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Abstract: Type 1 diabetes is a disease caused by an autoimmune reaction. The Artificial
Pancreas (AP) is an automatic closed-loop system composed of a subcutaneous glucose sensor,
a subcutaneous insulin pump and a device on which a control algorithm and a human interface
are implemented. The last years have seen an accelerated improvement of these three components
that became more reliable and compact, making the system safer, wearable, and usable in real
life. An overview on AP and its components is presented together with an introduction on
the in-silico tools used to develop and tune the control algorithm and to make pre-clinical
tests. Particular attention is devoted to the design of a Model Predictive Control, to the choice
of the model and of the constraints, and to the definition of the most relevant performance
indices. Most of the choices have been driven by the experience gained by both in-silico and
in-vivo trials. In-silico experiments involved thousand of hours of simulations on the Food
and Drug Administration accepted simulator equipped with 100 adult virtual patients. In-vivo
experiments, of which a complete list is presented, involved about forty thousand hours of trials,
first, conducted in a clinical environment and, then, at home.

Keywords: Artificial Pancreas, Predictive control, Linear systems, Biomedical control,
Biomedical systems.

1. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is a disease in which
the body is incapable to autonomously regulating Blood
Glucose (BG) concentration, also called glycemia. The
causes of this disease are still unclear, but genetic heredity
is thought to play an important role in determining who is
likely to develop T1DM, that typically occurs in children
and young adults (though it can appear at any age). T1DM
is characterized by a lack of insulin due to the destruction
of insulin-producing beta cells in the pancreas and, as a
consequence, the patient can encounter hyperglycemia (i.e.
high BG concentration). In order to avoid hyperglycemia,
the patient needs exogenous insulin infusions that have to
be properly tuned. On the other hand, insulin overesti-
mation could bring the patient into a hypoglycemia state
(i.e. low BG concentration), that can seriously compromise
the patient health. The severity of the disease motivated
the interest of the scientific community and of several
organizations to find a doable and reliable solution.
The Artificial Pancreas (AP) was born as a system thought
to automate the exogenous insulin supply and its first
appearance as a commercial device dates from 1974 (Pfeif-
fer et al. (1974)). This version needed venous access, was
highly invasive and non-portable, and the patient had
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Fig. 1. Conceptual AP representation. Circled elements
represent the main AP components.

to be hospitalized. Recently, several research projects on
AP were supported by the Juvenile Diabetes Research
Foundation (JDRF), the European Commission, and the
National Institutes of Health (see Bequette (2012), Cobelli
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et al. (2009), El-Khatib et al. (2010), Hovorka et al. (2010),
Weinzimer et al. (2008), Russel et al. (2014), Del Favero
et al. (2015), and Thabit et al. (2014)) and today, thanks
to the latest technology developments, the system has
become non-invasive, safe, and wearable. The AP main
components are a subcutaneous (sc) insulin pump, a sc glu-
cose sensors or Continuous Glucose Monitor (CGM), and
a Control Algorithm (CA) that is executed on a portable
device. The AP components interaction is represented
by the circled elements in Fig. 1. The CGM provides a
quasi-continuous measurement of sc glucose to CA, which
has to evaluate the optimal quantity of insulin to infuse
to the patient. The algorithm suggestion is then sent to
the sc insulin pump, that infuses the desired quantity of
insulin in the patient sc tissue. CA can manage additional
external information like the meal announcement and the
conventional therapy (as described in the following), and
can produce warning messages and alarms, if necessary.
This system is non-invasive for the patient, but has to deal
with significant noise and delays in the glycemia readings
and important delays on the insulin absorption (see Cobelli
et al. (2011)). Moreover, the patients are characterized by
an important intra- and inter- variability, making the CA
design challenging.

2. SIMULATOR

In order to minimize the design cost and time of a reliable
AP, some simulators have been developed by different re-
search groups based on specific models of diabetic patients
(see (Cobelli et al., 2009)). A simulator can be exploited
to design and test different control algorithms entirely
in-silico, i.e. by simulating a large amount of hours of
experiments in different scenarios. Indeed, by considering
a proper model of the CGM measurement noise and by
considering the insulin pump hardware properties (e.g.
infusion quantization), the simulations can reproduce the
cycle of Fig. 1 without involving any diabetic patient (i.e.
the real AP components are substituted with simulated
components and the patient is substituted with a model).
In order to cope with patient intervariability, simulators
are usually equipped with a set of model parameters rep-
resenting a population of diabetic patients having different
characteristics. In this work we focus on the UVA/Padova
simulator, that is the only one approved by the American
Food and Drugs Administration (FDA) as a substitute
of pre-clinical animal tests. It is equipped with a virtual
population composed of 300 virtual patients, 100 adults,
100 adolescents, and 100 children (see (Dalla Man et al.,
2014) for the most recent version). An example of the
simulated patients intervariability is depicted in Fig. 2,
where the BG simulations of 10 adult vitual patients of
the UVA/Padova simulator are shown. Despite the same
insulin and meals, each patient has a different BG trend.
Fig. 2 also shows the euglycemic range, which is defined as
the BG range spanning from 70 mg/dl to 180 mg/dl and is
considered to be a safe interval where the patient glycemia
should remain in order to avoid hypo- and hyperglycemia
phenomena.

3. GLUCOSE CONTROL

The main task of AP is to automatically maintain the
patient BG concentration within a safe range. This difficult

task requires an architecture designed to maximize the
efficacy of CA and to minimize the risks for the patient. An
improved version of the modular architecture presented in
(Kovatchev et al., 2009), (Cobelli et al., 2011), and (Patek
et al., 2012)) is proposed. The improved architecture is
divided in four main layers and includes various modules,
as shown in Fig. 3. The off-line layer represents all the
information that the AP system needs to be properly
initialized and individualized for a specific patient. The
real time layer includes the controller, which is driven by
the CA, and the modules that interact with the controller
during the system operation. This layer operates with a
synchronous sampling time compatible with the dynamic
of the system (i.e. 15 minutes), but must be also able
to handle asynchronous events like a meal announcement.
The continuous time layer typically operates with a lower
sampling time (i.e. 5 minutes) and interacts with the
insulin pump and CGM, that are included in the hardware
layer.

3.1 Initialization & Individualization

The aim of the off-line layer is to deal with the patients
inter-variability. In fact the CA must be properly initial-
ized and individualized using the patient clinical informa-
tion acquired by the physician, that is passed into the
initialization & individualization module, as shown in Fig.
3. The most common used patient information is the so
called Conventional Therapy (CT) that has been defined
by the physician and is based on the patient character-
istics. It contains the information about the patient basal
insulin, that is the insulin needed to maintain the glycemia
concentration equal to the basal glucose value during the
fasting periods. CT also contains the so called Carbo Ratio
(CR) and Correction Factor (CF) parameters, that are
directly correlated to the insulin boluses needed to com-
pensate glycemia during each postprandial (PP) period.
A better individualization can also be achieved if data
collected in previous in-vivo experiments performed on
the same patient are available. In this case model iden-
tification techniques can be implemented. Model and/or
parameter individualization can be also periodically up-
dated in order to adapt the CA to possible slow changes
in patient metabolism. This adaptation strategy has to be
computed off-line since it requires a high computational
burden and/or is memory demanding.

3.2 Adaptation Module

The controller individualization performed in the off-line
layer can be modified on-line by taking into account some
information provided by the patients or data collected in
the previous period. The algorithms designed for this layer
must have low computation and memory requirements.
The algorithms based on a Run-To-Run (R2R) for example
typically satisfy these requirements because they need very
simple data computations and are based only on the last
day.
Several R2R strategies based on sporadic BG measure-
ments 1 were successfully tested in-silico and in-vivo. For
instance, a day-by-day adaptation was studied for basal

1 BG concentration can be autonomously measured on venous blood
obtained by fingerstick or fingerprick.
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Fig. 2. BG simulations of 10 adult virtual patients of the UVA/Padova simulator. The black dashed lines represent the
euglycemic range (i.e. [70− 180] mg/dl).
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Fig. 3. Representation of the Artificial Pancreas modular
architecture.

insulin (see (Palerm et al., 2008)), for insulin boluses
(see (Doyle et al., 2001), (Zisser et al., 2005), (Owens
et al., 2006), (Palerm et al., 2007a), and (Palerm et al.,
2007b)), and for a model predictive controller cost function
(Magni et al., 2009b). More recently, the study of (Toffanin
et al., 2014) investigated the automatic day-by-day basal
insulin adaptation based on CGM sc measurements. This
approach was tested in-silico by gradually varying the in-
sulin sensitivity of the UVA/Padova adult virtual patients.

This R2R strategy significantly improved the BG control
performance after one week. A more powerful strategy that
adapts both insulin boluses and basal insulin is currently
used in in-vivo clinical experiments.
The on-line adaptation can also be adjusted by manual
corrections. The patient can modify some clinical param-
eters based on his particular state (e.g. sickness, stress,
physical activity, etc.) and the adaptation module can use
the history of the manual corrections to improve future
automatic adaptations. By giving the patient the possibil-
ity to interact with the adaptation module, the system can
store precious information about the patient habits (e.g.
routine physical activity during the week), which could
be considered for advanced strategies of individualization
based on data mining techniques.

3.3 Meal control module

The controller module is composed of two sub-modules,
as shown in Fig. 3. The meal control module (MCM)
is implemented for meal compensation and uses meal
announcement (MA) as an external information supplied
by the patient (see (Soru et al., 2012) for details on
MA). The range control module (RCM) is the core of the
controller and it is described in Section 3.4. MA is used to
inform the controller about the time and the estimated
amount of carbohydrates of a meal. This information
is used by the CA together with the CT to infuse the
estimated insulin bolus needed to compensate a meal. The
advantage of using MA is to inject an insulin bolus without
waiting for the PP glycemia raising supplied by the CGM
measurements, consequently improving the PP glucose
control performance. MA represents additional knowledge
that is available to the patient and that should be exploited
to improve the BG control performance, especially within
the PP periods. In case of a missing MA, in spite of an
unavoidable worsening of the control performance, the AP
system should remain able to operate safely.
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3.4 Range control module

The core of the controller resides in the range control
module (RCM), that is driven by a specific CA to maintain
the BG concentration within a safe range. In the literature,
several control algorithms based on Proportional Integra-
tive Derivative schemes ((Steil et al., 2006) and (Marchetti
et al., 2006)), on Fuzzy Logic (Atlas et al., 2010) and on
Model Predictive Control (MPC) ((Hovorka et al., 2004),
(Parker et al., 1999), (Magni et al., 2007), (Soru et al.,
2012), (Hovorka, 2005), (Hovorka, 2006), (Grosman et al.,
2010), (Dua et al., 2006), (Magni et al., 2009a), and (Patek
et al., 2012)) have been proposed.
In the following a description of an MPC technique is
proposed.

Model The model can be linear or nonlinear, but clinical
evidence collected in various experiments indicates that a
linear approximation may capture the essential dynamics
for an efficient and safe BG control (Del Favero et al.,
2014). One of the latest MPC for AP used in in-vivo
clinical trials is presented in (Toffanin et al., 2013), whose
process model is the linearization around a basal fictitious
equilibrium of the average nonlinear model describing the
adult virtual population of the UVA/Padova simulator
(Dalla Man et al., 2014).
In order to improve the MPC performance and safety, the
process model individualization is a key point that has to
be properly investigated. Recent works have addressed the
model individualization based on the CR clinical param-
eter (Messori et al., 2015), on nonparametric identifica-
tion (Del Favero et al., 2014), on low-order linear models
identification (Soru et al., 2012), and the use of these
techniques in in-vivo experiments is currently under de-
velopment. Another technique based on a multi-objective
optimization problem has been proposed in (Maheshwari
et al., 2012). It is worth to emphasize that the MPC model
individualization based on clinical data is part of the off-
line adaptation in the modular architecture of Fig. 3.

Cost function MPC is equipped with a cost function
that drives the controller suggestions. In the AP context
the cost function generally represents the risk associated to
hypo- or hyperglycemia phenomena. The MPC proposed
in (Toffanin et al., 2013) implements the following cost:

J(x(k), i(·), k) =

PH−1∑
j=0

(q(c(k + j)− y0(k + j))2

+(i(k + j)− i0(k + j))2) + ‖x(k +N)‖2P

(1)

where i(k) is the insulin to be infused at each time k,
x(k) is the linearized model state, PH is the prediction
horizon, i0(k) is the insulin suggested by the patient
CT, c(k) is the CGM measurement, y0(k) is the glucose
set-point, P is the solution of the discrete time Riccati
equation introduced to approximate an infinite horizon
cost function and to improve stability property, and q is
a parameter that quantifies the controller aggressiveness.
Due to the patients variability, the latter needs to be
properly calibrated to adapt the controller suggestions to
a specific diabetic patient. Such calibration is part of the
off-line adaptation of Fig. 3. It can be performed in-silico
by considering the nonlinear models describing the virtual
population and, then, by identifying a regression model

based on clinical parameters that is used to adapt the cost
function to any diabetic patient (Soru et al., 2012). In case
the linear process model is identified from clinical data, the
calibration procedure can be automatically performed on
the identified model with a trial and error approach and
the resulting optimal q value can be directly proposed for
the diabetic patient (Soru et al., 2012).
Cost (1) is symmetric, since it associates the same risk to
hypo- and hyperglycemia phenomena (i.e. the same risk
is associated to glucose concentrations higher and lower
than the set-point y0(k)). A different approach consists on
considering an asymmetric cost function, which associates
a higher cost to hypo- with respect to hyperglycemia
phenomena (Parker et al., 2000), (Magni et al., 2009a).
The recent work of (Messori et al., 2015) proposed the
following asymmetric cost function:

JA(x(k), i(·), ε1, ε2, ε3, ε4, cH(·), cL(·), k) =
PH−1∑
i=0

(
||cL(k + i)||2qL + ||cH(k + i)||2q+

+(i(k + i)− i0(k + i))2
)

+ ||x(k +N)||2P +

4∑
j=1

Mjε
2
j

(2)

where cL(k) and cH(k) represent the sc glucose negative
and positive variations with respect to y0(k), respectively,
εj and Mj with j = 1, 2, 3, 4 are slack variables related to
soft constraints with the associated weights, respectively,
and the fixed weight qL >> q is related to hypoglycemia.

Constraints One of the major risks of a BG controller
based on insulin only is to induce hypoglycemia. In this
case, the AP system should produce an alarm to inform
the patient about his state and the controller should stop
the insulin infusion until a normal BG concentration is pre-
dicted to be recovered. It is also possible that the patient
needs to assume some rapidly absorbing carbohydrates.
In order to avoid these situations, MPC input constraints
have to be properly designed to avoid insulin overestima-
tion. On the other hand, insulin underestimation could
increase the risk of hyperglycemia and of ketone bodies
formation.
The following constrained finite horizon optimal control
problem (FHOCP) has to be solved at each time k:

io(k) = arg mini(·) J(x(k), i(·), k)
i(k) ∈ U(k) ∀k (3)

where io(k) is the optimal suggested insulin, and U(k) is a
time-varying compact set defining the admissible insulin at
each time k. The input constraints improve the controller
safety in presence of model uncertainties, but increase the
computational burden needed to solve the FHOCP. In
a real context, where regulatory limitations have to be
fulfilled and where a portable device with limited energy
and power is used to execute the CA, the implementation
could result unfeasible. A possible alternative is to sub-
stitute (3) with its equivalent unconstrained closed-form
formulation and to implement the constraints as explicit
saturations, as explained in (Toffanin et al., 2013). As a
result, a suboptimal solution of (3) is achieved at each
time k without the need of an on-line optimizer and with
the minimal computational burden. Moreover, as shown in
(Messori et al., 2014), despite the sub-optimality nature
of the resulting control law, it can be considered a good
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Fig. 4. Representation of the entire artificial pancreas system, which is integrated by a remote monitoring system and
a database server used to store clinical data.

approximation of (3) and can be proposed for real-life
implementation.
The design of soft-output constraints has recently been
investigated in (Messori et al., 2015), where a Rise Com-
pensation / Drop Attenuation mode has been proposed
for BG control within the PP periods. The FHOCP was
defined by considering the asymmetric cost function (2)
and by including additional insulin integral constraints
based on the patient CT. This control law needs to be
computed on-line at each sampling time and, despite the
promising achieved control performance, it is not yet used
in in-vivo experiments.

3.5 Diagnostic module

The controller interaction with the hardware is mediated
by a diagnostic module (DM), as shown in Fig. 3. DM
has to continuously monitor the insulin pump and CGM
connection status and to detect possible hardware failures,
like pump occlusions or missing CGM measurements. In
addition, DM implements an internal model used to pre-
dict the possibility of future hypo- or hyperglycemia based
on the available CGM measurements and on the suggested
insulin by RCM. In case of predicted hypoglycemia, DM
can override the RCM insulin suggestions by reducing or
stopping the insulin infusion. Moreover, DM has also to
inform the patient about possible hazardous situations
through warnings messages, which can include also acous-
tic alarms. In particular, since it is not possible to recover
the patient from a severe hypoglycemia with only insulin
reductions, external glucose administration is required.
This safety system is useful during the night, when the
patient is asleep and is not aware about his state. In case
of predicted nocturnal hypoglycemia, DM can produce an
alarm waking up the patient before encountering a possible
coma, that in severe case can result in death. It is evident
that by introducing this module there is a problem of pos-
sible false alarms that have to be minimized. However, DM
has become a mandatory component of the AP, making the

system safer and giving the patients the awareness to be
continuously monitored (Patek et al., 2012).

4. SYSTEM IMPLEMENTATION

The implementation of a reliable and portable AP system
is a demanding task that required several years of develop-
ment. Today, the system has become portable, safe, and
usable by the patient without a continuous medical and
technical supervision. The final aim is to launch on the
market a product suitable for type 1 diabetic patients
and, for this reason, the system needs to be continually
improved as the research makes progress.
A representation of the currently AP system is shown in
Fig. 4. The patient is equipped with a sc insulin pump
and with a sc CGM, that are wirelessly connected with
the controller device described in Section 3. The controller
device has the capability to communicate clinical data and
alarms to a remote monitoring system, making a real-
time supervision of the physician, if necessary, possible.
The transmitted data are stored in a database server
for analysis purpose, significantly improving the available
knowledge about the patient habits and characteristics.

4.1 Inpatient to outpatient

The earliest AP versions were suited for inpatient clinical
trials. The patient was hospitalized and equipped with
a sc insulin pump and with a sc CGM, and the entire
experiment was under the strictly supervision of physicians
and engineers. Since there was no direct communication
between the CA (which was executed on a separate laptop)
and the insulin pump, the pump had to be manually
commanded with the suggested insulin infusions, previ-
ously approved by a physician. This operation had to be
repeated at each sampling time (i.e. every 15 minutes)
making long-term clinical experiments (i.e. more than
24 hours) with a large number of patients practically
impossible (see (Kovatchev et al., 2010)). Moreover, the
aim of the earliest clinical experiments was to control the
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Table 1. List of AP clinical trials driven by MPC.

Trials
Clinical
Centres

Hours of
CL

MPC Reference Clinical Reference

JDRF (2008)
PAD MPL

UVA
290 (Magni et al., 2007) (Kovatchev et al., 2010)

JDRF pilot (2010) PAD MPL 216 (Patek et al., 2012) (Breton et al., 2012)

JDRF (2011)

PAD MPL
UVA STF
SDRI CLD

SCMCI

2900 (Patek et al., 2012)
(Zisser et al., 2014)
(Chase et al., 2014)

AP@home (2011)

PAD MPL
AMS CAM

GRAZ
NEUS

1081 (Soru et al., 2012) (Luijf et al., 2013)

AP@home pilot
outpatient (2012)

PAD 168 (Toffanin et al., 2013) (Del Favero et al., 2014)

JDRF outpatient (2013)
PAD MPL

SDRI
UVA

420 (Toffanin et al., 2013) (Kovatchev et al., 2014)

AP@home outpatient
(2013)

PAD MPL
AMS

364 (Toffanin et al., 2013) (Del Favero et al., 2015)

AP@home outpatient
(2014)

PAD MPL
AMS

21504 (Toffanin et al., 2013) Submitted

AP@home 24h & R2R
outpatient (2015)
Trial in progress

PAD MPL
AMS

> 10000 − −

BG concentration during the night, when the patient was
sleeping and no meals had to be controlled. Afterwards,
automatic meal compensation was gradually introduced
and it is currently one of the most difficult task to be
successfully accomplished. A further challenging task is
represented by the management of physical activity, that is
currently under investigation. From a technological point
of view, a very important step ahead was the development
of the APS (Dassau et al., 2008), that allowed a fully
automatic closed-loop. This system was adopted in the
first large clinical experiments ((Luijf et al., 2013), (Zisser
et al., 2014), (Chase et al., 2014)). APS, however, was
not suited for outpatient real-life studies, since it limited
patient mobility due to many wired connections among
the components and was characterized by a PC based
implementation.
Clinical experiments outside the hospital environment
forced the development of a portable platform, usable by
the patient without medical and technical support. This
goal was reached with the introduction of the Diabetes
Assistant (DiAs) (see (Kovatchev et al., 2012) and (Keith-
Hynes et al., 2014)), a system running on a commercially
available smart phone, as shown in Fig. 5, that implements
the modular architecture of Fig. 3. The patient is in-
formed about the predicted risk of hypo- or hyperglycemia
through a traffic light system, and can read the current and
the past measured glycemia together with the history of
the insulin infusions. The patient interacts with the sys-
tem through touch screen buttons, and the graphical user
interface contains also information about the whole system
status (e.g. the system operating mode, the CGM and the
insulin pump statuses, the device connection to the net-
work, the battery level, etc.). DiAs can also show warning
messages or throw alarms in case of system malfunctions
or when possible hazardous situations are detected.
Table 1 shows a list of clinical trials completed with the
AP developed by our group, that is characterized by an in-

Fig. 5. Diabetes Assistant graphical user interface.

creasing complexity. The involved clinical centres were the
Universities of Padova (PAD), Montpellier (MPL), Vir-
ginia (UVA), Cambridge (CAM), Graz (GRZ), Stanford
(STF), the Profil Institute for Metabolic Research GmbH
(NEUS), the Sansum Diabetes Research Institute (SDRI),
the Barbara Davis Center for Childhood Diabetes in Col-
orado (CLD), and the Schneider Children’s Medical Center
in Israel (SCMCI). Inpatient clinical experiments started
in 2008 and protracted till 2012. Outpatient experiments
started in 2012, where the patient was accommodated in a
hotel room and a technical and medical teams were hosted
in the same hotel for interventions in case of unexpected
system faults. Starting from 2014, patients were allowed to
autonomously use the AP system at home during dinner,
night and breakfast for long periods (two months). Today,
thanks to the reliability achieved with the current imple-
mentation (Fig. 4), patients can autonomously use the AP
system 24 hours per day for long periods (one month). All
these experiments are promoted by the JDRF and by the
EU FP7 project.
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Fig. 6. Running sessions overview of the remote monitoring
system. In this example six patients affiliated to the
Amsterdam clinical center are remotely under control
in real time.

4.2 Remote monitoring

The need to develop a safe portable platform motivated
the integration of the controller device with a remote
monitoring system. Thanks to the available wireless in-
ternet connection services (i.e. 3G and LTE high speed
connections) and to the connectivity functionalities of the
commercially available smart phones, the controller device
can send real-time information of the patient state. Physi-
cians can monitor their patients through a web-based GUI,
as shown in Fig. 6, and can intervene in case of a critical
situation. In addition to the patient state, the remote mon-
itoring system also controls the system status, and sends
the proper alarms in case of a system malfunction. An
exhaustive description of the currently adopted monitoring
system is presented in (Lanzola et al., 2011), (Capozzi and
Lanzola, 2013), and (Lanzola et al., 2014).
The information transmitted by the controller device is
stored in a database, that is subsequently used for data
analysis. The purpose is to gain knowledge about the
habits of the patients and about their characteristics, and
to achieve more efficient off-line adaptations of the CA (see
Fig. 3).

5. CONCLUSION

The last years have seen a significant acceleration of AP, a
system designed to automatically regulate the exogenous
insulin infusions needed to maintain the BG concentration
within the euglycemic range in type 1 diabetic subjects.
The system design has been accelerated by the introduc-
tion of several in-silico tools, that allowed to arrive at a
safe and effective MPC based CA.

The experience achieved from thousands of hours of in-
vivo clinical trials encouraged the design of a modular
architecture exploited to minimize the patients risk, mak-
ing outpatient clinical experiments possible and giving the
patients the possibility to autonomously interact with the
AP during their life. Furthermore, the development and
the integration of a monitoring system increased the AP
confidence of patients and physicians, and it made possible
the real-time remote detection of possible risky situations.
In the future, the AP system could be integrated with
additional sensors to automatically detect the patient
physical activity (e.g. heart rate sensors and pedometers);
in addition, some manual tasks like the carbohydrate esti-
mation for meal announcements could be automated (e.g.
automatic carbohydrate estimation through an acquired
image of the meal). The remote monitoring system could
be directly integrated with the healthcare emergency ser-
vices and, in case of detected hazardous situations, the
system could have the possibility to automatically call the
emergency and to alert the physician with a warning mes-
sage (e.g. sms or email). Furthermore, in order to have the
possibility to automatically track the patient position in
serious emergency cases, a GPS system could be integrated
in the controller device.
While the current AP is able to guarantee a safe and
effective BG control, there are some aspects that have
to be refined before declaring to be ready to launch a
device in the market, especially for what concern meal
control, model individualization, and the management of
non-standard situations like physical activities, stressful
situations and sickness. Nevertheless, the achieved results
are very promising and, thanks to the research efforts, this
project is reaching several milestones and is continually
increasing our knowledge and experience.
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