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Abstract—Li"-ion batteries are widely used in a va-
riety of products ranging from consumer gadgets such
as cell phones and laptops to electric vehicles. Their
popularity can be attributed to high energy density and
minimal maintenance. Charging these batteries can take
anywhere from a few hours for low powered gadgets
to many hours for high powered automobiles. Although
theoretically possible, fast charging is not preferred
because it can lead to unsafe operating temperatures
and side reactions that degrade the life of a battery.
An optimal algorithm to charge these batteries must
therefore account for these constraints in addition to
the complex battery dynamics. The battery dynamics
are often defined by a large interconnected set of partial
differential equations. However, this model is too complex
and often takes many hours to solve for relevant battery
variables. Single Particle Model is an approximation of
this set of partial differential equations. In this article,
we develop a constrained moving horizon algorithm to
generate an optimal charging profile. The algorithm
is based on minimizing the total charge time while
meeting the operating safety constraints. The algorithm
is illustrated through simulations. Simulations show that
the Moving Horizon approach significantly reduces the
total charging time by more than 20 percent, compared to
a static optimization problem which produces a constant
current over the entire charging period.

I. INTRODUCTION

Lithium ion (Li™") batteries are a relatively new type
of energy storage technology, developed to replace the
older and less efficient lead-acid and transition-metal
hydride batteries. Compared to other types of batteries,
LiT batteries possess certain important advantages:
superior energy-to-weight ratios and low levels of idle
self-discharge. Consequently, Li* batteries are now
used in most everyday hand-held appliances such as
laptops and cellphones, and are seeing an increased use
in hybrid-electric vehicles (HEVs).
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The general operational goal behind Li™ batteries is
to have them deliver specified amounts of power safely
and reliably. One interesting problem at hand concerns
the optimal charging method of the battery. The widely
used charging methods are extremely conservative and
are designed to mainly meet the safety constraints. In
fact, these charging strategies often take many hours to
fully charge a battery. The trade-off between overcharg-
ing and undercharging can be qualitatively described as
the following: If the charge (coulomb) rate is too high,
these batteries can become explosive due to undesired,
runaway exothermic reactions that occur at unsafe high
temperatures. At low charge rates, the battery is simply
charging too slowly, and more current can be utilized
to bring the battery to full charge more quickly. In
this article, we define the optimal charging profile as
a vector of current values that minimizes the total
charging time of the battery or maximizes the State
of Charge (SOC') of the battery.

The charging of a battery is a batch process and
its optimal profile can be theoretically obtained if
a battery model is available. Such a battery model
must characterize the dynamics of the electrochemical
and transport properties. The important properties in
a battery are the concentration of Li™ ions in the
electrolyte and in the solid particles (C), temperature
(T), current (1), voltage (V'), and SOC of the battery.
A variety of dynamics models starting from simple
electrical circuit equivalent models to complex molec-
ular dynamics models have been developed over many
years to describe the behaviour of LiT batteries. The
electrical circuit models are too simplistic and are not
accurate enough, however, molecular dynamics models
are more accurate but too complex for use in any
optimization algorithm (Ramadesigan, Northrop, De,
Santhanagopalan, Braatz & Subramanian 2012). Doyle,
Fuller & Newman (1993) have constructed a complete
physical model of a typical Li™ battery, consisting
of coupled nonlinear partial and ordinary differential
equations (PDEs and ODEs), which allow the previ-
ously stated variables to be determined at any time ¢.



This is known as the ‘“Pseudo Two-Dimensional” (P2D)
model. Numerous other models have also been used
for state estimation (Plett 2004, Santhanagopalan &
White 2006, Gopaluni & Braatz 2012). From a control
perspective, however, the P2D approximation is too
complex to be simulated. Instead, Chaturvedi, Klein,
Christensen, Ahmed & Kojic (2010) have simplified the
battery physical model from a solid-electrolyte, dual-
phase system, into a “Single-Particle Model” (SPM)
model. By doing so, the coupled partial differential
equations are now approximated as a system of recur-
sive algebraic equations. This approximation is accurate
for low coulomb rates. In this article, we use this model
to design an optimal charging profile.

The first step is to define an optimization objec-
tive to determine the optimal charging profile. Klein,
Chaturvedi, Christensen, Ahmed, Findeisen & Kojic
(2011) have proposed a Nonlinear Model Predictive
Control (NMPC) scheme for fast battery charging,
utilizing the a simplified version of the full, com-
plex physical model provided by Doyle et al. (1993).
The constrained variables for the optimization are T,
SOC, and overpotential (1) of the battery, according to
data given by the battery manufacturer. In this paper,
we use the approximate, single-particle model given
by Chaturvedi et al. (2010) and develop a different
methodology based on a moving horizon optimization.
In this method, we select an appropriate time period or
window (that is a fraction of the total charging time)
and find a current profile that maximizes the SOC of the
battery, such that all the physical constraints are met. In
section II, the SP model and the approximate, algebraic
state equations will be discussed in full. We will detail
the Moving Horizon Optimization approach in section
IIT and present an optimal charging profile in Section
IV, given a set of typical material properties for a Li™
battery. Finally, Section V will conclude this study and
identify areas necessary for future improvements.

II. L1™ BATTERY FULL PHYSICAL MODEL

Within the core anatomy of a typical Lit battery,
three distinct domains are identified: the negative elec-
trode, separator, and the positive electrode. Doyle et al.
(1993) have proposed a full, 1-dimensional physical
model interrelating the state variables of (V, I, C)
between the Solid (s) and Electrolyte (e) phases of
the battery. The 1-dimensional (in terms of horizontal
coordinate x) approximation is based on the assumption
that the width and height of the battery (y and =z,
respectively) are more than 100 times greater in mag-

nitude compared to the length (in the z-direction) of
the electrode domain. In this study, we make a further
assumption that the state variables (V/, I, C) do not
vary with z. In other words, we are visualizing each
electrode as a giant particle with the same diameter
as the length of that electrode. As a result, each state
variable (V, I, ') is only a function of particle radius
(r) and time (¢). This simplification eliminates most of
the coupled PDEs in the P2D model and leaves us with
the Fickian diffusion of Li™:
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The variable cg(x,,t) represents Li* concentration, r
the radius of the hypothetical particle, D the diffusion
coefficient, and x the horizontal coordinate. The super-
script 0 indicates the quantity at initial time (i.e. ¢ = 0),
s the solid particle phase, and n a molar quantity.
The molar fluxes of Li™ for the positive and negative
electrodes are calculated using the formulas provided
by Chaturvedi et al. (2010):
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The superscripts p and n indicate the positive and nega-
tive electrodes, respectively. Treating Dy as a constant,
this PDE and its corresponding Boundary Conditions
(BCs) can be solved using a simple finite-difference
method to determine ¢, and c,, at any time ¢. However,
the computational power required can become increas-
ingly intense as the specified grid size shrinks. Instead,
we use the algebraic formulas provided by Northrop,
Ramadesignan, De & Subramanian (2011) to calculate
the average and particle surface values of ¢, and ¢, in
succession:
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The superscript ¢ can be either p or n. From (5) and
(6) we see that applying a constant current [ to the
battery from ¢ = 0 to ¢ = ¢* results in a constant

molar Li* flux in that period. Therefore, (7) becomes



algebraic in the sense that d¢ becomes a constant, and
each cqyg at t = ¢; + 1 can be recursively calculated
from cqyqg at t;. To accomplish this, the time domain
is divided into a grid space of ¢,, equally-spaced nodes
[t1,12,,t,]. Then, after determining values of cg,g, We
calculate ¢y, using a similar recursive method. After
obtaining the values of ¢,y and cqyg, We transform
them into dimensionless concentrations by dividing
over the maximum solid-phase concentrations in each
electrode:
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Next, the Open-Circuit Potentials (OCP, denoted by U)
for the positive and negative electrodes can be calcu-
lated separately using the following formulas provided
by Northrop et al. (2011) (note that either 0y, or 0404
can be substituted in to find the surface and average
OCPs, respectively):
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The positive and negative electrode potentials (¢) are
calculated using the OCPs as such:
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Again, the superscript ¢ indicates that one may use
the formula for either the positive or negative elec-
trode. Finally, using these potentials, the overall battery
voltage is determined as the difference between these
potentials:
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Besides the existing state variables (V, I, C'), another
state variable, namely temperature (7°), must also be
monitored as a function of time for each electrode.
This is because temperature is one of the constrained
variables in optimizing the charging profile. Klein et al.
(2011) have proposed a set of equations relating the
temperature change in the cell to the heat of reaction
generated by charging, ohmic heat generation, and
heat loss to the surroundings. Again, using the model
simplification that T does not change with respect to x,
the set of PDEs reduce to a single ODE to be solved.
Assuming that the OCP of each cell does not vary with
T, the single ODE of T" with respect to ¢ (and subject
to material properties of the battery) is:
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This ODE can simply be solved by a 4*-order Runge
Kutta (RK4) routine to find 7}, or 7, at any time
t. Due to the simplicity of Matlab simulations, we
select it as the program of choice in this study. The
relevant state variables of the battery (V, C, T) are
calculated as a function of a single input, which is
the current density (/) to the battery. Although I
would normally be considered as varying with time and
spatial domain z, the single-particle and time-invariant
assumptions eliminate these complexities. Here, I is
treated as a constant current density. The outputs are
the positive and negative electrode concentrations (C')
and temperatures (7)), as well as the final SOC' of the
negative electrode, since during charging the negative
electrode is filled up from zero charge. C' and T are
outputted and stored as global variables. The reason
behind this is as follows: we wish to calculate C' and
T from t = 0 to t = t1, then use these values to
determine the optimal charging profile from ¢ = 0 to
t = t;. Then we repeat the process from ¢ = t; to
t = t9, and so on. The details of this optimization are
covered in the following section.



III. ALGORITHM FOR OPTIMAL CHARGING
A. Methodology

Suppose that the dead battery (at zero SOC) starts
charging with a chosen current density, I, from a certain
initial temperature 7' and concentration C' (Note: T
and C contain both values of positive and negative
electrodes, and are treated as column vectors, i.e. Ty =
[Top, Ton)? and Cy = [Cop, Con]?. Next, the material
constraints on this charging process are identified. They
are the maximum allowable temperature 7)., of the
battery, the maximum SOC SOC),,, of the battery (i.e.
the fully charged SOC value), as well as the governing
physical model equations discussed in section II. The
Moving Horizon Optimization approach is as follows.
First, we break down the total charging time required to
bring the battery to full charge, ¢:jq4rge, into fractional
periods called windows. The period of each window
is denoted by W. Within each window, we break
down the time domain further into N sub-windows
dW = W/N. The charging profile is then defined as
I =[I,Is,...,Ix]", with each element corresponding
to the current density applied to the battery at ¢ =
[0,dW, ..., NdW]T. Each element I; is determined by
applying the previous charge I;_; to the battery from
t; — 1 to t; for dW seconds, and calculating 7;_; and
C;_1 of the battery at the end of the dW seconds. T;_1
and C;_; are then used as initial conditions, with the
present current I; being applied to the battery from ¢;
to t;4-1. This process is repeated until Iy is determined.
The objective is to maximize SOC,, at the end of the
charging period (i.e. at ¢ = W). This problem can
be written mathematically as the following non-linear
optimization program:

SOC,(z)

maximize
I
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5.Physical Model Equations.
Starting at ¢ = 0, solving the non-linear optimization
problem yields the optimal charging profile from ¢ = 0
tot = W, IO,opt = [IO,optla---alo,optN]- Here, we
take only the first element of Iy ., and apply it to
the actual battery for dW seconds. In other words, we

solve the algebraic model equations and single ODE to
find the actual 7} and C; of the battery at t = dW,

given initial conditions Tg, Cy and applying the current
density I,,¢1 from ¢ = 0 to ¢t = dWW. We then repeat the
whole process, shifting the window from ¢t = dW to
t =W +dW. Ty and C] are used as initial conditions
to find the second optimal current profile I ¢, using
the same non-linear optimization problem. The first
element of I ., is then applied to the actual battery
from t = dW to t = 2dW, and so on until the
battery reaches its fully-charged SOC'. The following
is one way to interpret the Moving Horizon approach
physically. The temperature of the battery at a time W
seconds from present is predicted. The present current
is only applied to the cell for dW seconds, while
all the remaining currents between ¢t = tpresent and
t = tpresent + W are adjusted such that the battery is
charging as fast as it can while simultaneously staying
within its physical bounds. In the worst case scenario,
one can simply charge the battery at any desired current
density, risking overheating and/or overcharging. The
first improvement is the static non-linear optimization
problem which generates one constant current value
from ¢ = 0 t0 ¢ = tcharged that guarantees satisfaction
of all physical constraints. We will show in Section IV
that the optimal charging profile determined by using
the Moving Horizon results in a shorter charging time,
compared to the two scenarios previously described.

B. Implementation

The built-in Matlab function fmincon is used to find
the optimal current profiles Iope = [Ioptis- -, LoptN]
with respect to the non-linear optimization. The ob-
jective function calculates SOCn at the end of the
charging period given I,,;. The first constraint of the
non-linear optimization requires 7" to be calculated as a
column vector with N elements (7' = [T}, T5,...,Tn])
along with I. This is simply accomplished by writing
a program which outputs a temperature profile given
I, using the physical model equations as a basis. The
second constraint is simply dealt with using a WHILE
loop. The third and fourth constraints are stated as up-
per and lower bounds on I. Finally, the fifth constraint
merely points to the validity of the modelling equations
in the program, and does not need to be formulated as
a real constraint.

IV. RESULTS AND ANALYSIS

In this study, the charging of a 5V Li™" battery (pos-
sessing material properties in the paper by Klein et al.
(2011) is simulated using Matlab. During charging, Li™
ions move from the positive to the negative electrode.



Therefore, the limits of zero charge and full charge
are defined as the SOC of the negative electrode,
which are SOCn = 0 and SOCn = 0.5, respectively.
Suppose the operational limits of this Lit battery
are as follows: charging current density constraint of
0 < Iyppliea < 20A/m2, and temperature constraint
of Ty < 313K(40°C). In Case 1, we aggressively
charge the battery at Inppliedmaz = 20A4/m?, paying
no attention to any constraints. The battery will reach
full charge after 3,000 seconds, but the cell temperature
will reach 325K, grossly violating the temperature
constraint. This is illustrated in the following Fig. 1.
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Fig. 1. Simulation results showing battery charging at the upper
current density, 204/m?. Notice that although the total charging
time is only 3,000s, the cell has overheated significantly (the red
line indicates the upper temperature constraint).

Risking battery overheating and/or explosion is
clearly not acceptable. Case 2 applies the first obvious
improvement over Case 1, where we optimize I,ppiied
using a static non-linear program with the constraints
stated in Section IIIA over the entire charging period
(Fig. 2). This provides the optimal Io,eq = 9.7A/ m2,
which brings the battery to full charge in 6,000s while
just reaching the temperature constraint by the end of
the charging period.

Notice that none of the constraints stated in Section
IITA are violated. However, lapplied does not need to
be constant. Intuitively, we can charge at the maximum
Topplica = 20A/ m? at the beginning of the charging
period, where the temperature is still low. Then, we pre-
dict ahead of time whether the temperature constraint
will be violated, and decrease the current accordingly.
This is exactly the essence of the Moving Horizon
approach, and we take full advantage of it in Case 3.
In Fig. 3, we use a window size W = 100s, and a
fractional window period of dWW = W/N = 10s with
(N = 10). The optimal charging profile is no longer a
constant I,,eq, but a vector containing many optimal
current densities over the entire charging period. Using
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Fig. 2. Simulation results showing battery charging at Ioppiica =
9.7A/m?, determined by a static, non-linear optimization problem.
The temperature constraint (red line) is just reached at end of the
charging period, indicating that 9.74/m? is indeed the maximum
constant current which would charge the battery most quickly.

this method, the battery reaches full charge after 5,000
seconds without violating any material constraint, pre-
senting a clear improvement over the static, non-linear
optimization. A further interesting result is obtained
when the window size and fractional window sizes are
reduced to W = 20s and dW = 2s, respectively. By
doing so, we obtain another significant reduction in the
total charging time, from 5,000s down to 3,600s. This
is due to the Matlab optimizer fmincon giving more
aggressive currents in the beginning of the charging
period. The increased aggressiveness is a result of the
reduction of window size. Previously, the optimizer
was generating current values based on what the cell
temperature would be 100s from present. Now, the
optimizer is only looking 20s from the present into the
future. This phenomenon can easily be explained by
the analogy of driving a car towards a wall. If the wall
exists 100m from the car, a Moving Horizon optimizer
with W = 100m will see the wall and slow the car
speed accordingly, such that the car stops safely just
as it reaches the wall. However, a Moving Horizon
optimizer with W = 20m will not see a wall at the end
of its window, and hence will tell the car to continue
with full speed.

A note of caution is in order. Even though reducing
the window size W will decrease the total charging
time further, which is parallel to our goal, it may
provide infeasible charging profiles if W is made too
small. Again we use the car analogy to illustrate this
concept. If we use an optimizer with W = 1m with
a wall 100m away from the cars present position, the
car will drive at full speed towards the wall until it has
travelled 99m (i.e. is only 1m away from the wall). The
optimizer will then tell the car to slow down abruptly,
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Fig. 3. Blue curves indicate Moving Horizon simulation results,
with W = 100s and dW = 10s. The optimal current profile
is Tupprica = 20A/m? for the first 1,000s, then dropping down
to 9.3A/m? for the remaining 4,000s. Magenta curves represent
results with W = 20s and dW = 2s. The optimal current profile
is Toppiica = 20A/m? for the first 1,250s, then decreasing down
to 9.5A/m? for the remaining 2,650s. The total charging time is
reduced from 5,000s to 3,600s by using the smaller window.

but the brakes of the car may not be able to achieve
this physically. In this study we do not address the
issue of finding the feasible bounds of the Moving
Horizon optimizer. Here we simply suggest the use of
a reasonably large window size W and prove that it is
indeed superior over the static optimizer approach.

V. CONCLUSIONS

The Moving Horizon approach is used to determine
the optimal charging profile for a Li* battery. This
charging profile is one out of many feasible ones
(i.e. those that do not violate the material constraints
of the battery, namely the State of Charge (SOC),
Current Density (I), and Temperature (7")) that brings
the battery to full charge within the shortest period of
time. The new algorithm for optimal charging results
in a superior (decreased) total charging time over the
static, constant-current non-linear optimization. This
is because the algorithm varies the current over time
based on the gap between the state variables and
their constraints. When applied on a typical 5V Lit
battery, the static non-linear optimization charges the
Li™ battery from 0 to 0.5 SOC in 6,000 seconds.
On the other hand, the Moving Horizon algorithm can
reduce this charging period down to 5,000 and 3,600
seconds, depending on the window size used. When
using the Moving Horizon approach, a reasonable pre-
diction window size (W) must be used. If W is too
large (i.e. if its magnitude is significant compared to
the total charging time), the optimization result would
resemble that of the static non-linear program. On
the other hand, if W is too small, the optimization

may produce an infeasible result. In other words, the
optimizer may react too slowly to decrease the current,
such that the state variables end up exceeding the
material constraints. This study does not explore the
optimal range of W, but it is an important concept to
consider in a follow-up study.
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