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Abstract: This paper studies geometric properties of a class of irreversible dynamical systems,
referred to in the literature as metriplectic systems. This class of systems, related to generalized
(or dissipative) Hamiltonian systems, are generated by a conserved component and a dissipative
component and appear, for example, in non-equilibrium thermodynamics. In non-equilibrium
thermodynamics, the two potentials generating the dynamics are interpreted as generalized
energy and generalized entropy, respectively. Stability and stabilization results for metriplectic
systems have been presented in the literature, however, some aspects are still poorly understood,
in particular the existence of dynamical invariants such as periodic orbits. In this note, we study
the properties of metriplectic systems by considering a lift from the n-dimensional state space to
a (2n+ 1)-dimensional contact space, following an approach introduced in recent years to study
irreversible control systems. This lift leads to a deeper geometric characterization of metriplectic
systems in the extended space. An example is provided to illustrate the approach proposed in
this paper.

Keywords: Nonlinear systems, metriplectic systems, irreversible systems, contact geometry.

1. INTRODUCTION

Stability analysis and feedback control design of mechan-
ical systems with no dissipation have had a great impact
in nonlinear control theory, see for example (Nijmeijer and
van der Schaft, 1990). One reason for that success is the
knowledge, in the development of the dynamical equations,
of a conserved quantity (i .e., the Hamiltonian function),
and the vast amount of available literature on the subject
from the field of dynamical systems theory (Arnold, 1989).
However, for irreversible systems, the picture is usually not
as clear. Dissipative Hamiltonian systems have emerged as
a valuable modelling approach for stability analysis and
control feedback design (for example damping injection)
of systems with dissipation (van der Schaft, 2000; Ortega
et al., 2002). However, for chemical processes, since the
dynamics is not a priori developed from known potential
functions, this approach is difficult for application.

In order to derive potential-driven formulations of (chem-
ical) process dynamics, several researchers considered to
start from a thermodynamic point of view, see for exam-
ple the contributions (Favache et al., 2010; Hoang et al.,
2012; Ramirez et al., 2013) and references therein. This
approach, based on classical irreversible thermodynam-
ics (de Groot and Mazur, 1962), led to some interesting
modelling, stability, and stabilization results with appli-
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cation to chemical reactors. Another approach, proposed
originally in (Guay et al., 2012), consisted in recovering
a potential-based representation from a given vector field,
for example a system of finite-dimensional balance equa-
tions, by using Hodge decomposition. By the application
of this decomposition approach, it is possible to rewrite
a dynamical system as the sum of conserved and non-
conserved components. By using the resulting decomposed
representation, it is then possible to perform stability
analysis and feedback stabilizing control design.

The resulting dynamics can be linked to a class of dynami-
cal systems developed by Morrison (1986) called metriplec-
tic systems, given as

ẋ = J(x)∇TE(x)−R(x)∇TS(x), (1)

for x ∈ Rn and such that J(x) is antisymmetric (J(x) =
−JT (x)) and R(x) is symmetric positive-definite (R(x) =
RT (x) � 0). These systems are generated by a con-
served quantity E(x), the generalized energy, and a metric
quantity S(x), the generalized entropy. Here, we assume
that the generating functions E(x) and S(x) are of class
Ck(Rn;R), with k ≥ 2. Stability and geometric properties
for systems of the form (1) have been studied extensively
(Morrison, 1986; Guha, 2007; Birtea et al., 2007; Birtea
and Comǎnescu, 2009; Hudon et al., 2013a,b, 2014), how-
ever it is generally assumed that both functions E(x)
and S(x) reach an extremum at the same isolated point,
i .e., it is assumed that the system (1) has one isolated
equilibrium. In this note, we seek to develop an approach
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to study higher order dynamical invariants, for example
periodic orbits.

Metriplectic systems are also interesting from the point of
view of non-equilibrium thermodynamic systems, since the
so-called GENERIC formulation of thermodynamics, pro-
posed originally in (Grmela and Öttinger, 1997; Öttinger

and Grmela, 1997) and reviewed extensively in (Öttinger,
2005), is based on the development of metriplectic systems
proposed originally in (Morrison, 1986). Finally, it should
be noted that under degeneracy constraints

J(x) · ∇TS(x) = 0 (2)

R(x) · ∇TE(x) = 0, (3)

the dynamics (1) can be re-expressed as dissipative Hamil-
tonian systems (van der Schaft, 2000; Ortega et al., 2002),
i .e., systems of the form

ẋ= [J(x)−R(x)]∇TH(x),

if one pick H(x) to be the free energy at unit temperature,
H(x) = E(x) − S(x) (Favache et al., 2010). Obviously,
mixed potentials, that is, potentials combining energy and
entropy, are known from classical thermodynamics, see
for example the availability potential used in (Ydstie and
Alonso, 1997) in the context of passive systems theory and
control of process systems.

The objective of the present paper is develop an ap-
proach to study higher dynamical invariants of metriplec-
tic systems, for example periodic orbits. For conserva-
tive systems, such as mechanical systems, this is usually
achieved through symplectic geoemtry (Arnold, 1989). In
the case of irreversible systems, contact geometry could
served the same function. Hence, the proposed approach
consists in lifting the n-dimensional dynamics to a (2n+1)-
dimensional contact state-space. This approach has been
studied in recent years, starting from the contribution by
Eberard et al. (2007) who considered conservative sys-
tems with inputs. Stability of conservative port contact
systems was considered in (Favache et al., 2009). More
recently, this approach was considered in (Ramirez et al.,
2013, 2014) for the study of irreversible processes. The
idea of using contact geometry in the context of classical
(irreversible) thermodynamics is not new, as this space
permits to encode thermodynamical constraints, see for
example the contributions by Mrugala (1996), Haslach Jr.
(1997), Grmela (2002), and (Quevedo, 2007). In (Grmela

and Öttinger, 1997), a contact formulation for metriplec-
tic systems (1) under degeneracy constraints (2)-(3) was
provided.

The paper is organized as follows. A brief review of
elements of contact geometry pertinent to this paper is
given in Section 2. The lift of metriplectic systems (1)
to the contact phase space is presented in Section 3
with comments on the invariant structure of metriplectic
systems based on the contact formulation. An example to
illustrated the proposed approach is presented in Section
4. Conclusions and further areas for research are presented
in Section 5.

2. CONTACT GEOMETRY FORMALISM

We first briefly summarize the formalism of contact ge-
ometry, following the expositions in (Grmela, 2002) and
(Ramirez et al., 2013). A complete exposition on the topic
can be found in (Arnold, 1989).

Let N be a n-dimensional manifold. Define the associated
contact manifold T as R × T ∗N whose elements are
denoted (x0, x, p). It has a canonical contact structure
defined by t, following the studies presented in (Ramirez
et al., 2013), the contact form

θ = dx0 −
n∑

k=1

pkdx
k. (4)

Definition 1. A one-form θ on a 2n+ 1-dimensional mani-
fold T is a contact form if θ ∧ (dθ)n 6= 0 is a volume form.
Then the pair (T , θ) is called a contact manifold.

For a given set of canonical coordinates and any partition
I
⋃
J of the set of indices {1, . . . , n} and for any differen-

tiable function F (xI , pJ) of n variables, i ∈ I, j ∈ J , the
formulas

x0 = F − pJ
∂F

∂pJ
(5)

xJ =− ∂F
∂pJ

(6)

pI =
∂F

∂xI
(7)

define a Legendre submanifold of R2n+1.

Definition 2. A vector field X on (T , θ) is a contact vector
field if and only if there exits a differentiable function ρ
such that

LXθ = ρθ. (8)

To every contact vector field X, one associates the function
K(x0, x, p), called the contact Hamiltonian. Conversely, to
every function K, there corresponds the contact vector
field XK given as

XK =

(
K −

n∑
k=1

pk
∂K

∂pk

)
∂

∂x0
+
∂K

∂x0

(
n∑

k=1

pk
∂

∂pk

)

+

n∑
k=1

(
∂K

∂xk
∂

∂pk
−
∂K

∂pk

∂

∂xk

)
. (9)

The main contribution of this paper is to consider the ”lift”
of a n-dimensional metriplectic vector field to the contact
space, i .e., we will construct a contact Hamiltonian func-
tion associated to the system (1) and study the properties
of the contact vector field (9).

3. CONTACT LIFT OF METRIPLECTIC SYSTEMS

The idea of ”lifting” a n-dimensional vector field to the
contact phase space was introduced in the context of
controlled irreversible systems in (Eberard et al., 2007),
and extended in the contributions (Favache et al., 2009,
2010; Ramirez et al., 2013). In particular, in (Ramirez
et al., 2013), the drift part of the dynamics was given by
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ẋ = f

(
x,
∂U

∂x

)
,

and the contact lift was generated by the contact Hamil-
tonian function

K =

(
∂U

∂x
− p
)T

f

(
x,
∂U

∂x

)
.

The key argument to suggest such form of contact Hamil-
tonian is that a contact Hamiltonian defined this way
vanishes on the Legendre submanifold generated by U(x).
A contact Hamiltonian based on the energy was also used
by (Eberard et al., 2007) while an entropy-based lift was
employed in (Favache et al., 2010)

In the case of a metriplectic system of the form

ẋ = J(x)∇TE(x)−R(x)∇TS(x),

(without the degeneracy conditions), we select a lift with
respect to the conserved quantity E(x). Hence, the contact
Hamiltonian function is given by

K =

(
∂E

∂x
− p
)T

J(x)∇TE(x)−R(x)∇TS(x), (10)

and we can construct the contact vector field (9) as:

ẋ0 = K − pT
(
J(x)∇E(x)−∇TS(x)

)
(11)

ẋ = J(x)∇TE(x)−R(x)∇TS(x) (12)

ṗ = p ·
∂K

∂x0
+
∂K

∂x
. (13)

Remark 3. It should be clear at this point that under the
degeneracy conditions (2)-(3), the expression of the con-
tact Hamiltonian would be simplified, i .e., by distributing
the terms in K, under degeracy conditions (and the fact
that ∇E(x)J(x)∇TE(x) = 0 would become:

K̃ = −pT
(
J(x)∇TE(x)−R(x)∇TS(x)

)
.

Remark 4. Stability conditions for systems in the contact
phase space was studied extensively in (Favache et al.,
2009). We leave that part for future investigations.

4. EXAMPLE

To illustrate the approach depicted above, we consider the
Fitzhugh–Nagumo reaction equations system, as modeled
using a metriplectic formulation in (Xu, 2004). The two-
dimensional Fitzhugh–Nagumo system is given by

ẋ1 = f(x1)− x2
ẋ2 = σx1 − γx2,

where

f(x1) = −x1(x1 − β)(x1 − 1),

with σ and γ, some known positive constant. Depending
on the value of the parameter β (and its sign), the system
trajectories converge to either an isolated equilibrium at
the origin or a periodic orbit, see for example Figures 1 for
the case of a periodic orbit.

Fig. 1. Fitzhugh–Nagumo System — σ = 8E − 3, γ =
1.2E − 2, β = −0.139

Since the metriplectic formulation is not unique, there
exists multiple formulations of this system (Xu, 2004).
Here, we focus on one of those. By setting

E(x) =−1

2
σx21 − βx1x2 −

1

2
x22

S(x) =
1

4
x41 −

β + 1

3
x31 +

β + γ

2
x22,

we have the standard representation

[
ẋ1
ẋ2

]
=

[
0 1
−1 0

] ∂E∂x1∂E

∂x2

− [1 0
0 1

] ∂S∂x1∂S

∂x2

 . (14)

It should be noted that in that case, the degeneracy
constraints (2)-(3) are not met. With that representation,
we can already make the following observation for the
case where the origin is an isolated equilibrium (i .e., for
β = 0.139): E(x) reaches a maximum and S(x) reaches a
minimum at the origin, which is not true in the case for
β = −0.139, as depicted in Figures 2 and 3, respectively.

Fig. 2. Fitzhugh–Nagumo System — σ = 8E − 3, γ =
1.2E − 2, β = 0.139
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Fig. 3. Fitzhugh–Nagumo System — σ = 8E − 3, γ =
1.2E − 2, β = −0.139

By inspection of the dynamics alone (or the structure
of the potentials), it is not clear why the periodic orbit
occurs. However, if one consider the contact Hamiltonian

K =

(
∂E

∂x
− p
)T

·
(
J(x)∇TE(x)−R(x)∇TS(x)

)
,

we have

K = (−σx1 − βx2 − p1)(−βx1 − x2 − x31 + (β+1)x21

+ (−βx1 − x2 − p2)(σx1 + βx2 − (β + γ)x2), (15)

and by inspecting the contact vector field (not shown
here), one can see that from a vector field point of view,
the dynamics of the dual variables in the contact space
are driving the dynamics away for the equilibrium for
β = −0.139.

5. CONCLUSION

This paper studied dynamical and geometric properties of
metriplectic systems by using a lift of the n-dimensional
state space to a (2n + 1)-dimensional contact space. The
main objectives were to develop an approach to study
the invariants of metriplectic systems. Following the lit-
erature on the study of control systems using contact
geometry (Ramirez et al., 2013), future studies would
consider feedback control design within the contact geom-
etry framework. From a thermodynamical point of view,
the construction of a metric within the contact geometry
framework, as suggested for example in (Quevedo, 2007),
would also be considered.
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Birtea, P. and Comǎnescu, D. (2009). Asymptotic stability
of dissipated Hamilton–Poisson systems. SIAM Journal
on Applied Dynamical Systems, 8(3), 967–976.

de Groot, S.R. and Mazur, P. (1962). Non-Equilibrium
Thermodynamics. North-Holland Publishing Company,
Amsterdam.

Eberard, D., Maschke, B.M., and van der Schaft, A.J.
(2007). An extension of Hamiltonian systems to
the thermodynamic phase space: Towards a geometry
of nonreversible processes. Reports on Mathematical
Physics, 60(2), 175–198.

Favache, A., Dochain, D., and Maschke, B. (2010).
An entropy-based formulation of irreversible processes
based on contact structures. Chemical Engineering Sci-
ence, 65, 5204–5216.

Favache, A., Dos Santos Martins, V., Dochain, D., and
Maschke, B. (2009). Some properties of conservative
port contact systems. IEEE Transactions on Automatic
Control, 54, 2341–2351.

Grmela, M. (2002). Reciprocity relations in thermody-
namics. Physica A, 309, 304–328.
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