-based measure, transfer 0-entropy, and nonlinear Granger causality [4], predictability improve-

is proposed for causality analysis on the basis of the definitions .
of O-entropy and O-information without assuming a probability ~ MeNt [5,6], nearest neighbors [7], and transfer entropy (TE)

space. For the cases of more than two variables, a direct transfer [8—10]. It has been pointed out that TE is a very useful tool
0-entropy concept is presented to detect whether there is a direct in quantifying directional causal influence for both linear and
information and/or material flow pathway from one variable to  nonlinear relationships [11-13].

another. Estimation methods for the transfer 0-entropy and the TE was initially based on the key concept of Shannon’s en-

direct transfer 0-entropy are addressed. The effectiveness of the ¢ hich is defined stochasticall th d b
proposed method is illustrated by two numerical examples and ropy which 1s defined stochastically as the averaged number

one experimental case study. of bits needed to optimally encode a source dataXsetith
the source probability distributiod(X ) [14]. Shannon’s
. INTRODUCTION entropy represents the average unpredictability in a random

yariable. In other words, it is a measure of the uncertainty

In aIarge-scaIg comple_x system, aS|.mpIe fault may eas'é/dssociated with a random variable. For a discrete-valued
propagate along information and material flow pathways an

affect other parts of the system because of the high degrrgaﬁn;j:nrgr\l/aerﬁz@(’izsggml eé; haass?lcé)ll]ﬂcomes{xl, <k,
of interconnections among different parts in the system. Py

To determine the root cause(s) of certain abnormality, it is g
. e i H(X)=— i) 1 5,
important to capture the process connectivity and find the (X) ZP(I Jlogp(w:)

. =1
connecting pathways. . .
Causality analysis provides an effective way to captur%’herep (w:) denotes the probability mass function of the

the process connectivity since a causal map can repres H(’t?mexi’ the base of the logarithm is 2, and the unit is
the direction of information and/or material propagatio n bits.

. . One reason for the definition of Shannon’s entropy is that
pathways [1]. The basic idea of causality can be traced ba(r:!a(ndom variables in communication systems are generall
to Wiener [2] who developed a mathematical definition for Y 9 y

causality: Given two random variablés andY’, X could be prone to electronic circuit noises, which obey physical laws

termed to ‘causeY if the predictability ofY is improved by yielding well-defined distributions. In contrast, in industrial
incorporating information abouX . Granger [3] adapted this processes that contain a lot of mechanical and chemical

S . . . _components, the dominant disturbances may not follow a
definition into the experimental practice, namely, analysis o ) . T :
. T . . well-defined probability distribution since they may not
data observed in consecutive time series. He formalized the . . S . .
1ecessarily arise from circuit noise [15]. Consequently, in

prediction idea in the context of linear regression models [3]: . e :
rocess control, disturbances and uncertainties are sometimes

X is said to have a causal influence ®nif the variance . . -
. - treated as bounded unknowns or signals without a priori
of the autoregressive prediction error bf at the present L
statistical structure.

time is reduced by inclusion of past measurements¥of One natural question to ask is: without assuming a prob-

From the definition, we can see that the flow of time is , .. o .
L ) : ; . ability space, is it possible to construct a useful analogue

a key point in causality analysis. Therefore, the interaction . )
. . . N of the stochastic concept of the Shannon’s entropy? Hartley
discovered by causality detection may be unidirectional or

bidirectional. This directional interaction is the major di1‘fer-emr0py or 0-entropyH, [16] for discrete variables, and

) ; Rényi differential Oth-order entropy oréRyi differential O-
ence between causal influence and relations reflected by thé . ; .

) . entropyho [17] for continuous variables provide an answer
symmetric measures such as ordinary coherence and mutpial,, . : .
information 0 this question. If a random variable has a known range

but an unknown distribution, then its uncertainty can be
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variables of linear or non-linear multivariate systemshwiit : 1
assuming a probability space. The basic idea of this caysali
detection method was inspired by the concepts of the (< | W07 A< L ] 1
entropy and O-information described in [15] by Nair. || /&~ U _____|
Il. DETECTION OFCAUSALITY AND DIRECT CAUSALITY § [¥1x]
i et i i
In this section, a transfer 0-entropy (TOE) concept based P—— — Y
on 0-entropy and O-information is proposed to detect causal g [YI-I71+]
ty between two variables. In addition to this, direct tram$f- @ ®

entropy (DTOE) is proposed to detect whether there is direct . iy -
Linfl from one variable to another Fig. 1. Examples of marginal, conditional, and joint ranf@srelated and
causal Intluence varl . unrelated random variables (adapted from [15]). Yaand X are related;

(b) Y and X are unrelated.
A. Preliminaries
Before introducing the concept of the TOE, we describe o
the non-probabilistic formulations of range, O-entropyda |t | - | denote set cardinality and denote the Lebesgue
O-information. measure. A functiom([Y]) is defined as
A random variablé” can be considered as a mapping from
an underlying sample spaé¢eto a setY of interest. Each o([Y]) =
samplew € ) can give rise to a realizatiol (w) denoted
by y € Y. Then the marginal range of is defined as [15] where|[Y]| indicates the set size §t’] for discrete-valued
B _ Y, andu[Y] can be understood as the length of the range
[Yl={¥(w):wea} (@) [v] for continuous-valuedr. The uncertainty associated
where {-} indicates a set. Given another random variabl#ith Y can be captured by the (marginal) 0-entropy defined
X taking values inX, the conditional range ol” given 8S
X(w) = z is defined as Ho(Y) = log ¢([Y]), ()
[V]a] = {Y () : X(w) = 2,0 € Q} @) where the base of the logarithm is 2 and the unit’hf is
' ’ ' in bits. Note that ifY is a discrete-valued random variable,
The relationship between the marginal rang&’oéind its then Hy(Y") represents the (marginal) Hartley entropy or 0-

[[Y]] for discrete-valued’,
u[Y] for continuous-valued’,

(6)

conditional range giverX (w) = z satisfies that entropy [16] satisfyingH,(Y") € [0, 00); if X is continuous-
valued, thenH(Y") indicates the (marginal) &yi differen-
U [VIz] = [YT. (3) tial 0-entropy [17] which satisfiesly(Y) € (—oc0, ).
z€[X] A worst-case approach is taken to define the conditional
The joint range ofY’ and X is defined as 0-entropy ofY" given X' as follows [15,18]:
Hy(Y|X)=-esssup 1 Y 8
[V, X] = {(Y(w), X () : w € Q. 4) o(Y]X) sup. og o([Y]z]), @)
The joint range is determined by the conditional and matginavhere essup represents the essential supremuip(Y | X)
ranges as follows: can be understood as a measurement of the uncertainty that
remains inY after X is known.
v, x]= U [Yl2] x {=}, (5) In order to measure the information abdutgained from
2€[X] X, a non-probabilistic 0-information metridy, from X to

_ Y is defined as follow$15,18]:
where x represents the Cartesian product.

Variables Y and X are said to be unrelated iff the Io(Y;X)= Ho(Y)— Ho(Y|X) = ess inf log(ML
conditional range satisfieft'|z] = [Y], wherez € [X]. eel T o([Yie]) )
Given another random variabletaken values iz, variables  here es@f represents the essential infimum. From the
Y and X are said to be unrelated conditional éniff  definition, we can see that the 0-information is the worsecas
[Y]z, 2] = [Y]|z], where(z, z) € [X, Z] [15]. log-ratio of the prior to the posterior range set sizesflesg

For example, Fig. 1(a) illustrates the case of two relategind it can be shown that(Y; X) is always non-negative.
variablesY and X. For a certain valuer € [X], the [ (v:X) represents the reduction in uncertainty abdut
conditional rangdY"|z] is strictly contained in the marginal after X is known; thus, it can be understood as the informa-
range[Y']. Note that in this case the joint ranfjg, X ] is also  tion abouty” provided byX. Note that the definition of the

strictly contained in the Cartesian product of marginabess)  0-information is asymmetric, that igo(Y; X) # Io(X;Y).
namely,[Y] x [X]. Fig. 1(b) shows the ranges wh&hand

X are unrelated. For any € [X], the conditional range B- Transfer 0-entropy
[Y'|z] coincides with the marginal rand&]. Moreover, the  The concept of O-information provides an effective way to
joint range[Y, X coincides with[Y] x [X]. measure the information abolt provided by X . However,



the time flow information is not considered in this definition future observation of variablE obtained from simultaneous
Since the time flow information is an important componentbservations of past values of bathandY’, after discarding
in causality detection, O-information cannot be directhed information about the future of obtained from past values
for causality analysis. To incorporate this we propose af X alone. It is obvious that if TOE is greater than zero,
transfer 0-entropy concept for causality detection based ahen there is causality fronX to Y'; otherwise, there is no
the concept of O-information. causal influence fronX to Y.

Before introducing the concept of transfer 0-entropy, a From the definition of TOE shown in (13), we can see that
conditional O-information fromX to Y given Z is defined the TOE is only related to ranges of the random variables
as follows: and is independent of their probability distributions. $hu

we do not require a well-defined probability distribution of

Io(Y; X|Z) = Ho(Y]Z) = Ho(Y]X, Z), (10) ' the data set. This means that the collected sampled data does
where Hy(Y|Z) and Ho(Y|X,Z) denote conditional O- not nee_d_ to be stationary, which is a basic assumption for
entropies defined in (8). The conditional O-information mealhe traditional transfer entropy method.
sures the information about provided by X when 7 is

iven.

’ Now consider two random variableX and Y with The TOE measures the amount of information transferred
marginal rangegX] and [Y] and joint range[X, Y], let from one variableX to another variablé@”. This extracted
them be sampled at time instantto get X; andY; with transfer information represents the total causal influérca
i=1,2,...,N, whereN is the number of samples. X to Y. Itis difficult to distinguish whether this influence is

Let Y;.,, denote the value ot” at time instant; + h, along a direct pathway without any intermediate variables o
that is, h steps in the future from, and % is referred to indirect pathways through some intermediate variabley [12

C. Direct transfer 0-entropy

as the prediction horizony* = [v;,Yi_.,..., Yi(k-1)r] In order to detect whether there is direct causality fr&im
and Xl(.l) = [X4, Xi—7,..., X;_—1)-] denote embedding to Y or the causality is indirect through some intermediate
vectors with elements from the past valuesYofand X, variables, a direct transfer 0-entropy (DTOE) from to
respectively f andl are the embedding dimensions¥ofand v \with intermediate variablesZ,, Zs, ..., 7, is defined
X, respectively)r is the time interval that allows the scaling . (5) e 1
in time of the embedded vector, which can be setto beh, N (14) WhereZ;2" = [Z;i,, Zji; ;s -+ Zjiy—(s;~1)r;]
as a rule of thumb [9]. Ley'™ = [y, i r.... i (k—1)] denotes the embeddlng vector with e(lgr)nents from the
andx"" = [z, ,...,7;_(_1),] denote realizations of past values ofZ; for j = 1,....q; z;7 denotes a
Y" and X!V, respectively. ThuiYﬁLh|xZ ). y'™] denotes real|zat|on of Zg J)y and (x", y(*), 55111)7 s E,Sf)) €
the conditional range of; g|venX§ = xil) anin’“) = [[X ( ) zgsjf,...,zgfgj]]. Note that the intermediate
yz(k) and[[Y; |y§’€>]] denotes the conditional range Bf, , varlables are chosen based on calculation results from the
glvenY(’“) y™ . The transfer 0-entropy (TOE) from¥ to  10E [12]. Parameters, ..., sq, i1,...,iqg andry, ..., 74 in
Y is then deﬂned as follows: (14) are determined by the corresponding calculationsef th
o TOE fromZ,,...,Z,t0 Y.
TX%Y
= Io(Yipm XY M) (11) [1l. CALCULATION METHOD
= Ho(Yign[Y™) = Ho(Yipn X", YY) 12 In this section, the calculation method for TOE and DTOE
= ess (k)sup(k) log ¢([Visnly(™]) is proposed. A method for determination of the confidence
yi €lY;™l levels of TOE is also addressed.
—ess sup log ¢([Yirnlx{", y])
Dy ex P vy A. Range estimation
ess sup  o([Yiraly™]) From the definition in (13), we can see that a key to TOE
— g yPery My (13) estimation is to estimate the joint and conditional ranges.
ess sup B([Yisn|xD, y®])’ For discrete-valued random variables, joint and condition
="y ex y ] ranges can be estimated by finding all possible realizations
of the variables. For exampl@X(l) (k)]] can be obtained

1) ~ (k) . (k)
where [X.”, Y;"'] denotes the joint range oX;” and . f|nd|ng all possible realization sets K", Y*)): and

k k - (k
Y"; [Y™M] denotes the Jomt ra}gr)]ge of " [Yisnly™] can be obtained by finding all p055|ble realiza-

Smce U (”e[[x(”]][m*“xl ’yz | [Yienly: ™1, we tions of Y;,;, given ng) = ygk), andgb([[}/i+h|y§k)]]) is the
obtain that [[YlJrh|xl ,yzk)]] is contained |n[[YZ+h|yZ )]] count of these realizations. For continuous-valued random
thus, the TOE is always non-negative. From the definitionjariables, the estimation of ranges are not as straigh#fiarw
we can see that the TOE from to y is the conditional as the discrete-valued random variables since the realiza-
O-information defined in (10). It measures the informationion sets of the continuous-valued random variables are not
transferred fromX to Y given the past information of.  countable any more. Unfortunately, since most sampled data
In other words, the TOE represents the information about@btained from industrial processes are continuous-valued
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need to figure out how to estimate the ranges for continuous- IV. EXAMPLES AND CASE STUDIES

valued variables. The practicality and utility of the proposed method are

According to (3) and (5), it can be shown that thejystrated by application to two numerical examples and an
conditional ranges in (13) are fully determined by the joingyperimental data set.
range[Yitn., Xgl), ng)]]. The joint range can be obtained by
the well-developed support estimation method based on the Examples
concept of support vector machine (SVM) [19]. Details on We use simple mathematical equations to represent causal
the support estimation method can be found in [20-22]. relationships in the following two examples.

. L Example 1:Assume three linear correlated continuous
B. Confidence Level Determination of the TOE and DTOErandom variablest, v, and Z satisfying:

Small values of the TOE suggest no causality while large
values do. The detection of causality can be reformulated as { Yit1 = 0.8X5 + 0.5Y; + vig
a hypothesis test problem. The null hypothesis is that the Zi1 = 0.6Yk + vap.

TOE measureTy_y, is small, that is, there is no causalitywhereX;, ~ N(0,1); v1x, var ~ N(0,0.1); andY (0) = 3.2.

from X to Y. If T _,, is large, then the null hypothesis canThe simulation data set consists of 3000 samples. Thelinitia
be rejected, which means there is causal influence f®m 1000 data points are chosen as the training data and are used
to Y. In order to carry out this hypothesis testing, we mayor causality analysis.

use the Monte Carlo method [9] by constructing a surrogate For ranges estimation, we set= 0.01 since the fraction

time series [23]. The constructed surrogate time seried musf outliers of the data is quite small. For determination of
satisfy the null hypothesis that the causal influence from, the initial 1000 data points are used for training and the
X to Y is completely destroyed; at the same time, theemaining 2000 samples are used for validation. Using the
statistical properties ofX and Y should not change. In cross validation approach, we find that= 2—2 gives good
order to construct the surrogate time series that satigfyeth results.

two conditions, we propose a new surrogate time series Similar to the TE approach, there are four undetermined

construction method as follows.
Let X andY be sampled at time instaritand denoted
by X; andY; with i =1,2,..., N, whereN is the number

parameters in the definition of the TOE in (13): the predic-
tion horizon @), the time interval £), and the embedding
dimensions £ and (). The procedure for these parameters

of samples;M denotes the length of the training data setdetermination is similar to that for the TE method proposed
namely, the data size for TOE and DTOE calculations. Thein [12]. After the parameters are determined, according to

a pair of surrogate time series féf andY is constructed

S

wherei andj are randomly chosen frofi, ..., N—M+1}
and||j —i|]| > e, wheree is a sufficiently large integer(is

XSUMT— (X, X,
Ysurr: [}/ijj+17 s

7X’L'+M*1]7

15
s Xjrm—1l, (15)

(13) and (16), the TOEs between each paitXaf Y, and Z

and the corresponding thresholds (see values within round
brackets) obtained via the Monte Carlo method are shown in
Table I. Note that the variables listed in column one are the
cause variables and the corresponding effect variablesaapp
in the first row. For surrogate time series construction, we

much larger thark) such that there is almost no correlationsete = 500, i.e., || —i|| > 500 in (15), to ensure that there

betweenXx SU and ySUrt,
By calculating the TOE fromN, surrogate time series

such that)\n = Tisurrﬁysurr’n for n = 1, . -7N5, the
significance level is then defined as
TS —
sxy — X2 THA g (16)

o
wherepu andoy are the mean and standard deviation\pf

respectively. Similarly, the value ofy_,y can also be used
as the significance level for the DTOE from to Y.

is almost no correlation between each pair of the surrogate
data. For the remaining example and case studies, the same
value of e is assigned. If the calculated TOE is greater
than the corresponding threshold, then we may conclude
that the causality is significant; otherwise there is alnmust
causal influence. Note that if the calculated TOE from one
variable to another is zero, then we do not need to calculate
the corresponding threshold since it is safe to accept the
null hypothesis that there is no causality. From Table |, we
can see thatX causesY, Y causesZ, and X causesZ



TABLE |
CALCULATED TRANSFERO-ENTROPIES AND THRESHOLDEVALUES IN
ROUND BRACKETS) FOREXAMPLE 1.

causality fromX to Z. According to (14), we calculate the
DTOE from X to Z with the intermediate variabl® and
obtain D% _, , = 0.23, which is larger than the threshold
0.06. Thus, we conclude that there is direct causality from

Tgol urm 17 ow1 X Y Z X to Z. Secondly, we need to detect whether there is true
X NA 1.38 (0.08)  0.60 (0.08) and direct causality fronY” to Z since X is the common
Y 0.03 (0.07) NA 1.00 (0.08) source of bothY” and Z. We calculate the DTOE frorny to
z 0 0 NA Z with the intermediate variablé( and obtainDy. ., =

0.39, which is also larger than the threshold 0.08. Thus,
we conclude that there is true and direct causality frdm
r to Z. The information flow pathways for Example 2 are
l shown in Fig. 2(b). This conclusion is consistent with the

mathematical function, from which we can see that there are
4 direct information flow pathways fronX to Y, from X to

(a) (b) Z, and fromY to Z.

Compared with the traditional transfer entropy method, the

Fig. 2. Information flow pathways for (a) Example 1 and (b) Exte 2. TOE is defined without assuming a statistical space and the
only issue is (conditional) ranges of variables. This means
that the time series does not need to be stationary, which is a
basic assumption for the traditional transfer entropy meéth
The computational complexity for the TOE estimation is
relatively small since we do not need to estimate the joint

X—>V—>7 X

TABLE I
CALCULATED TRANSFERO-ENTROPIES AND THRESHOLDSVALUES IN
ROUND BRACKETS) FOR EXAMPLE 2.

TO i 1r owl X Y z PDF. Another advantage of the TOE method is that the length
X NA 0.80 (0.07)  0.20 (0.06) of the data does not need to be very large. From the examples
% 0.03 (0.05) NA 0.55 (0.08) described above we can see that 1000 samples are sufficient
7 0 0 NA to give good results while for the transfer entropy estiorati

the sample number is preferred to be no less than 2000
observations [9].

becausel_,, = 1.38, T{_,, = 1.00, andT%_,, = 0.60 B. Experimental case study

are greater than the threshold. Next we need to determineln order to show the effectiveness of the proposed causality
whether there is direct causality from to Z. According to  detection method for capturing information and/or materia
(14), we obtainD$ _, , = 0. Thus, we conclude that there flow pathways, a 3-tank experiment was conducted. The
is no direct causality from¥ to Z. The information flow schematic of the 3-tank system is shown in Fig. 3. Water
pathways for Example 1 are shown in Fig. 2(a). is drawn from a reservoir and pumped to tanks 1 and 2 by a
This conclusion is consistent with the mathematical funcgear pump and a three way valve. The water in tank 2 can
tion, from which we can see that there are informatiofiow down into tank 3. The water in tanks 1 and 3 eventually

flow pathways both fromX to Y and fromY to Z, and flows down into the reservoir. The experiment is conducted
the information flow fromX to Z is indirect through the under open-loop conditions.

intermediate variable’”. The water levels are measured by level transmitters. We
Example 2:Assume three nonlinear correlated continuougenote the water levels of tanks 1, 2, and 3 by =,
random variablesy, Y, and Z satisfying: and z3, respectively. The flow rate of the pumped water is

Vg1 =1—2(] 0.5 — (0.8X5 + 0.4/ Y5 [) |) + vix me?fured by a flow meter; webdenote thd|s flowdrategpy
Zipr = 5(Ye + 7.2)2 + 10/ X, | + va. In this experimenty, is set to be a pseudo-random binary
+ sequence (PRBS). The sampled data of 3000 observations

where X, € [4,5] is a uniformly distributed signal; were analyzed. Fig. 4 shows the normalized time trends of
vig, V2 ~ N(0,0.05); and Y (0) = 0.2. The simulation the measurements. The sampling time is one second. Note
data consists of 3000 samples. The initial 1000 data pointisat this data set is not strictly stationary since it carpass
were chosen as the training data and were used for causatite stationarity test described in [14]. The traditionahsfer
analysis. entropy method may not be suitable for this data set.
The TOEs between each pair &f, Y, and Z are shown The initial 1000 data points are used as training datayfor

in Table Il. The values within round brackets denote theletermination and for causality analysis. The calculat@@sr
corresponding thresholds. We may conclude tiatauses between each pair af;, x2, x3, andz, are shown in Table

Y, X causesZ, andY causesZ becausely ,,- = 0.80, Il with the thresholds (see values within round brackets)
T% ., = 0.20, andTY_,, = 0.55 are larger than their obtained via the Monte Carlo method. If the calculated TOE
thresholds. is larger than the corresponding threshold, then we may

Thus, we need to first determine whether there is direcbnclude that the causality is significant; otherwise there



TABLE Il
l CALCULATED TRANSFERO-ENTROPIES AND THRESHOLDS{VALUES IN
Level transmitter | ROUND BRACKETS) FOR THE3-TANK SYSTEM.
;@ 3-way valve
Tank 2
J J Té)0| um 1—rowl T1 ) x3 x4
1 NA 0.05(0.07) 0.14(0.06) 0.04(0.06)
Level transmitter Level transmitter
X1 *3 T2 0.05 (0.06) NA 0.20(0.07) 0
o0 L — L - 3 0.03(0.06)  0.04(0.07) NA 0
Flowmeter Tl — 24 0.17(0.06) 0.16(0.07)  0.06(0.05) NA
X4
X1 X1
. X4 X4 (
Pump driven by a Water reservoir X2 X2
variable speed motor \ X3 \ X
3
Fig. 3. Schematic of the 3-tank system. @ ®) ©
Time Trends Fig. 5. Information flow pathways for the 3-tank system baseda) and

T T y y T (b) calculation results of TOEs which represent the totalsedity including

L b both direct and indirect/spurious causality; (c) caldolatresults of DTOEs

1 which correctly indicate the direct and true causality.

X, [ . . . .

2 W\WW information flow pathways according to these calculation
results are shown in Fig. 5(c), which are consistent with

x, v 1 the information and material flow pathways of the physical
3-tank system (see Fig. 3).

x, me_ﬂmf C. Industrial case study

Another case study is a part of a flue gas desulfurization

‘ ‘ ‘ ‘ ‘ (FGD) process at an oil company in Alberta [12]. The
0 500 1000 1500 2000 2500 3000 schematic of this part of the process is shown in Fig. 6,
Samples including a reactor, two tanks, and a pond. Tank 1 receives
the overflow from the reactor if the reactor overflows. The
liquid in Tank 1 is drawn into the reactor by Pump 1; the
liquid in the reactor is drawn into Tank 2 by Pump 2, and
the liquid level of the reactor is controlled by adjusting th
is no causality. We can see that and z, causexrs, and flow rate of the liquid out of Pump 2; the liquid in Tank 2 is
z4 causesri, x2, andzz. The corresponding connectivity drawn into the pond by Pump 3, and the liquid level of Tank
realization is shown in Fig. 5(a). 2 is controlled by adjusting the flow rate of the liquid out
Now we need to determine whether the causality betweearf Pump 3. These two level control loops imply that there
x1 and x3 and betweenrs, and z3 is true or spurious, as is bidirectional relationship between the levels and thes flo
shown in Fig. 5(b). To clarify this we first calculate theout of the tank due to material as well as information (due
DTOE from z; to x3 with intermediate variables, and to feedback) flow pathways.
x2 and obtainD? .. = 0, which means that there is no We denote the liquid levels of the reactor, Tanks 1 and
direct information/material flow pathway fronm to x3 and 2 by vy, y2, andys, respectively. There is no measurement
the direct link should be eliminated. Next we calculate thef the flow rate of the liquid out of Pump 1. We denote the
DTOE fromz, to x3 with intermediate variable, and obtain flow rates of the liquid out of Pumps 2 and 3 hy and
ngg = 0.18, which is larger than the threshold 0.07.ys5, respectively. The sampled data of 3544 observations are
Thus, we conclude that there is true and direct causalignalyzed. Fig. 7 shows the normalized time trends of the
from z, to x3. As shown in Fig. 5(b), since, causesrs, measurements. The sampling time is one minute.
xro Causesrs, andxy causesrs, we need to further check  The transfer O-entropies between each paif0f2, y3, ¥4
whether there is direct causality from to x3. Accordingto andys are shown in Table IV with the thresholds (see values
(14), we calculate the DTOE fromy to x3 with intermediate within round brackets). The information flow pathways based
variablez, and obtainD? = 0. Thus, we conclude that on the transfer 0-entropies are shown in Fig. 8, we need to

XT4—T3

there is no direct causality fromy to x5. The corresponding further determine whether the causality betweeny:, vs,

Fig. 4. Time trends of measurements of the 3-tank system.
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Fig. 7. Time trends of measurements of the FGD process.

TABLE IV

Samples

3544

TRANSFERO-ENTROPIES FOR PART OFGD PROCESS

T(?ol um 1—rowl Y1 Y2 Y3 Ya Y5
NA 0 003 016 0
v (0.06) (0.07)
015 NA 013 018 0
v2 (0.05) (0.06)  (0.06)
012 0 NA 0 013
vs (0.06) (0.07)
011 0 014 NA 002
v (0.05) (0.06) (0.06)
0 004 017 0 NA
v (0.07)  (0.06)

yl(\_Aylz_)y3—>E_y5
\ y4/

Fig. 8. Information flow pathways for part of FGD process bbsa
calculation results of transfer 0-entropies.

TABLE V
CALCULATED DTOES FOR PART OFFGD PROCESS

Intermediate variable(s) DTOE
Y3 — Y1 Y2, Y4 0.02
Y2 — Y1 Ya 0.34
Y2 — Y4 Y1 0
Y2 — Y3 Y1, Y4 0.01

V. CONCLUDING REMARKS

A new information theory-based causality detection
method based on the TOE has been proposed without assum-
ing a probability space. Moreover, a direct causality detac
method based on the DTOE has been presented to detect
whether there is a direct information and/or material flow
pathway between each pair of variables. The range estimatio
method for continuous-valued variables and the calcuiatio
method for both TOE and DTOE have been addressed. The
practicality and utility of the proposed methods have been
successfully illustrated by application on two exampled an
an experimental data set.

The outstanding advantage of the TOE method is that
the data does not need to follow a well-defined probability
distribution since the TOE is defined without assuming a
statistical space and the only issue is its range. This means
that the time series does not need to be stationary, which
is a basic assumption for the traditional transfer entropy
method. This point is clearly illustrated in the experinant
3-tank case study and the industrial case study as presented
in Section IV. The analyzed data set is not strictly statigna
The TOE method can still find the information and/or material
flow pathways by using this data set. Another advantage
of the TOE method compared with the traditional transfer
entropy method is that the length of the data does not need
to be very large, for example larger than 2000. The reason
is that the range estimation is based on the concept of SVM
which can handle small sample data sets [24]. Based on our

y4, andys is true and direct. The calculation results of DTOESXPEMence, =00 samples are enough to give good results.

are shown in Table V. The information flow pathways based

on calculated direct transfer 0-entropies are shown in %ig.
We can see that the connecting pathways shown in Fig. /

»2

9 are consistent with the information and material flow i P m—

=)s

pathways of the physical process shown in Fig. 6, where
solid lines indicate material flow pathways and dashed lines
denote control loops. Note that as mentioned earlier, the

bidirectional causality betwees andy,, and betweernys g o

N,

Information flow pathways for part of FGD process loasa

andys; are because of the level feedback control loops. calculation results of DTOE.
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