
On-line maximization of biogas production
in an anaerobic reactor using a

pseudo-super-twisting controller ?

Alejandro Vargas ∗ Jaime A. Moreno ∗∗

∗ Laboratorio de Investigación en Procesos Avanzados de Tratamiento
de Aguas (LIPATA), Instituto de Ingenieŕıa, Universidad Nacional
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Abstract: We consider an apparently oversimplified first order model of an anaerobic digester
operated as a CSTR, where the dilution rate is the controlled input and the biogas production
rate is the measured output. The parameters of this model are considered slowly time-varying.
The output function depends on the only state (the substrate), and at any instant has a
unique maximum. We propose a simple output-feedback controller based on the super-twisting
algorithm combined with a state machine, which converges in a practical sense to this maximum.
The controller was tested by simulations of an anarobic digester, maximizing the biogas
production rate, showing very good results.
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1. INTRODUCTION

Anaerobic digestion of biomass is a very complex process
involving several types of microorganisms in various linked
reactions, from the hydrolysis of complex carbohydrates
to the methanization of volatile fatty acids (VFA); ad-
ditionanlly, there are also physico-chemical reactions in-
volved (Antonelli et al., 2003). Probably the most used
model for describing this complexity in a tractable way
is IWA’s anaerobic digestion model 1 (ADM1) (Batstone
et al., 2002). Although this model is useful for simula-
tion, it is too complicated for designing controllers, since
it involves 19 reactions and 24 states, plus some alge-
braic constraints. However, a simplification that has found
applications in the design of controllers is the so-called
AM2 model (Bernard et al., 2001). Still, to use it in a
model-based controller, calibration of many parameters
may be needed (Méndez-Acosta et al., 2010). Furthermore,
in these developments the need for on-line measuring some
states or estimating them with an observer has sometimes
hindered real-life applications.

In this report, we tackle the problem in another way.
Instead of designing a controller based on a model and
assuming the measurement of critical state variables, we
assume a simplified first order model (possibly the simplest
one for bioreactors) and consider that an output function
is indeed on-line measurable. Very little assumptions are
made on the model, but a critical one is that the output
function depends on the unique state and has a maximum
value defined by a set of parameters that are allowed to
? Project financed by PAPIIT-UNAM IN112114 and CONACYT
245954.

be time-varying. This is general enough to capture the
main input-output dynamics of many bioreactors, such as
a biogas producing anaerobic digester.

The controller proposed is based on the well known super-
twisting controller (STC) (Levant, 1998; Moreno, 2011),
which has already been used for bioreactor rate estimation
(Lara-Cisneros et al., 2014; Vargas et al., 2014; De Battista
et al., 2012). Instead of assuming the measurement of the
state and thus building a reference error signal to be used
by the controller, we use an approach that uses only the
available output measurements. With them we are able
to compute an approximation of the absolute value of
the error and to use a state-machine that estimates its
sign; furthermore, it provides an estimate of a needed
parameter, in a similar manner as has previously been done
by Moreno et al. (2006). The main result is showing that
although we implement a pseudo-super-twisting controller
(PSTC) in this sense, we recover the desired properties
of the STC in a practical sense. We show its applicability
for the AM2 model of anaerobic digestion, maximizing the
biogas production rate.

The paper is organized as follows. The next section in-
troduces the AM2 model equations and a proposal about
how to view that system as 1-dimensional with time-
varying parameters. Section 3 introduces the first part of
the PSTC, giving its proof of convergence, followed by
a section that complements the design with the state-
machine implementation of the error’s sign estimator. Sec-
tion 5 presents and discusses simulation results and finally
conclusions are made.
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2. THE ANAEROBIC DIGESTION MODELS

Anaerobic digestion is a complex process, involving several
linked reactions, but it has been simplified to a two-
reaction four-parameter model, called the AM2 model
(Bernard et al., 2001):

Ẋ1 = µ1X1 − aX1Din , (1a)

Ṡ1 = −k11µ1X1 + (Sin
1 − S1)Din , (1b)

Ẋ2 = µ2X2 − aX2Din , (1c)

Ṡ2 = k12µ1X1 − k22µ2X2 + (Sin
2 − S2)Din, (1d)

G = kGµ2X2 , (1e)

with

µ1(S1) =
µmax
1 S1

KS1 + S1
, (1f)

µ2(S2) =
µ∗2S

∗
2S2

S∗2S2 + β2 (S∗2 − S2)
2 . (1g)

Two reactions take place: organic substrate S1 is consumed
by acidogenic bacteria X1 under Monod kinetics to grow
and to produce volatile fatty acids (VFA) S2, which in
turn are consumed by methanogens X2 to grow and to
produce biogas, mainly methane and carbon dioxide; the
reaction is of Haldane type (this is an alternative, but
equivalent representation 1 ). The biogas production rate
G is proportional to the growth rate of methanogens. The
two types of biomass may be partially fixed and a ∈ [0, 1]
(a = 1 represents a perfectly mixed CSTR and a = 0 a
perfect fixed-mass bioreactor).

The model has three inputs: the dilution rate Din and the
two inflow substrate concentrations: Sin

1 and Sin
2 , but we

consider that only the first one is a manipulated variable,
while the latter are perturbations.

The start-up of such a reactor is no easy task, but let us
assume that the bioreactor is already at a steady state ξ̄ =
[X̄1, S̄1, X̄2, S̄2]T , with input ū = D̄in and perturbations
S̄in
1 and S̄in

2 constant. It is known that a steady-state for
this process that is neither the washout of methanogens
nor acidogens is only achievable for certain values of ū, and
the region of convergence for the coexistence of the two
species with this constant input may be relatively small
(Sbarciog et al., 2012).

By determining the possible steady states for given values
of constant ū we get can build an input/output steady-
state map (ū, ȳ), considering y = G, and find that there
is a unique point (ūopt, ȳopt) where the biogas production
rate is maximal.

1 For the Monod equation its two parameters have relevant meaning:
µmax is the maximal rate as S → ∞ and KS is the concentration
where µ = µmax/2. For the Haldane equation in its usual form as an
extension of the Monod equation, i.e.

µ(S) =
µmaxS

KS + S + S2/KI

the parameters µmax, KS and KI have no direct meaning. Instead
this alternative representation uses three relevant parameters: the
maximum µ∗, the concentration where this maximum occurs S∗,
and β > 0, which defines the steepness of the curve:

S∗ =
√
KSKI , µ∗ =

µmax
√
KI

2
√
KS +

√
KI

, β =

√
KS

2
√
KS +

√
KI

.

If the system has been operating for a sufficiently long time
with u(t) ≥ 0, it approaches a 2-dimensional manifold in
the R4

+ space. To see this, consider writing the system as

Ẋ = M(S)X − aXDin, X(0) = X0, (2a)

Ṡ = −KM(S)X + (Sin − S)Din, S(0) = S0 . (2b)

with the following definitions:

X =

[
X1

X2

]
, K =

[
k11 0
−k12 k22

]
, (2c)

S =

[
S1

S2

]
, M(S) =

[
µ1(S1) 0

0 µ2(S2)

]
. (2d)

Let us make the coordinate change

Z = KX + S

so that

Ż = (−Z + Sin +KX(1− a))Din .

If Din(t) > 0, then after some time (e.g. for t ≥ ts, where∫ ts
0
Din(τ)dτ = 5), with δ(t) a small delay or error,

Z(t) = Sin +KX(t)(1− a) + δ(t) . (3)

If we equate this with the definition Z = KX + S, then

X(t) =
1

a
K−1 (Sin − S(t) + δ(t)) , (4)

which we substitute in the differential equation for S(t):

Ṡ = −1

a
KM(S)K−1 (Sin − S + δ) + (Sin − S)Din

Since M(S) is diagonal, we notice that

KM(S)K−1 =

[
µ1(S1) 0

(µ2(S2)− µ1(S1)) k3 µ2(S2)

]
, k3 =

k12
k11

has as one of its eigenvalues µ2(S2), with right eigenvector
bT = [k3, 1], so if we define S3 = bTS = k3S1 + S2 we get

bTKM(S)K−1 = µ2(S2)bT

and thus Ṡ3 = bT Ṡ is given by

Ṡ3 = −ρ(S3, S1) +
(
Sin
3 − S3

)
Din (5)

where we have defined

ρ(S3, S1) =
1

a
µ2(S3 − k3S1)

(
Sin
3 − S3 + δ3

)
, (6a)

Sin
3 = k3S

in
1 + Sin

2 , k3 =
k12
k11

, δ3 = k3δ1 + δ2 . (6b)

In fact, S3 is the total dissolved substrate in the bioreactor,
expressed in VFA units. We can view this as a scalar
system driven by two inputs: Din, which we can control,
and S1, which is the state of another scalar system with
the same input, namely

Ṡ1 = −1

a
µ1(S1)

(
Sin
1 − S1 + δ1

)
+
(
Sin
1 − S1

)
Din (7)

However, we can view ρ also as a function solely of S3 with
S1 a time-varying parameter.

From (4), we see that X2 = 1
ak22

(
Sin
3 − S3 + δ3

)
, so the

output G = kGµ2(S2)X2 then can also be written as:

G = kyρ(S3) , ky =
kG
k22

(8)

It is important to notice that indeed ρ(S3) has a unique
maximum for every time-varying “parameter” S1; its do-
main is defined by S3 ≥ k3S1 and its range is bounded
in R+. Therefore, we have come up with an alternative
representation of the AM2 model, considering only one
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substrate governed by some reaction rate function and an
output function depending on this substrate, which has a
unique maximum in its domain. Of course, the parameters
are quite time-varying, since they depend on both fairly
constant and possibly slowly varying original parameters
and the “hidden” state variable S1.

3. THE PSEUDO-SUPER-TWISTING CONTROLLER

Consider a first order system with relative degree one:

ṡ(t) = −rs(s(t), θs(t)) + [sin(t)− s(t)]u (9a)

y(t) = ry(s(t), θy(t)) (9b)

with u the input (in our case the dilution rate Din),
and y the measured output. The functions rs(·) and ry(·)
can be viewed as scalar functions of s, defined by some
time-varying parameters θs and θy. Their structure may
be unknown. In fact, we may even assume that rs(·) is
completely unknown at all time, but it is non-negative, i.e.
rs : R+ 7→ R+. However we assume that its time-derivative
is bounded: |ṙs(t)| < ∆s.

On the other hand, the structure of the function ry(·) can
also be assumed unknown, but at any given moment, it al-
ways has a unique maximum defined by two (possibly also
time-varying) parameters: s∗ and y∗, which are contained
in the parameter vector θy:

ry(s∗) = y∗,
∂ry
∂s


> 0 if s < s∗

= 0 if s = s∗

< 0 if s > s∗
(10)

We will assume that the parameters θS and θy vary
sufficiently slowly with respect to time. By slow, we mean
that a change in the input u(t) will change s(t) and thus
y(t) relatively more than it will change the parameters
θs(t) and θy(t) (if they are influenced by it).

Given a reference s∗ and thus the error e1 = s∗ − s, the
super-twisting controller (STC) is given by

u = k1|e1|
1
2 sign(e1) + η, (11a)

η̇ = k2 sign(e1) . (11b)

Now define %(t) = rs(s
∗ − e1(t)) and consider that %̇(t) =

d(t), an unknown, but bounded function. Further defining
e2 = % − (sin − s∗)η, using (11) we get the dynamics for
the error:

ė1 = −κ1|e1|
1
2 sign(e1) + e2 − e1u (12a)

ė2 = −κ2
1

2
sign(e1) + d(t) (12b)

where

κ1 = (sin − s∗)k1 , κ2 = 2(sin − s∗)k2 . (13)

It has been shown (Moreno, 2011) that if u ≥ 0 is (upper)
bounded, then it is possible to find (constant) values for
κ1 and κ2 such that the above system converges in finite
time to zero despite the bounded uncertainty on %(t) (the
term e1u can be considered as a vanishing perturbation).
Note that

|e1|
1
2 sign(e1) = φ1(e1) =⇒ 1

2
sign(e1) = φ′1(e1)φ1(e1).

In order to implement this controller, we need to feed
back e1(t), but we can only measure y(t). We will tackle

this problem by approximating separately |e1| and sign(e1)
from the measurement of y. Let us consider the first case.

Define f(e1) = ry(s∗ − e1). According to (10) it will have
a maximum at e1 = 0, but it is not injective with respect
to e1. For some y < y∗, there will exist e−1 < 0 and e+1 > 0
such that f(e−1 ) = f(e+1 ) = y, but usually |e−1 | 6= |e

+
1 |.

We propose an injective function g : [0, ŷ∗] 7→ Dg ⊂ R+,
g(ŷ∗) = 0, with parameter ŷ∗ ≥ y∗, such that we can
approximate f(·) with its inverse on |e1|:

ŷ = g−1(|e1|) (14)

This implies that given some value y ∈ [0, y∗], we can

estimate |e1|
1
2 with |g(y)| 12 and therefore

|g(y, ŷ∗)| 12 sign(e1) = $(e1)|e1|
1
2 sign(e1) (15)

where we have made explicit the importance of the chosen
parameter ŷ∗ of g(·) and

$(e1) =

(
|g ◦ f(e1)|
|e1|

) 1
2

, $(e1) > 0, (16)

where g◦f represents the composition of the two functions,
but respecting the sign:

g ◦ f(e1) = g(f(e1), ŷ∗) sign(e1) (17)

This function is discontinuous at e1 = 0 if g(y∗) > 0,
leading to unbounded $(e1) at e1 = 0. However, it is
continuous if g(y∗) = 0 (e.g. when ŷ∗ = y∗), since then
g ◦ f(e1) is continuous and the limit as e1 → 0 exists; then
$(e1) is upper bounded for e1 ∈ Dg by $max.

The initial version of the proposed pseudo-super-twisting
controller (PSTC) is

u = k1|g(y, ŷ∗)| 12 sign(e1) + η, (18a)

η̇ = k2 sign(e1) , (18b)

with which the error system is given as

ė1 = − (κ1$(e1) + α1(t))φ1(e1) + e2 , (19a)

ė2 = (−κ2 + α2(t))φ′1(e1)φ1(e1) , (19b)

where

α1(t) = |e1(t)| 12u(t), α2(t) =
d(t)

1
2 sign(e1(t))

.

We notice that |α2(t)| ≤ 2∆s and α1(t) = 0 when e1 = 0;
this is important in the proof for convergence. Now we
state the main result.

Theorem 1. Consider that g(y∗) = 0 and thus $(t) is
upper bounded by $max, and

$Mκ1 = ε+
∆2

2

ε3γ
+ (ν2 − 1)εγ

(
1 +

∆2

ε2γ

)2

, (20a)

κ2 = ε ($Mκ1 + ε (γ − 1)) . (20b)

Then there exist $M ≥ $max, ε > 0, γ > 0, and ν > 1
such that the error system (19) with the controller (18)
using (13) converges globally in finite time to the origin,
for all u(t) ≥ 0.

If g(y∗) > 0 then $ is unbounded at e1 = 0, but there exist
$M > 0, ε > 0, γ > 0, and ν > 1, such that trajectories
converge globally in finite time to a neighborhood Ne of
the origin.

The complete proof of this theorem is omitted for lack
of space, but it follows very closely the methodology
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of Moreno (2011) and also explained by Vargas et al.
(2014), where a Lyapunov function candidate is defined
as V (e) = ξTPξ with ξ1 = φ1(e1) and ξ2 = e2. This leads

to V̇ = φ′1(e1)ξT
(
AT (t)P + PA(t)

)
ξ = −φ′1(e1)ξTQ(t)ξ

with A(t) depending on the chosen gains and the unknown
perturbations α1 and α2:

A(t) =

[
−$(t)κ1 − α1(t) 1
−κ2 + α2(t) 0

]
.

If we can show that for any constant P = PT > 0 we can
find a positive definite Q(t) for all considered $(t), α1(t)
and α2(t), then it is straightforward to prove the theorem.
The choice of gains (20a)-(20b) guarantees this.

4. ESTIMATION OF THE SIGN FUNCTION

We have shown so far that under proper tuning of the gains
κ1 and κ2, the controller (18) would lead to global finite-
time convergence to at least a neighborhood of the origin.
However, we still need to know sign(e1), which must be
estimated. Even though this is either a value of +1 or −1,
it is still very important.

A simple qualitative analysis of the system with wrong sign
shows that it is globally unstable. This can be done using
as phase-plane analysis. It implies that if a trajectory of
the feedback system starts with the correct sign, it will
approach the origin, but as soon as e1(t) changes sign, it
will diverge. Nevertheless, this can be used advantageously
for detecting that a sign change is needed. Once we change
the sign to its correct value, the convergence to the origin
follows because of the global stability of the closed loop.
We repeat this stabilization/destabilization of the system
and thus error trajectories will oscillate around the origin.

We now consider a discretized version of the controller.
Taking samples every Ts time units, at time t = kTs we
have measurements yk, yk−1, . . . , y0 and the controller is
implemented as:

uk+1 = −k1|g(yk, ŷ
∗
k)| 12σk + ηk, (21a)

ηk+1 = ηk − Tsk2σk . (21b)

The estimator for sign(e1) proposed is a state-machine
involving several discrete signals:

• σk ∈ {−1,+1} is the estimate of sign(e1) at t = tk;
• ŷ∗ estimates the global maximum y∗;
• ȳk keeps track of the maximum achieved value of yk

after the last sign change: ȳk = max(ȳk−1, yk).
• ψk is used to decide whether to change the sign or

not, ψ ≈
∫

(ȳ − y)dt;
• ck keeps track of the time since the last sign change.

Under a correct sign estimation, trajectories will make
e1(t)→ 0 and thus y(t)→ y∗. Therefore yk will be increas-
ing until reaching y∗; then e1 will change sign. Afterwards,
if we do not detect the sign change, trajectories will diverge
and thus yk will start decreasing. We use this to detect that
a sign change is needed and also to estimate y∗.

The signal ψk approximates the integral of (ȳk − yk) since
the last sign change. We change σk = −σk−1 (i.e. a sign
change) when ψk > ψ∗, with ψ∗ > 0 a threshold value to
be proposed. At a sign change, we reset ψk = 0, ck = 0,
ȳk = yk and ŷ∗k = ȳk−1. This last reset allows having a
better estimate for y∗ to be used in the estimation of |e1|

according to g(yk, ŷ
∗
k). We use a counter ck = ck−1 +Ts to

force a sign change when ck > Tmax
σ , where Tmax

σ > 0
is a design parameter, in order to make the controller
signal oscillate at least at some minimal frequency. The
signal ck is also used to fix ψk = 0 while ck < Tminσ , with
0 < Tmin

σ < Tmax
σ , thus establishing a maximum frequency

for sign changes; ψk = 0 is also reset whenever a maximum
is detected (yk > ȳk−1) to deal with possible noise in y(t).
We also use ŷ∗k = max(ŷ∗k−1, pȳk−1) with p > 1 (slightly
greater) to ensure that ŷ∗k is always larger than yk.

Table 1 defines the boolean variables for events that might
occur in the sign estimation. Table 2 summarizes how each
signal should change; for example,

ψk =

{
0 if C or L

ψk−1 + Ts(ȳk−1 − yk) otherwise

Event Boolean Condition for true

Sign change C ck ≥ Tmax
σ or ψk ≥ ψ∗

In a lag phase L ck < Tmin
σ

New local maximum N yk > ȳk−1

New global maximum M yk > ŷ∗k−1

Table 1. Events defining a sign change

Signal New value @Event Default

ψk = 0 C or L ψk−1 + Ts(ȳk−1 − yk)
ȳk = yk C or N ȳk−1

ŷ∗ = pȳk−1 C or M ŷ∗k−1

ck = 0 C ck−1 + Ts
σk = −σk−1 C σk−1

Table 2. Actions upon combinations of events

The controller implementation (21) will therefore make
trajectories of y(t) oscillate around the optimal value y∗

that defines the current maximum of function ry, even if
this function has time-varying parameters.

5. SIMULATION RESULTS

For the model (1) there exists an optimal steady state

(ūopt, ȳopt) = (D̄opt
in , Ḡopt) where the biogas production

rate is maximum, assuming that Sin
1 and Sin

2 are kept
constant. The controller aims at reaching at each instant
the value y∗ of the function ry(s) of model (9). In the
case of the simplified anaerobic digester model, for (9)
we use s = S3 and ry(s) = kyρ(S3, S1); see (5)-(6). The
output function’s optimal value is time-varying, since it
depends on S1, which evolves according to (7) and is thus
affected by the same input. If the system in closed loop
were to reach a steady-state (ū∗, ȳ∗), for example when
assuming the implementation of the STC (11), nothing
guarantees that ȳ∗ = ȳopt. In fact, a further analysis of
the model equations shows that ūopt < ū∗; however, for
the parameters tested they are quite close and therefore
y∗ results only slightly smaller than ȳopt.

We simulated the closed loop system using a modification
of the nominal parameters presented by Bernard et al.
(2001), which were originally fitted from data of a labora-
tory bioreactor. Table 3 presents these parameters, while
Table 4 shows the parameters used for the PSTC. For the
simulations we considered constant values for Sin

1 and Sin
2
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in the range used by Bernard et al. (2001). For estimating
|e1| = |S3 − S∗3 | we used

g(y, y∗) = 12.5

∣∣∣∣log

(
y∗

y

)∣∣∣∣ 12
That is, the output function f(e1) is estimated by f̂(e1) =
y∗ exp

(
−0.08e21

)
.

µmax
1 =1.2 d−1 µ∗2=0.536 d−1 k11=42.14 g g−1

KS1=7.1 g L−1 S∗
2=30 mmol L−1 k12=116.5 mmol g−1

a=0.8 β=0.3 k22=268 mmol g−1

Sin
1 =19 g L−1 Sin

2 =50 mmol L−1 ky=453 mmol g−1

Table 3. Parameters of the model

k1=0.02 ψ∗=0.9 Tmax
σ =5 d Ts=10 min

k2=0.03 p=1.001 Tmin
σ =0.1 d umax=1 d−1

Table 4. Parameters of the PSTC

Figure 1 presents the steady state map for the parameters
used (green solid curve), where the maximum ocurs at
(uopt, yopt). We also build a locus of maxima (orange
dashed curve) for ry as follows: assuming that a constant
u = Din would make S1 reach a steady state S̄1 according
to (7), we calculate the maximum ρ∗ of ρ(S3, S̄1) and
plot (Din, ρ

∗). Their intersection defines the steady state
(uss, yss) that would be reached when using the STC in
closed loop. The values obtained are

uopt = 0.607 d−1, yopt = 74.26mmolCH4Ld−1

uss = 0.628 d−1, uss = 73.86 mgmmolCH4d−1

Notice that they are very close. This is what would happen
if we could indeed implement the STC (11), but we cannot.
Instead, we implemented the PSTC (21), so we expect not
to reach a steady state, but trajectories will be oscillating
around it. Figure 2 shows the results for a simulation of
25 d. In the figure the optimal steady state reached when
operating at uopt is shown as a dotted line, while the
calculated STC steady state is shown as a grey horizontal
line.

Figure 3 shows the input and output signals, as well as
those used for the estimation of the sign. It is noticeable
how yk reaches local maxima, and that ȳk remains at
these maxima, being reset upon a sign change. A dashed
(orange) line shows the instantaneous value of y∗, which is
unknown to the controller and quite time-varying, since it
depends on the current value of S1(t), which is changing.
Despite this, yk follows it. The middle subfigure shows the
input; the discontinuities at a sign change are noticeable.
However, the input oscillates around the optimal value in
steady state, where uss and uopt are shown as dotted and
dashed lines, respectively.

Figure 4 shows the results of a simulation where band-
limited white noise was added to the output measure-
ments, while the inflow concentrations Sin

1 and Sin
2 were

allowed to be slowly time-varying. The PSTC is able to
follow the trend of the maximal theoretically achievable
biogas production rate (the orange dotted curve), despite
the measurement noise and the time-varying perturba-
tions. However, note that this y∗(t) to be followed is
calculated with the simplified model equations and at any
given moment we may not really know which biogas rate is
the true maximally achievable, since it could only be calcu-
lated for a steady state. Nevertheless the PSTC achieves its

Fig. 1. Top: input/output steady state (green solid) and
maximum value of ry for fixed steady state S1 (orange
dashed), showing optimal (cross) and STC feedback
(circle) steady states. Bottom: specific COD and VFA
consumption rates, i.e. Monod and Haldane curves.

Fig. 2. Trajectories of the states in closed loop without
noise.

Fig. 3. Trajectories of the output and input signals with-
out noise. Top: evolution of signals true y(t) (dark
blue), noisy y(t) (light blue) ȳ(t) (green), ŷ∗(t) (red)
and y∗(t) (orange). Middle: input u(t). Bottom: ψ(t)
(blue) and sign estimate σ(t) (orange).
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objective and brings trajectories close the oprating point
where a maximum would occur by adjusting the dilution
rate accordingly.

Fig. 4. Trajectories of the output and input signals with
noise. Top: evolution of signals y(t) (blue), ȳ(t)
(green), ŷ∗(t) (red) and y∗(t) (orange). Middle: input
u(t). Bottom graphs: Sin

1 (t) (blue) and Sin
2 (t) (green),

respectively.

The controller proposed is thus a type of model-free
extremum-seeking controller (ESC) (Wang et al., 1999;
Cougnon et al., 2011), but with a different design philos-
ophy. Whereas in the ESC we perturb the system slowly
enough to infer the input-output steady state map, here
the resulting oscillations in the input are naturally occur-
ring due to the state-machine and the fact that practically
we will never know the value of y∗.

6. CONCLUSIONS

The paper has proposed a simple, yet effective, output
feedback controller that maximizes the output in a bio-
process model. It is based on a modification of the well-
known super-twisting controller, but estimating the abso-
lute value of the tracking error with a proposed function of
the output and the sign of the error with a state-machine
which additionally provides estimates of some other criti-
cal parameters. Simulation results show the applicability of
such a control strategy to maximize the biogas production
rate in a simplified anaerobic digester model, even under
measurement noise and time-varying perturbations and
parameters. These results were obtained using the AM2
bioreactor model and not using the more realistic ADM1
model, in order to keep the calculations more tractable.
Nevertheless current investigations are under way to test
it with simulations using this more complex model and
afterwards experimentally in a laboratory bioreactor.
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