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Abstract: System identification (SI), especially from small samples, is a challenging problem and
of interest in several applications. Standard prediction-error minimization methods (PEM), under
these conditions, generally result in estimates with higher variance. Moreover, in the identification of
parametric models, one often needs prior knowledge of the input-output delay, obtaining estimates of
which, is not possible using classical methods when the delay is either comparable or greater than the
sample size. In this work, we develop a compressed sensing (CS)-based method for identifying sparse
equation-error models that includes both auto-regressive eXogenous (ARX) and AR moving average
eXogenous (ARMAX) structures with large delays, small orders and small delays with large orders,
but with missing coefficients. The outcome is an iterative basis pursuit de noising (IBPDN) algorithm
for solving non-linear CS problems. In addition, we propose a semi-rigorous method to lower the
mutual coherence of the regressor matrix so as to obtain lower variance parameter estimates with the
CS techniques. Errors in parameter estimates are computed using the bootstrapping method. Simulation
studies on three diverse examples are presented to demonstrate the efficacy of the proposed methodology.

Keywords: system identification; ARX models; ARMAX models; non-linear compressed sensing;
mutual coherence.

1. INTRODUCTION

Parametric system identification is concerned with developing
models of a specific structure from input-output data. Most of
the existing techniques including the widely used prediction-
error minimization (PEM) methods (of which least squares
(LS) and maximum likelihood (ML) are special cases) the-
oretically yield efficient and consistent estimates only under
asymptotic (large sample) conditions (Ljung, 1999). Further-
more, identification of parametric models require prior spec-
ification of input-output delay and model polynomial orders.
Time-delay estimation is typically carried out using impulse
and frequency response methods (Bjorklund and Ljung, 2003;
Selvanathan and Tangirala, 2010). Alternatively, delay may be
also treated as an additional parameter and estimated simultane-
ously with model parameters. Regardless, both delay estimation
techniques are known to work efficiently only in the presence
of large samples, i.e., when the delay d � M , where M is the
sample size. Order determination is usually carried out mostly
using information-theoretic criteria such as Akaike information
and Bayesian information criteria, respectively, with prelimi-
nary guesses generated using ideas from subspace identification
(SSID). Once again the information-theoretic measures, which
use the ML as their basic engine, and the SSID technieus are
devised for large sample situations. However, in several appli-
cations, only data sets of limited or small size are available. On-
line estimation, set-point oriented process are a few examples
of these situations. Isaksson (1991) used maximum likelihood
estimation (MLE) to estimate parameters of ARX model using
small number of samples. The complexity of these algorithms
increase inversely with number of samples available (Bohlin,
1971). Yang et al. (2012) developed a method to identify a
bioethanol plant using small number of samples. This technique
is based on an orthogonal least squares algorithm and a new

resampling method called output jittering. The complexity of
this algorithm also increases inversely with number of sam-
ples available. Vanli and Castillo (2007) used pseudo-linear
regression to estimate closed loop Box-Jenkins (BJ) models
as ARMAX models from small samples. This method requires
knowledge of delay and order of the process prior to estima-
tion. To the best knowledge of authors there are no effective
techniques for the estimation of parametric models, especially
those that can also automatically estimate delay and order, from
small samples. This work is concerned with a sub-class of such
models, namely, the equation-error or the ARMAX models.

A regular ARMAX model with known model order and delay
is described by the equation,

A(q−1)y[k] = B(q−1)u[k] + c(q−1)e[k] (1a)

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
na (1b)

B(q−1) = bdq
−d + · · ·+ bnb′q

−d−nb (1c)

C(q−1) = 1 + c1q
−1 + c2q

−2 + ....+ cncq
nc (1d)

where u[k] and y[k] are the input and measured output at
sampling instant k respectively, e[k] ∼ N (0, σ2

e), d is the
input-output delay and nb′ = nb + d. An ARX model is a
special case of ARMAX model with all the past terms of the
innovations of e[k] i.e. c1 = c2 = · · · = cnc

= 0 set
to zero. ARX models give rise to linear predictors, thereby
permitting the use of linear LS methods to generate unique
parameter estimates. ARMAX models, on the other hand, as
evident from (1a), result in non-linear predictors. A non-linear
LS estimator has to be thus employed, wherein the optimum is
searched numerically and one has to be usually content with a
local optimum. As remarked earlier, these estimators, linear or
non-linear, require the user to specify a prior the time-delay and
order. More importantly, the non-linear estimator is efficient
only under asymptotic conditions.
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The objective of this work is to present an effective and prac-
tically elegant method for identification of sparse ARMAX
models from small samples using the ideas of CS (Donoho,
2006), while automatically determining the delay and order of
the model. The term “small” especially refers to the case of
d � M , or in general, dim(θ) + d � M with the additional
requirement that θ is sparse. The key idea is to recognize that a
regular ARMAX model structure with known delay and order
manifests as a sparse ARMAX model when the same are un-
known, especially when the delays are large. Referring to (1a),
when the delays and orders are unknown, all inputs beginning
from u[k − 1] and outputs up to a remote past have to be
included, thereby increasing the size of the parameter vector.
However, the augmented parameter vector, call it θs (see (15)),
is sparse, i.e., contains several zero-valued entries with only a
few non-zero parameters. Thus, systems described by lower-
order, large delay, ARMAX models with unknown delays and
orders manifest as sparse ARMAX processes. Further mathe-
matical formalities are presented in §3.

This paper presents an iterative BPDN (IBPDN) approach to
estimate parameters of sparse ARMAX models, alternatively,
those of regular ARMAX models without the prior knowledge
of delay and order, from small samples, using the ideas of
CS. It may be remarked that we are essentially dealing with
an underdetermined problem. See §2 for a brief review of the
linear CS optimization problem and the BPDN algorithm.

The idea of using CS techniques in system identification is
relatively new, while that of estimating sparse parameter vectors
has been around a little longer with both areas of research being
highly active (Sanandaji et al., 2011; Ljung et al., 2011; Ozay
et al., 2011). Sparsity requirements (on parameters) in system
identification have been imposed usually from a regularization
viewpoint, but still in the presence of large samples. The small
sample case has been studied predominantly by Sanandaji et al.
(2011) to estimate ARX models for linear time-invariant (LTI)
and piecewise continuous linear time-varying (LTV) systems
without the knowledge of delay and order, from few observa-
tions. However, the development is restricted to deterministic
systems only. Moreover a block sparse structure of the signal
is assumed in the algorithm. A few other limitations also exist,
as explained below. Identification of ARMAX models using CS
ideas can be viewed as solving non-linear CS problem. In non-
linear CS problem, the measurements are assumed as non-linear
projections of sparse vector. Blumensath (2013) linearised the
non-linear function around the sparse vector at every iteration
to arrive at the solution.

The success of the proposed IBPDN algorithm rests on two im-
portant factors, namely, the mutual coherence of the regressor
matrix, which can be loosely interpreted as the orthogonality
of the matrix and (ii) the sparsity of the initial conditions.
The prominence of the first factor arises from a theoretical
result in CS literature, which states that for perfect recovery
of sparse signals from measurements, it is necessary to have
the mutual coherence of the so-called dictionary (in system
identification, this dictionary is the regressor matrix, see §3)
remain below a certain bound. In this context, Sanandaji et al.
(2011), through simulation studies, determine that the impact
of high mutual coherence is not as serious as theory suggests it
to be. However, it remains a fact that the error bounds decrease
with the lowering of mutual coherence, and therefore it is im-
perative that the regressor matrix have as low as mutual coher-
ence. Furthermore the observation by Sanandaji et al. (2011)

is based on simulation studies and not rigorously conclusive.
In this respect, Sanandaji et al. (2011) suggest a pre-filtering
based technique for reducing mutual coherence. The method
is, however, not effective in the sense that the coherence of the
pre-filtered regressor matrix is much higher than the required
theoretical bound. In the current work, a method based on an
optimal scaling of the regressor matrix is proposed to lower the
mutual coherence of the regressor matrix.

The initial conditions required for the identification of the
sparse ARMAX model using the proposed algorithm are gen-
erated by solving a sparse pseudo-linear regression problem,
followed by an iterative optimization of the same to finally
generate a sparse set of initial conditions. The case studies in
§5 demonstrate the efficacy of this approach. Finally, the con-
vergence of the proposed algorithm is studied, albeit through
simulations. A theoretical study of convergence involves a very
rigorous study, which is beyond the scope of this paper. The
error decay rates across iterations hold promise for the conver-
gence of the proposed algorithm.

To summarize the novelty of this work, we present IBPDN
algorithm for the estimation of ARMAX models from small
samples with unknown delays and orders and an optimal scal-
ing or transformation method for the reduction of mutual co-
herence. An added advantage of the proposed method over the
method proposed in Blumensath (2013) is that the iterative
update of initial guess to ensure sparser solution. The foregoing
discussion establishes the significance of the novelty.

The rest of the paper is organized as follows. The necessary
essentials of compressed sensing are reviewed in Section 2.
Section 3 presents the proposed algorithm for identification of
equation error models from small samples. The transformation
method for reducing mutual coherence of the regressor matrix
is discussed in Section 4. Results from simulation studies are
presented in Section 5. The paper closes with a few concluding
remarks in Section 6.

2. FOUNDATIONS OF COMPRESSED SENSING
One of the main problems of interest in the compressed sensing
literature is to recover N observations of a signal x[k] from its
M random measurements (M � N ), call it y[k], under the
premise that x[k] is K-sparse (number of non-zeros) (K <
M) in some basis space Donoho (2006). The measurement
vector y[k] can be in the same domain as that of x[k], for
e.g., randomly subsampled x[k], or in some other transformed
domain. Formally,

y = Πx, and x = Bs (2)
=⇒ y = As (3)

where Π isM×N measurement matrix (when y is subsampled
x, it consists of ones and zeros), s ∈ RN×1 is the sparse
representation of x in some sparsifying basis space defined
by the matrix B. In (3), the matrix A = ΠB is said to be
the dictionary for y, which may be known a priori (fixed)
or unknown (adaptive). The goal in compressed sensing is to
recover x by first estimating the sparse representation s given
A or simultaneously along with A when it is unknown (Perepu
and Tangirala, 2013).

An N -long vector s is said to be sparse if the number of
non-zero elements in s is less than the number of zero-valued
elements. There exist several measures of sparsity. See Hurley
and Rickard (2009) for a comprehensive study of different
sparsity measures. The zero-norm of a vector, given by
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||s||0 = dim{i|si 6= 0} (4)
is frequently used in the CS literature as a measure of sparsity.

If the dictionary A is known a priori, the sparse representation
s is recovered by solving the optimization problem

min
s
||s||0 subject to y = As (5)

However, the problem is non-convex and NP-hard. A widely
used alternative is to replace with a convex 1-norm optimization
to solve (3), as put forth by Donoho (2006):

min
s
||s||1 subject to y = As (6)

Candès (2008) proved that the zero-norm solution equals 1-
norm solution as long as A satisfies what is known as the
Restrictive Isometric Property (RIP), given by

(1− δ) ||s||22 ≤ ||As||22 ≤ (1 + δ) ||s||22 (7)
It is difficult to verify RIP property in practice. Elad (2010) re-
placed RIP with a weaker condition based on mutual coherence.
The mutual coherence of matrix X = [x1 x2 · · · xp] is given
by

µ(X) =
1

p
max
i 6=j

∣∣xT
i xj

∣∣
||xi||2 ||xj ||2

(8)

where ||.||2 is the standard 2-norm. The mutual coherence of
any matrix always satisfies 1/

√
p ≤ µ(X) ≤ 1; see (Romberg,

J. and Wakin, 2007). In order to guarantee recovery of the
sparse vector, the mutual coherence of the dictionary A should
be as low as possible (Elad, 2010). The precise requirement
is that at least K columns of A be orthogonal. In this respect
mutual coherence is a conservative measure, i.e., it need not be
zero for guaranteed recovery but should be bounded above, see
(24) in Section 4.

Note that the above definition of mutual coherence is valid for
only deterministic matrices. In applications to (linear) system
identification problems, the matrix A is the regressor matrix
Φ while s is the sparse parameter vector (see Section 3). In
most cases, the regressor matrix contains lagged measurements
which have errors in them. Thus, strictly speaking, the defini-
tion of mutual coherence in (8) cannot be used as is. In this
work, nevertheless with some abuse of definition, we apply it as
is to the regressor matrix. A study concerning the extension of
mutual coherence definition to the class of stochastic matrices
is underway. For now, (8) may be treated as an estimate of the
“true” mutual coherence matrix.

There exist two classes of algorithms to solve (6) (Elad, 2010).
One class is that of greedy algorithms and other comprises iter-
ative algorithms. Greedy algorithms include orthogonal match-
ing pursuit (OMP), block-OMP, etc, while the iterative algo-
rithms include least absolute shrinkage and selection operator
(LASSO), basis pursuit (BP), basis pursuit de noising (BPDN),
etc. Among these the widely used techniques to solve (6) are
the LASSO and BPDN. We choose to employ the BPDN in
this work due to its robustness (to noise) property. Another
advantage is that even when s is not sufficiently sparse, y can
be approximated with a small error. In BPDN (6) is solved as

min
s
||s||1 such that ||y −As||22 ≤ ζ (9)

where ζ is a small non-zero value. There are several flavours of
the BPDN algorithm. The spectral gradient-based BPDN (SPG-
BPDN) is used in this work.

3. PROPOSED IBPDN ALGORITHM FOR SI
The ARMAX model in (1a) can be written as

y[k] = ϕT [k]θ + e[k] (10)

where
ϕ[k] =

[
y[k − 1] y[k − 2] · · · y[k − na]

u[k − d] u[k − d− 1] · · · u[k − nb − d]

e[k − 1] e[k − 2] · · · e[k − nc]
]T
∈ Rna+nb+nc×1

θ =
[
a1 a2 · · · ana bd bd+1 · · · bn′

b

c1 c2 · · · cnc

]T
∈ Rna+nb+nc×1

and e[k] ∼ GWN(0, σ2
e). In the rest of this sequel, we shall

refer to (10) as ARMAX(na, nb′ , nc, d) model where d is the
unknown input-output delay the existence of which implies
b0 = b1 = · · · = bd−1 = 0.

The goal of system identification is to identify the (na + nb′ +
nc) × 1 parameter vector θ using M consecutive observations
of output y for a specified na, nc and d. Taking M consecutive
measurements and putting them in the vector form gives

y = Φθ + e (11)

where
y =

[
y[k0] y[k0 + 1] · · · y[k0 +M − 1]

]T
(12a)

Φ =
[
ϕT [k0] ϕT [k0 + 1] · · · ϕT [k0 +M − 1]

]T
(12b)

e =
[
e[k0] e[k0 + 1] · · · e[k0 +M − 1]

]T
(12c)

where k0 ≥ 0 is a suitable starting sample determined by the
values of na, nc and d.

When na,nb and d are known / specified, the parameter vector
θ can be solved by well-established methods such as pseudo-
linear regression, Gauss-Newton method, or a PEM method.
As remarked in §1, it is possible to obtain these estimates ef-
ficiently from large samples, typically through non-parametric
and information-theoretic methods. However, when the delays
are large and/or that the orders are high, but with missing co-
efficients, classical methods fail. Thus, we are forced to jointly
estimate the much longer (than θ) P × 1 parameter vector θs,

θs =
[
a1 a2 · · · ana ana+1:Na (13)

b0:d−1 bd bd+1 · · · bn′
b
bn′

b
+1:Nb (14)

c1 c2 · · · cnc cnc:Nc

]T
∈ RNa+Nb+Nc×1 (15)

where ana+1:Nd
, b0:d−1, bn′

b
+1:Nb

and cnc+1:Nc are all truly
zero-valued parameters. Therefore, the true θs is sparse, as
indicated below:

θs =
[
a1 a2 · · · ana

0 bd bd+1 · · · bn′
b

0 (16)

c1 c2 · · · cnc 0]
T ∈ RNa+Nb+Nc×1 (17)

In practice, this is ensured by choosing such that (P −M) �
M , where P = Na +Nb +Nc. It is important to note that there
is a corresponding increase in the size of Φ. Denoting the new
matrix by Φs, we have

y = Φsθs + e (18)

The problem statement is now as follows. Given M observa-
tions of input-output data, M � P , the goal is estimate the
sparse vector θs. Once θs is estimated, it is easy to extract θ. If
the regressor matrix Φs is known, then the problem simplifies
to a regular CS problem, and a BPDN algorithm can be em-
ployed to recover the sparse θ̂s. This is the case of estimating a
sparse ARX model. Table 1 outlines the algorithm. Note that the
algorithm involves the determination of a pre-filtering matrix
T introduced for the purpose of reducing mutual coherence.
Section 4 presents means of determining this matrix. In ad-
dition, the last step computes the significance levels for the
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obtained parameter estimates using the bootstrapping method
for dynamic processes (Efron and Tibshirani, 1993).

Turning to the focal problem of this work, which is that of es-
timating ARMAX models, we note that the regressor matrix in
(18) is unknown - rather an implicit function of θs. Therefore,
a non-linear optimization problem is involved, for which we
propose the IBPDN algorithm, wherein at each iteration, we
solve a BPDN algorithm to ensure sparse increments. Naturally
this has to be complemented by a sparse initial guess, a method
for which is described later.

The proposed IBPDN method sets up an iterative algorithm for
the parameter estimate:

θ̂
(i+1)
j = θ̂

(i)
j + γ4θ (19)

where the user-specified parameter γ controls the convergence
rate (Nocedal and Wright, 1999). In this work, we set γ = 0.2
based on experience. Note that for simplicity we have dropped
the subscript s on θ, which shall be followed for the rest of this
article.

The update 4θ is now computed using the standard BPDN
algorithm so as to obtain sparse increments. Assume an initial
value for θ̂ = θ

(i)
j , where j keeps track of the iteration for

initial guess, while the superscripts keeps track of the iterations
in (19) for a given guess. Thus, j = 1 corresponds to the first
initial guess and i = 1 corresponds to the first iteration for (19).
Compute prediction errors ε using the initial model. For a fixed
j, the following equation is solved using BPDN algorithm at
each iteration of the algorithm:

min
4θ
||4θ||1 subject to ||ε−Ψ4θ||22 ≤ 0.001 (20)

where Ψ is gradient of predictor equation w.r.t parameter vec-
tor. For ARMAX models, gradient of the predictor equation is
the filtered regressor matrix Φ.

Ψ =
1

C(q−1)
Φ (21a)

where C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3 + · · ·+ cncq

−nc (21b)

Update θ
(i+1)
j as per (19). The above mentioned steps are

repeated until convergence criteria chosen for parameter vector.
The convergence criteria in this paper is considered to be∣∣∣∣∣∣θ̂(i+1)

j − θ̂(i)j

∣∣∣∣∣∣
2
< ζ1 (22)

where ζ1 is the standard user-defined parameter determining
the trade-off between time taken for convergence and final error
achieved. The value of ζ1 is chosen to be 0.01 in this paper.
Once the algorithm converges for a fixed j to θ̂j , the algorithm
is again run for an another initial condition and j → j + 1.

θ
(1)
j+1 = θ̂j − θ

(1)
j

The above described steps are repeated until the following
criteria satisfied ∣∣∣∣∣∣θ̂1j+1 − θ̂

(1)
j

∣∣∣∣∣∣
2

< ζ2 (23)

where ζ2 is also user-defined parameter which is to be chosen
on guidelines of ζ1. The first initial guess is obtained using
the pseudo-linear regression (PLR). To generate the prediction
errors for the PLR method, a suitable sparse ARX model is fit
to the data.

In passing, we may remark that we have not explicitly indicated
the mutual coherence reduction (of the predictor gradient) step
in the ARMAX model estimation, but it can be included in the
same way as indicated for the ARX model.

Table 1. Algorithm for identification of ARX mod-
els from small samples

1. For a specified P , set up the regressor matrix (Φ) according to
(18).

2. Compute the optimal transformation matrix T that minimizes
the mutual coherence µ(TΦs) by solving (26).

3. Solve for sparse θ using BPDN algorithm. The optimization
problem is given by

min
θ
||θ||1 subject to ||Ty −TΦθ||22 ≤ ε

4. Obtain the significance limits of θ̂ using the bootstrapping
method (Efron and Tibshirani, 1993).

Table 2. IBPDN algorithm for estimation of AR-
MAX models

Initialize j = 1, i = 1

1. Calculate the initial value for θ̂(i)j using PLR
2. Compute prediction errors ε for the model having parameter

vector θ̂(i)
j

3. Solve for 4θ using (20)
4. Update θ(i+1)

j using the following formula

θ̂
(i+1)
j = θ̂

(i)
j + γ4θ

5. Repeat steps 2-5 untill convergence condition satisfied∣∣∣∣∣∣θ̂(i+1)
j − θ̂(i)j

∣∣∣∣∣∣
2
< ζ1

6. Repeat the above steps for the new initial condition θ̂(1)j+1 until it
satisfies ∣∣∣∣∣∣θ̂(1)j+1 − θ̂

(1)
j

∣∣∣∣∣∣
2
< ζ2

4. REDUCING MUTUAL COHERENCE OF MATRIX Φ
As described in §2, the guaranteed unique solution of (6)
depends on the mutual coherence of regressor matrix Φ. For
recovery algorithms like OMP and BP the upper bound on
mutual coherence is given by

µ(Φ) ≤ µU (Φ) =
1

2K − 1
(24)

where K is the sparsity index of the sparse vector as before.
When K = 1, it is sufficient to have µ < 1, with K = 2, to
have µ < 1/3 and so on. Stated other way, a smaller coherence
of the regressor matrix facilitates recovery of signals with lower
sparsity, i.e., more non-zero elements. The mutual coherence of
a matrix A is a measure of the correlation between columns of
A. Therefore, when A is orthogonal µ(A) = 0 and vice versa.
In SI applications, A = Φ and as remarked earlier, the mutual
coherence of Φ can be usually quite high due to its composition
given in (12c).

In this paper, we propose a method to decrease mutual co-
herence of regressor matrix. The aim is to determine a pre-
multiplying matrix T of orderM×M such that obtained matrix
TΦ has a mutual coherence as low as possible. Then, (11)
transforms to

T?y = T?Φθ + T?e (25)
where T? emerges from the optimization

T? = arg min
T

f(T) such that f(T) ≥ µ(TΦ) (26a)

where f(T) = ||T′T− Im×m||
2
F (26b)

The above equation ensures the lowering of mutual coherence
along with the orthogonalization of matrix T. The advantage
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is that the properties of vector Te in (25) is same as properties
of e in (12c). Notice from (25) that the functional relationship
is preserved, i.e., the same θ relates the transformed variables.
These observations are similar to those witnessed with the use
of pre-filters in classical identification. In fact the approach fol-
lowed in (25) is a generalization of the pre-filtering concept in
identification, where it is necessary to apply the same pre-filter
to both input and output to preserve the functional relationship.
Sanandaji et al. (2011) apply the pre-filtering idea, but with
no explicit control on mutual coherence and consequently not
necessarily satisfying (24).

A numerical optimizer (such as fmin in MATLABr) is used to
determine the optimal T. The idea of using optimization here
is not to find explicitly the minimum value of the function, but
rather to obtain a local minimum that can lower the mutual
coherence to a reasonable value. In this sense, (26) is a non-
convex problem that defeats the purpose of 1-norm minimiza-
tion in the CS arena, but we are not truly interested in the global
optimum.

With an optimal T in hand, the optimization problem in (9) is
solved in the transformed space:

min
θ
||θ||1 such that ||Ty −TΦθ||22 ≤ ε (27)

The estimate of matrix T depends on the initial guess. Hence
the proposed algorithm is tried for different initial values of
T and considerable reduction of mutual coherence is observed
when T(0) = IM×M even when other choices of T(0) produced
lower initial values of mutual coherence. The causes underlying
this observation are presently under study.

The proposed method for reducing mutual coherence is tested
on an arbitrary 20 × 40 matrix Φ with a mutual coherence
value of 0.842. Solving the optimization problem in (26) with
the initial guess set to identity the mutual coherence decreased
to 0.045 suggesting that this method is effective in reducing
mutual coherence of the matrix.

5. SIMULATION RESULTS
The proposed algorithm is tested on three simulated examples
as presented below. Signal to noise ratio (SNR) is maintained
at 10 for all the examples.

5.1 Example 1
Consider a 2-parameter ARX(40, 40) data generating process
given in (28) below.

y[k] = 0.4y[k − 40] + 0.6u[k − 40] + e[k] (28)

The objective is to identify a very high-order sparse system
from 50 measurements using the proposed algorithm, without
the knowledge of delay and order of the process. The regressor
matrix Φs is constructed from 40 past outputs and 40 past in-
puts. The mutual coherence of Φs is lowered using the method
discussed in §4. The true parameter vector should have non-
zero values only at locations l = 40, 80.

A stem plot of the estimated parameter vector is shown in
Figure 1(a). From the plot, only two parameter values are non-
zero corresponding to the equation given in (28). Variability
in parameter estimates are calculated from 1000 bootstrap
simulations and are reported below each estimated value of the
parameter.The identified system is given by

ŷ[k] = 0.371
±0.0341

y[k − 40] + 0.587
±0.014

u[k − 40]

which is in close agreement with the true process. To show
the effect of mutual coherence on solution obtained by solving
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(a) ARX(40, 40) model
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(b) ARMAX(1, 1, 1)

Fig. 1. Parameter estimates obtained using proposed algorithm

(11), the model identified without lowering mutual coherence
of the regressor matrix is reported below:

ŷ[k] = 0.37
±0.0514

y[k − 40] + 0.564
±0.022

u[k − 40]

For comparison purposes, estimates obtained from conven-
tional LS technique with a pre-specification of the true model
structure (order and delay) are reported below.

ŷ[k] = 0.371
±0.0541

y[k − 40] + 0.589
±0.026

u[k − 40]

The superiority of the proposed method is thus demonstrated
for this example.

In the remaining two examples, the parameters of the model are
obtained from 50 samples of data while the regressor matrix
consists of past ten outputs, current input and past ten inputs
and past ten innovations, i.e., of dimension 19 × 31. Note that
the number of past outputs / inputs / innovations (ten here) is
not a rigid choice. The initial value for the proposed algorithm
is obtained from PLR method described in §3. Owing to the
difficulty associated with the variability of parameter estimates
obtained using current algorithm, the variance has not been
reported for the following examples.

5.2 Example 2

Consider a three-parameter ARMAX(1, 1, 1) data generating
process described by
A(q−1) = 1 + 0.75q−1, B(q−1) = 0.6q−1, C(q−1) = 1− 0.7q−1

The model is simulated to generate 50 samples of data using a
band-limited PRBS input. The proposed algorithm is used to
estimate parameters of the simulated model. In addition the
mutual coherence of the regressor matrix is lowered by using
the method discussed in §4. For the sparse parameter vector θs,
only three (the first, twelfth and twenty-second) values are non-
zero. A stem plot of θ̂s is shown in Figure 1(b).

From the plot, only three values are significant values, suggest-
ing a 3-parameter ARMAX model. The model identified using
proposed algorithm is thus,
Â(q−1) = 1 + 0.748q−1, B̂(q−1) = 0.55q−1, Ĉ(q−1) = −0.675q−1

A plot of the error obtained using proposed algorithm across
iterations is shown in Figure 2(a). The plots are arranged from
top to bottom with ascending order of iteration. From the plots
it is evident that the algorithm converges quickly as the initial
value is refined each time, which is shown in Figure 2(b).
The graphs are arranged in same way as that of Figure 2(a)
where the topmost one corresponds to the initial value obtained
through the PLR method. From the plot, it is clear that the the
parameter vector obtained after third iteration is close to the
true parameter vector.

The model obtained using the proposed algorithm is in compar-
ison with the true model. Hence the proposed algorithm can be
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Fig. 3. Parameter estimates of the process in Example 3

used to identify ARMAX models from small samples without
an estimate of delay and order of the process.

5.3 Example 3
The data generating process has a 12-parameter ARMAX(4, 4, 1)
structure described by

A(q−1) = 1 + 0.75q−1 − 0.45q−2 + 0.6q−3 − 0.5q−4

B(q−1) = 0.4q−1 + 0.7q−2 − 0.5q−3 + 0.4q−4

C(q−1) = 1 + 0.55q−1 + 0.6q−2 − 0.5q−3 + 0.65q−4

A band-limited PRBS is used to generate 50 samples of the
output. Note that here the entries of parameter vector are non-
zero only at locations l ∈ [1–4, 12–15, 22–25].

The proposed algorithm is used to estimate the parameters of
the simulated model. A stem plot of the estimated parameter
vector is shown in Figure 3. From the plot it is evident that
the parameter estimates are non-zero only at locations l ∈
[1–4, 12–15, 22–25], clearly indicating that the process follows
an ARMAX(4, 4, 1) model. The model thus identified using the
proposed algorithm is

Â(q−1) = 1 + 0.743q−1 − 0.428q−2 + 0.574q−3 − 0.484q−4

B̂(q−1) = 0.387q−1 + 0.674q−2 − 0.474q−3 + 0.421q−4

Ĉ(q−1) = 0.534q−1 + 0.574q−2 − 0.479q−3 + 0.661q−4

once again establishing the efficacy of the method.

All the above examples demonstrate that the proposed tech-
nique rightly identifies the delay, order and delivers satisfactory
estimates of the parameters.

6. CONCLUSIONS
In this paper we presented two important contributions: (i) a
method for estimation of ARMAX model from small number
of samples without any prior knowledge of delay and order and
(ii) a method for lowering the mutual coherence of regressor
matrix for obtaining efficient estimates. The proposed IBPDN
algorithm to identify ARMAX models is a modified version
of regular BPDN algorithm used in CS techniques. A natural

outcome of using the compressed sensing techniques is that
it does not require the knowledge of delay and order of the
process prior to estimation of parameters.

The method of lowering mutual coherence is demonstrated on
a simulated ARX model and errors in parameter estimates are
calculated using boot-strapping techniques. The errors obtained
are lower than that of obtained using least square technique. The
proposed algorithm for ARMAX model estimation is demon-
strated using three simulated examples. All the case studies
demonstrate the efficacy of the proposed method and show
good convergence rates for the error. Future directions involve
a rigorous study of the convergence of the algorithm and exten-
sions to the estimation of BJ models.
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