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Abstract— Over the last two decades, there has been a
growing interest in the use of orthonormal basis filters (OBF)
for developing dynamic black box models. When compared
with the conventional approach, a substantial dimensionality
reduction can be achieved through OBF parameterization.
Moreover, the orthonormal filters, because of their similarity
to the Padé approximation, can model systems that exhibit
long time delays. Due to these advantages, several authors
have recently resorted to OBF based parameterization of block
oriented nonlinear black box models. This paper presents a
review of nonlinear output error (NOE) and nonlinear ARX
(NARX) model development using OBF. To begin with, the
linear time series modelling using OBF parameterization is
briefly reviewed. The methods available in the literature for
the development of models with Wiener, Hammerstein and
Wiener-Hammerstein structures are presented next. Features
and properties of different model structures are examined in
the light of their abilities to model the unmeasured disturbances
and to capture complex nonlinear behaviour, such as input and
output multiplicities.

I. INTRODUCTION

With the availability of cheap and fast computing, nonlin-
ear model based controllers are increasingly being used in
variety of industrial applications [1]. Development of control
relevant dynamic models can be singled out as the most
important step in the process of controller synthesis. Over
the last two decades, there has been growing interest in
the use of orthonormal basis filters (OBF) for representing
process dynamics ([3], [4], [5], [6]). The OBFs provide a
simple and elegant method of parameterizing stable transfer
functions. The conventional approach to parameterization of
time series models is using operator {z7%: k=0,1,2,..}
([2], I3]), which can lead to models with large number of
number parameters. The OBF based representation seeks
to parameterize transfer functions using filters Fj(z~1),
which are orthogonal rational polynomials in z~!. Signals
filtered through OBF have much longer memory of the
past. As a consequence, and due to orthogonality of these
filters, a substantial dimensionality reduction can be achieved
through OBF based parameterization of dynamic black box
models. Moreover, because of their similarity to the Padé
approximation, development of OBF based models can be
carried out without a priori knowledge about system time
delays. Also, a priori information about system dynamics
can be explicitly used in the model development exercise.
Heuberger at al. [7] provides an excellent exposure to various
theoretical and practical aspects of linear dynamic model
development using OBF parameterization.
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For many industrial systems, however, nonlinear model
based control schemes have to be employed for achieving
uniformly satisfactory performance over the desired oper-
ating range. While a mechanistic / grey-box model has
better extrapolation ability and portability, development of
a nonlinear black box model, directly from perturbed plant
data, can be a relatively easy and economically attractive
alternative in many situations. Selection of a suitable model
structure is a crucial step in the development of such black
box models. Sjoberg et al. [13] and Pearson [15] provide ex-
cellent reviews of the variety of model structures available for
black box modeling. From the viewpoint of structures used
for modeling unmeasured disturbances, various black-box
models employed in the literature can be broadly classified
into two classes (a) Nonlinear Output Error (NOE) models
and (b) Nonlinear ARX (NARX) Models. NOE models make
no attempt to model the effect of unmeasured disturbances.
The NARX models, on the other hand, explicitly capture the
dynamics of unmeasured disturbances using the past output
measurements.

The conventional parameterization of black box models
often results in large number of unknown parameters and a
large set of data is required to keep the variance errors in
check. This translates to the long time required for conduct-
ing identification experiments and possible loss of production
during this period. Due to the advantages OBF, several
authors have recently resorted to OBF based parameterization
of NOE and NARX models [14], [16], [17], [18], [20], [21],
[24]. The resulting models are parsimonious in parameters.
A brief review of nonlinear time series model development
using OBF parameterization is presented here. Features and
properties of different model structures are examined in the
light of their abilities to model the unmeasured disturbances
and to capture complex nonlinear behavior, such as input and
output multiplicities.

This paper is organized in five sections. To begin with,
a brief introduction to generalized orthonormal basis filters
is presented. Linear time series modeling using OBF para-
meterization is then briefly reviewed . The development of
nonlinear time-series models using OBF parameterization is
presented next.

Il. ORTHONORMAL BASIS FILTERS

Following [8], let 7 denote the unit circle {z: |z| = 1}
and £ denote exterior of unit disc {z : |z| > 1} . We consider
the Hardy space Hs, of square integrable functions on
7T and analytic in £. The corresponding inner product of
G1(z), G2 (2) € Hy is denoted by
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where * denotes the complex conjugate, w = w’T denotes the
normalized frequency and 1" denotes the sampling interval.
Consider a SISO system represented by a strictly proper
stable transfer function G(z) € H2 and

9(z) = G(2) v(2) O]

where v(z) represents input and ¥(z) represents the model
output. Let {F;(z)} for i = 1,2, ... be an orthonormal basis

for H such that
wen ={y 201 @

Then, there exists a unique generalized Fourier series expan-
sion of G(z) such that

G(z) = > ¢;Fi(2) (4)

lygk:

where {c;} represent Fourier coefficients defined as ¢; =
(G(2), Fi(2)).Thus, given a linear time invariant system
G(z), the n’th order finite expansion model that approximates
G(z) best in a Hs sense is given by

n

Gn(z) = Z:lciFi(z) ©)
Orthogonal filters can be constructed using a single real pole
inside the unit circle (Laguerre filters [3]) or using a pair
of complex conjugate poles inside the unit circle (Kautz
filters [4]). In fact, the classical impulse response model can
be viewed as a special case of GOBF with Fj(z) = z77.
Van den Hof et. al. [5] showed that an orthonormal basis
for Ho can be generated with repeated and fixed set of
poles via balanced realization of all pass filters. Ninness and
Gustafsson [6] unified the construction of orthonormal basis
filters by proving that

2, .
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forms a complete orthogonal set in ., where
n={n,:i=1,2,...} is an arbitrary sequence of poles
inside the unit circle appearing in complex conjugate pairs.

The OBF can also be constructed for a » x m MIMO
transfer function matrices G(z) € H5*™. Two approaches
are available in the literature to define MIMO OBF expan-
sions [7]. A MIMO transfer function, G(z), can be expressed
as

Fj(z7n): (6)

&)
G(z) = ). CiFi(z)
=1
where {F;(z)} represent scalar basis filters and C; represent
r x m coefficient matrices. An alternate approach of con-
structing vector basis functions using a multivariable, square
and all pass function is discussed in [12].
While dealing with the parameter identification and control
problems, it is often convenient to work with state space

realizations of OBF models. For example, consider a SISO
model of the form

92 = | S etz o) ")

=1
where 7 consists of only real poles. Defining a state vector
x(k,m) € R™ such that

x(z,m) = [ Fi(z,n)v(2)
a state realization of the form

x(k+1) = ¥(n)x(k)+ Aln) v(k) 9)
9(k) C” x(k) (10)

can be developed for the model given by equation (7) as
discussed in [10]. Here, the elements of the C vector are
the Fourier coefficients {c;}. A detailed discussion on state
realizations for real as well as complex poles can be found
in [8]. For a multiple input system, a non-minimal state
realization can be created simply by stacking individual
SISO state realizations [10]. In the subsequent development,
transfer function representation and its state space realization
of a GOBF model are used interchangeably.

I11. LINEAR BLACK BOX MODELS

In this section, linear black-box model development using
OBF parameterization is briefly discussed. The models are
represented using time shift operator ¢ and time domain
signals. Consider a SISO linear, time invariant discrete time
system modelled as

y(k) = G(q)u(k) + H(g)e(k)

where G(q) is a strictly proper stable transfer function,
H(q) is a stable rational monic transfer function and e(k)
represents a zero mean Gaussian white noise sequence.
Identification of G(q) and H(q) can be carried out either
sequentially or simultaneously [10], [11].

In the sequential approach, initially output error (OE)
model structure assumed, i.e.

Fu(zmo(z) ] (@)

(11)

Ny

y(k) = G(gu(k) +v(k) = >_ ciFui(q,m,)u(k) + v(k)

=1

and an estimate @(z) of G(z) is generated using OBF
parameterization. In the next step, a filter that whitens the
estimated residuals

(k) = y(k) = Gg)u(k) = H(q) e(k)

is identified by rearranging the model as an AR model
follows

(12)

(k) = W, (q) 0(k) + e(k) = Y ciFyi(q,m,)0(k) + e(k)
i=1
and parameterizing Wv(q) =1- lf[(q)*1 using OBF [10].
Alternatively, for the purpose of parameter estimation, this
model is rearranged in one step predictor form as follows

glklk —1) = H(q) 'Glq)u(k) + (1 — H(q) ")y(k)
= Wulqu(k) + Wy(q)y(k) (13)



which is similar to an ARX model. The R.H.S. of ARX
model (13) is parameterized using OBF as follows [7], [11]

Ny

(k) = 35 Fus(a.m)ulk) + 3 Fys(a.m,)ulh) + et

J:
where {e(k)} represents a zero mean white noise sequence.
This model is referred to as OBF-ARX model. A state

realization of the OBF-ARX model can be constructed as
follows

x(k+1) = Ux(k)+Tu(k) +Lyk) (14)
y(k) = Cx(k)+e(k) (15)
where
| xuB) ] g | ¥(m,) (0]
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It is convenient to use model form (14-15) while carrying
out parameter identification. After estimating the model
parameters, the model (14-15) can be rearranged in standard
innovation form of state space model as follows

x(k+1) = ®x(k) + Tu(k) + Le(k)

where =T +LC and used to recover
G(g)=ClgI—®]'T and H(q)=Clgl—®] 'L+1.

A key step in the development of the OBF models is
the selection of filter poles and number of basis filters or
truncation order(s), (n.,n,), necessary to develop a reason-
ably good approximation of the system dynamics. While,
an orthonormal basis for H, can be constructed by selecting
poles in an arbitrary manner, such a basis may lead to a large
truncation order and a high dimensional model. Selecting
a basis with poles that closely match the dominant poles
of the system to be approximated significantly reduces the
truncation order [3], [4], [9]. In many practical situations
there is some a priori knowledge about the dominant system
time constants, which can be used to reduce the truncation
order. A significant advantage of choosing filter poles based
on the a priori knowledge is that the resulting parameter
estimation can be solved analytically. For example, given
pole vectors (n,,,n,) of a OBF-ARX model, state sequence
{x(k) : k =1,2...N,} can be generated using (14) and the
Fourier coefficients (C) can be estimated by minimizing the
prediction error, i.e.

(18)

N, N,
arg mén NLS 1;::1 e(k)? = arg rrgn NLS kgl (y(k) — Cx(k))?

The optimal solution can be computed analytically as [9],
[10]
C (nu:m,) = (B [x(k)x(K)7)) " B x(k)y(k)]

where E[.] represents the expectation operator. When a
priori knowledge about the dominant system time constants
is not available, the parameter estimation problem can be

(19)

formulated as two nested optimization problems and optimal
(n.,m,) can be estimated simultaneously with the Fourier
coefficients [10], [11].

It is straight forward to extend the sequential and the
simultaneous modeling approaches discussed in this section
to identification of MISO models using non-minimal state
realizations of the MISO models [10], [11]. Two major
concerns in system identification are bias and variance errors
committed in a modeling exercise. A detailed discussion on
this issue can be found in [9].

IV. NONLINEAR TIME SERIES MODELS

For the sake of brevity, development of SISO nonlinear
time series models is discussed in this section. Extension to
the MISO case is straight forward and will not be discussed
separately. Let Y* and U* denote data sets

{9(0),y(1), ... y(k)}
{u(0),u(1),...,u(k)}

A nonlinear black box model can be represented as follows

y(k) =
(k)

where ¢ represents regressor vector, F[.] represents a non-
linear mapping from the regressor space to the output space
and e(k) represents the model residual [13]. Vectors n and 6
represent parameters of the regressor function, ¢[.], and the
nonlinear mapping, F[.], respectively. Thus, the problem of
nonlinear black box model development can be decomposed
into (a) the regressor selection and (b) selection of the
nonlinear mapping. The nonlinear mapping can further be
expressed as a parameterized function family of the form

Fle. 0l=3c; fi(e.B)

Y =
Ur =

Flp(k), 0] + e(k)
@ [Uk_l, Yk_l, ?’]]

(20)
1)

where f;(y) represent basis functions and 0 =(a, 3). A
variety of basis functions such as polynomials, splines,
sigmoidal neural nets, wavelets, radial basis network etc. can
be used to construct the nonlinear mapping. Sjoberg et al.
[13] provide a comprehensive and unifying review of the
basis functions used in nonlinear black box modeling.

The main difference between the nonlinear black box
models parameterized using GOBF and the conventional
black box models is the choice of the regressor vector. The
basis functions used for constructing the nonlinear mapping,
however, are not different from the conventional choices for
the function space basis discussed in [13].

A. Regressor Construction

By the conventional approach, the regressor vectors are
chosen as

eu(k)=[u(k—1) .. uk-n)]" (22

o, (k)= [ y(k—1) yik—n) |7 (@3)
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Fig. 1. Schematic Representation of Feedforward Block Oriented (Wiener
Hammerstein) Model

i.e. to have a finite memory of n past samples [13]. In the
GOBF based modeling, on the other hand, the regressors are
typically chosen as

@u(k) = [ Fuilg,n,)u(k) Fun(g,my)u(k) 1"

@, (k) =] Fya(g,m,)yk) Fyu(a,m,)ytk) 1"

where n,, and n, represent vectors of GOBF poles. Thus,
given the identification data set (Y?V, UY) and OBF poles,
the regressor vectors can be constructed using state space
realizations of the form (9). For example, ¢, (k) (= x.(k))
can be generated recursively as follows

xy(k +1) = @(n,)x, (k) + Tu(n,)u(k)

Since F,;(¢,m,) € Ha, the regressor (state) sequence can
be generated under the assumption x,,(0) = 0. Alternatively,
while constructing block oriented nonlinear black-box mod-
els, regressors can also be constructed as follows

xu(k +1) = ®(n,)x, (k) + Tu(n,)g [u(k)]

where g[.] : R — R represent some preselected smooth
nonlinear algebraic function. Moreover, if g [u(k)] is a con-
tinuous function and {w(k)} is restricted to a compact set,
then it can be shown that resulting state sequence {x,(k)} is
also a bounded sequence. It may be noted that the resulting
regressors have a memory over a growing time window in
the past. A direct consequence of this feature is reduction in
the dimensionality of the model.

B. Forward Block Oriented NOE Models

A general nonlinear output error (NOE) models can be
represented as follows

y(k) = Flp(k), 0] + v(k)

where the regressor vector, p(k) = ¢ [U*"! n, ], is as
a function of past manipulated / known inputs alone and
v(k) represents the model residual term. Forward block
oriented nonlinear models (see Figure 1), such as Hammer-
stein, Wiener or Hammerstein - Wiener models, and Volterra
series models are sub-classes of NOE models that have
been extensively studied in the literature [14], [15]. In fact,
majority of OBF based NOE models that have been proposed
in the literature have forward block oriented structures. These
OBF-NOE models can be represented by a general Wiener-
Hammerstein form as follows

xu(k+1) = ®(n,)x, (k) +Tu(n,)hu(k),B] (27)
y(k) = Flxu(k), 0]+ v(k) (28)

(24)

(25)

(26)

where 3 represents parameter vector for the static map
h[.]. Choosing & [u(k)] = u(k) reduces it to the Wiener
structure while letting F [.] to be a linear map reduces it to
the Hammerstein structure. The OBF-NOE models proposed
in the literature essentially differ in their choice of basis
functions used for representing the static nonlinear blocks.

The conventional finite discrete Volterra series models can
be represented as follows [15]

Flou (k)] = ao + fj or(ulk — §) + ...

Jj=1

n n

. Z alw(jia-'vj]\f)u(k7.]‘1)--“(]{37.]-]&{)

Ji=1 jm=1

The finite Volterra series models result from the application
of the Weierstrass approximation theorem to equation (26)
under the assumption that (a) F[.] is a continuous function
of regressor defined by equation (22) and (b) input u(k) is
restricted to a compact set for all £ [15]. Boyd and Chua [22]
have proved an important extension of Weierstrass approxi-
mation theorem to fading memory systems, i.e. systems that
have weak dependence on the input signals from the remote
past. They established that, if F[] is a fading memory
operator, then it can be approximated arbitrarily well by a
finite Volterra model with some n and sufficiently large M.
In fact, the Volterra series models can be viewed as nonlinear
generalization of FIR models, which have been widely used
for development of linear MPC schemes. However, these
models are non parsimonious in parameters and, as a conse-
quence, require a large data set to keep the variance errors
low. This is an important issue, especially when they are
used to model multi-variable systems. Choosing regressors
parameterized using GOBF can alleviate this difficulty. Boyd
and Chua [22] have also shown that a Wiener Laguerre
model, constructed using Laguerre filters to parameterize
(27), can approximate any time invariant causal operator with
fading memory.

Several authors have subsequently developed and em-
ployed models that belong to this sub-class, i.e. OBF-Wiener
models. Doyle at al. [14] have proposed idea of representing
\olterra model coefficients in terms of discrete Laguerre
functions, which can be viewed as the impulse responses of
a family of Laguerre filters. Dumont et al. [16] develop SISO
Laguerre-Wiener models with state to output map modelled
as a quadratic polynomial

F [xu(k)] = Cxy (k) + x, (k)" Dx, (k)

and use it to formulate nonlinear generalized predictive con-
trol. Srinivasrao et al. [17] have developed a similar model
for MISO systems and shown that it can be adopted easily
to deal with irregularly sampled multi-rate measurement sce-
nario. Deshpande et al. [29] have exploited structure of these
models to develop closed form control laws and used it for
controlling an experimental proton exchange membrane fuel
cell (PEMFC) setup. Senotni et al. [18] initially parameterize
the linear dynamics using OBF while the state to output map
is constructed using a single hidden layer neural network.
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Fig. 2. Schematic Representation of Block Oriented Model with Feedback

To reduce the dimensionality of the inputs to the neural
network, model order reduction is carried out using balanced
truncation on the hidden nodes of the neural network. This
approach was used in a commercial product (Aspen Target
of Aspen Technology) [1], [19]. Kumar and Patwardhan
[27] have proposed to develop a MIMO multi-model using
OBF parameterization. Multiple local MIMO linear OBF-
OE models, identified at different representative operating
points, are combined using a neural network to arrive at a
OBF-Wiener model.

Hammerstein and Wiener-Hammerstein models are other
sub-classes of block oriented models that have been pa-
rameterized using OBF. Gomez and Baeyens [13] have
proposed a multivariable Hammerstein model where linear
dynamics is parameterized using MIMO GOBF. Thus, a
MIMO Hammerstein modes of the form

y(k) = 3 CFila) (f AyH, [u(k)]) Folk) (29)

is proposed where y € R", u € R™, C; represents (r x m)
matrices of Fourier coefficients, A; represents (m x m)
matrix parameters of the static nonlinear map and H; [.] :
R™ — R™ are chosen nonlinear basis functions. Dasgupta
and Patwardhan [23] have developed OBF based Hammer-
stein and Wiener-Hammerstein model using irregularly sam-
pled multi-rate data. Recently, McArthur [21] has proposed
Hammerstein and Wiener-Hammerstein models parameter-
ized using OBF. The nonlinear static maps in the block
oriented models are constructed using ordinal splines. In
particular, normalized cubic splines are used in modeling.
A detailed discussion on selection of instruments, i.e. linear
/ nonlinear combinations of internal / intermediate variables,
for model construction is provided. A high point of this
work is successful application of Hammerstein and Wiener-
Hammerstein modeling to an industrial air separation unit.

The main advantage of the OBF-NOE models is that they
ensures good prediction capability over a large prediction
horizon, which is of vital importance in any model predictive
control formulation. In addition, under the assumption that
the static nonlinear functions are smooth and «(k) input is
restricted to a compact set, these models can be shown to be
BIBO stable [15], [14], [17].

C. Block Oriented Models with Feedback

The NARX models can be represented in generic form
given by equation (20). This form explicitly captures the
effect of unmeasured disturbances by including past the

measurements in the regressor vector. When compared with
the forward block orientated models with NOE structure,
development of NARX type models using OBF parameter-
ization has not attracted much attention. Srinivasrao et al.
[24] and Dasgupta and Patwardhan [28] have proposed block
oriented models with output feedback as shown in Figure 2.
The proposed model can be expressed as follows

x(k+1) = W(n,,n,)x(k)+T(n,)h[uk)] +Ln,)yk)
y(k) = Fx(k), 0] +e(k) (30)

where matrices ¥(n,,,n,), I'(n,,) and L(n, ) are defined by
equations (16-17) and innovatlons {e(k)} represent a zero
mean white noise sequence. The model represents a form
of nonlinear observer. Combining the output map with the
state dynamics, the model can be expressed in a nonlinear
innovation form as follows

x(k+1) = ¥(n,,n,)x(k)+Ln,)F [x(k),6]
+T(n,, )R [u(k)] + L(n, Je(k)

which reveals that the states are functions of the past
innovations. The nonlinear innovation form has been used
to develop and implement a nonlinear MPC formulation
[25]. Similar to the linear case, modeling of unmeasured
disturbances can also be carried out in a sequential manner.
Srinivasrao et al. [17] model residuals generated from NOE
model as nonlinear ARMA (or NARMA) process.

@31

D. Model Parameter Estimation

Model parameters for OBF-NOE and well as OBF-NARX
structure are estimated using the prediction error method.
Thus, given a choice of OBF poles, the model parameter
problem is posed as

N

> (y(k) = F [x(k), 6])”

s k=1

0 = arg mein

For certain choices of mapping F [.|, parameter estimation
problem may have analytical solution [17], [20], [21], [24].
However, in most cases, the optimization problem has to
be solved using a suitable numerical optimization approach.
Choosing the GOBF poles can be a difficult task particularly
for NARX structure. In such cases, a nested parameter
estimation problem can be formulated as follows [24], [28],
[17]

PN . 1 2
(nuanya 9) = arg min [argml F z_: (kanuvnw 0)2

MNyMy

subject to |n,,;| < 1 fori = 1,..I, and
1 fori=1,..1,

iny,i| <

E. Modeling Multiplicity Behavior

Many nonlinear dynamic systems exhibit two types of
multiplicities viz. input multiplicity and output multiplicity.
Input multiplicity is a phenomena in which different values
of input variables produce identical value(s) of output vari-
able(s) in the steady state solution, while output multiplicity
is a phenomena in which different steady state solutions exist



for the same value of inputs. A detailed discussion on various
nonlinear black box model structures and their abilities to
model input and output multiplicities can be found in [15]. If
input is held constant at u(k) = w, then, from (27), it follows
that there is a unique steady state, X, = [I — ®] ' T',h[u],
corresponding to @. Thus, OBF-NOE models of the form (27-
28) can only be used to capture input multiplicity behavior.
Occurrence of an extremum and change in sign of the
steady state gain around the extremum are often observed in
systems exhibiting input multiplicity, which makes the task
of controlling these systems extremely difficult. The OBF
based nonlinear black-box models have been successfully
used for extremum seeking control of system exhibiting input
multiplicities such as wood-chip refiner motor [16], stirred
tank reactor [25], continuous fermenter [17] and PEM fuel
cell [26]. The OBF-NARX structure is capable of capturing
input and well as output multiplicities. This follows from the
fact that, at u(k) = w and e(k) = 0, equation (31) reduces
to [I - ®]x = LF [X] + 'k [u], which can accommodate
multiplicity of steady states (X) provided F[.] is chosen
carefully. Srinivasrao et al [24] have shown that OBF-NARX
model can be used to capture output multiplicity behavior in
a CSTR system and control it in a highly nonlinear region.

V. CONCLUSIONS

While nonlinear black box models can facilitate nonlin-
ear controller synthesis, the conventional NOE and NARX
models often have large number of model parameters. This
difficulty can be alleviated by constructing regressors using
orthonormal basis filters. The use of OBF parameterization
can significantly reduce the time required for identification
tests and thereby accelerate the process of developing a non-
linear model based control scheme. Moreover, these models
are capable of capturing input as well as output multiplicities
exhibited by many nonlinear systems. A variety of OBF
based forward block oriented nonlinear black box models
with NOE structure have been proposed in the literature.
While this modeling approach appears quite promising, its
full potential still remains to been explored particularly
for modeling of unmeasured disturbances (i.e. developing
NARX models or nonlinear observers) and for multi-rate
sampled data systems.
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