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Abstract: This paper deals with the real-time optimization of uncertain plants and proposes
an approach based on surrogate models to reach the plant optimum when the plant cost
gradient is imperfectly known. It is shown that, for processes with only box constraints, the
optimum is reached upon convergence if the multiplicative gradient uncertainty lies within some
bounded interval. For the case of general constraints, conditions are derived that guarantee plant
feasibility and, in principle, allow enforcing cost decrease at each iteration.
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1. INTRODUCTION

Steadily increasing economic competition and growing
environmental concern explain the need for safe plant
operation close to constraints. The goal of real-time op-
timization (RTO) is to enforce plant optimality in the
presence of uncertainty such as plant-model mismatch and
disturbances. Instead of searching for a robust solution to
the problem, RTO methods rely on measurements to push
the plant toward optimality.

There exist three main classes of RTO schemes: (i) one can
update the model parameters and repeat the optimization
with the updated model (Jang et al., 1987; Chachuat
et al., 2009); (ii) alternatively, one can compute correction
terms and modify the optimization problem accordingly;
for example, the use of first-order correction terms allows
enforcing plant optimality upon convergence (Gao and
Engell, 2005; Marchetti et al., 2009); or, (iii) one can use
feedback control and adapt the inputs directly (Skogestad,
2000; Srinivasan and Bonvin, 2007).

This paper investigates feasibility and optimality features
for Class-(ii) schemes, which use possibly inaccurate sur-
rogate models. In our particular case, the surrogate model
consists of a convex quadratic approximation to the plant
cost. The constraints in the surrogate model are linear
functions constructed with the help of Lipschitz constants
for the plant constraints. Similar to modifier adaptation
(Marchetti et al., 2009, 2010; Gao and Engell, 2005), the
proposed scheme requires information on plant gradients.
Since the estimation of plant gradients from measurements
is quite challenging in practice (Marchetti et al., 2010),
one can regard the common assumption of exactly known
plant gradients as being very restrictive. Here, we try to
relax this assumption, at least partially, and we consider
uncertainty in the cost-gradient estimates. We establish
monotonic cost decrease in the presence of component-
wise multiplicative gradient uncertainty for the case of
only box constraints. Furthermore, we show that iterative

plant feasibility can be guaranteed for the case of general
constraints, provided, the gradients and the Lipschitz con-
stants for the plant constraints are known.

The paper is structured as follows. Section 2 briefly dis-
cusses the RTO problem formulation. Section 3 shows how
uncertainty on the cost gradient can be handled in RTO.
A novel RTO approach guaranteeing plant feasibility is
presented in Section 4. The same section also discusses
conditions under which RTO generates successive iterates
with a decrease in the plant cost.

2. PROBLEM STATEMENT

Steady-state performance improvement can be formulated
mathematically as a nonlinear program

min
u
φ(u, d) (1a)

s.t. gj(u, d) ≤ 0, j=1, .., ng (1b)

uL � u � uU , (1c)

where u is the nu-dimensional input vector, φ : Rnu → R
is the cost, and gj : Rnu → R is the jth constraint and d is
the nd dimensional vector of disturbances. The subscript
(≺) denotes component-wise inequality of vectors. The
disturbance d models the fact that for real systems the
plant cost and constraints may change with time. For the
rest of the paper we do not deal with the disturbance d
explicitly. Rather, we assume that the plant cost φ and
the plant constraints gj are not exactly known. Therefore,
only approximate gradient information is available which
is key to finding u?, the optimum of the RTO problem (1).

This paper investigates a novel RTO strategy for handling
uncertain gradient information for the cost function. The
scheme is based on a quadratic upper bound on the cost
that can deal explicitly with uncertain gradients.
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3. RTO WITH BOX CONSTRAINTS

We first address the case of the RTO problem (1) without
the general constraints (1b), that is, only with the box
constraints (1c). Let uk be the input applied to the
plant at the kth RTO iteration and ∆k+1 = (uk+1 − uk)
the difference between two successive RTO inputs. The
following lemma will be crucial for our later developments.

Lemma 1. Let φ : Rnu → R be twice continuously differ-
entiable over the compact set U ⊂ Rnu such that

−Mij <
∂2φ

∂ui∂uj

∣∣∣∣
u

< Mij , ∀u ∈ U , i, j = 1, ..., nu.

Then, the change in φ between uk and uk+1 is bounded as

φ(uk+1) ≤ φ(uk) +∇φ(uk)T∆k+1 +
1

2
∆T
k+1Q̄∆k+1, (2)

where Q̄ � 0 is a diagonal matrix with the diagonal
elements Q̄ii =

∑nu

j=1Mij , i = 1, ..., nu.

Proof. The proof can be found in Bunin et al. (2013). 2

The matrix Q̄ is called a quadratic upper bound on φ.
Based on Lemma 1, we subsequently develop a simple
RTO strategy that accounts for gradient uncertainty. We
propose to solve the following problem

min
∆k+1

∇φ̂Tk ∆k+1 +
1

2
∆T
k+1Q̄∆k+1, (3)

where∇φ̂k is the estimated gradient of the plant cost w.r.t.
uk. Problem (3) has the analytical solution

∆?
k+1 = −Q̄−1∇φ̂k, (4)

which allows setting up the next RTO iterate as

uk+1 = uk − Q̄−1∇φ̂k. (5)

We show next that the RTO iterates given by (5) converge
to a KKT point for the plant cost. For this, let us introduce
three assumptions and a lemma.

Assumption 1. (C2 cost). The cost φ is twice continuously
differentiable on an open set containing the input space
U = {u ∈ Rnu : uL � u � uU}. Furthermore, a global
quadratic upper bound Q̄ is available.

Assumption 2. The solution ∆?
k+1 obtained in (4) is such

that ∆?
k+1 ∈ Uk, with

Uk =
{

∆ ∈ Rnu : ∆ ∈
[
uL − uk, uU − uk

] }
. (6)

Assumption 2 implies that the RTO input uk+1 given by
(5) satisfies the box constraints given in (1c). This assump-
tion may sound restrictive. But note that, if the update
uk+1 given by (5) does not satisfy the box constraints, we
can multiply (4) by a scalar 0 < α < 1 so that the update
uk+1 ∈ ∂U , where ∂U is the boundary of the set U .
For the third assumption we consider a vector γk =
(γk,1, ...γk,nu

)T and define the set Gk ⊂ Rnu as

Gk =
{

diag(γk)∇φk, γk,i ∈ [ε, 2− ε], i = 1, .., nu

}
, (7)

where ε ∈ (0, 1). Let Γk∇φk ∈ Gk represent an element of
the set Gk, with Γk = diag(γk).

Assumption 3. (Bounded gradient estimate). For all k ∈
N, the estimate of the plant cost gradient at uk, ∇φ̂k ∈
Rnu , satisfies ∇φ̂k ∈ Gk, with the set Gk describing the

gradient uncertainty. Any gradient estimate ∇φ̂k satisfy-

ing ∇φ̂k ∈ Gk is said to be an admissible gradient vector.

Fig. 1. The set Gk at u = (1, 1)T for (8) is shown as the
shaded area.

To illustrate the set Gk, consider the plant cost

φ(u) = u2
1 + u2. (8)

The cost gradient at u = (1, 1)T is ∇φ(u) = (2, 1)T . Figure
1 illustrates Gk as the shaded grey region corresponding
to the gradient vector shown by dotted red arrow. For
illustration purposes, we choose here a large value ε =
0.5. The vectors in blue solid arrows are sample vectors
that belong to Gk. The descent directions are obtained
by reflecting any vector v ∈ Gk across the separating
hyperplane constructed at u = (1, 1)T . The separating
hyperplane given by 2u1 + u2 = 3 is shown with solid
red line in Figure 1. The contour curves are depicted by
solid black curves. This observation leads to the following
technical lemma.

Lemma 2. Consider the set of descent directions of φ at
uk

Dk =
{
d ∈ Rnu : ∇φTk d < 0

}
, (9)

and the set

G−k =
{
v ∈ Rnu : −v ∈ Gk

}
. (10)

Then, the inclusion G−k ⊂ Dk holds.

Proof. From (10) and (7), the inner product of the
gradient vector ∇φk with v ∈ G−k , satisfies

∇φTk v = ∇φTk (−Γk∇φk).

Furthermore, since Γk is a positive definite matrix, we have
∇φTk v = −∇φTk Γk∇φk < 0,∀v ∈ G−k and therefore, from

(9), v ∈ Dk. Hence, G−k ⊂ Dk. 2

The message of Lemma 2 is that −∇φ̂k ∈ G−k implies that

−∇φ̂k ∈ Dk. In other words, the negative of the estimated
gradient satisfying Assumption 3 is a descent direction
for the cost φ at uk. One may conclude that moving in
this direction guarantees cost decrease. However, this is
not generally true, even for convex functions. The crucial
parameter to be determined is the step length. The next
proposition shows that taking iterations according to (5)
not only ensures moving in the descent direction but also
guarantees that the step lengths are controlled and result
in cost decrease.

Proposition 1. (Convergence with uncertain gradients).
Consider Problem (1) without the constraints (1b). Let
Assumptions 1–3 hold, the initial input be u0 ∈ U , and
the RTO iterates be computed according to (5). Then,
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(i) the plant cost decreases monotonically at each itera-
tion, and

(ii) upon convergence to u? ∈ int(U), u? is a KKT point
of the plant.

Proof. From(2) and (4) we have,

φ(uk+1)− φ(uk) ≤ −∇φTk Q̄−1∇φ̂k +
1

2
∇φ̂Tk Q̄−1∇φ̂k.

The definition of the set Gk in (7) allows writing the

gradient estimate ∇φ̂k in terms of the true gradient ∇φk
∇φ̂k = Γk∇φk ∈ Gk. (11)

Therefore,

φ(uk+1)− φ(uk) ≤ −∇φTk Q̄−1Γk∇φk +
1

2
∇φTk ΓkQ̄

−1Γk∇φk
or,

φ(uk+1)− φ(uk) ≤ −∇φTk (Γk −
1

2
Γ2
k)Q̄−1∇φk. (12)

Note that Γk − 1
2Γ2

k and Q̄−1 are positive definite. Hence,
the right-hand side of (12) is strictly negative. This proves
the monotonic decrease of the plant cost. If the sequence
{uk} converges to u? ∈ int(U), then, since the plant cost
φ is continuous, the sequence {φ(uk)} converges to φ(u?).
This implies that φ(uk+1) − φ(uk) → 0 and, from (12),
∇φk → 0. Hence, upon convergence, a KKT point of the
plant is reached. 2

Proposition 1 certifies that the knowledge of a quadratic
upper bound on the plant cost can be used to guarantee
cost decrease in the presence of bounded gradient uncer-
tainty.

4. RTO WITH GENERAL CONSTRAINTS

We now consider RTO problems with both the general
constraints (1b) and the box constraints (1c). Note that
these constraints are hard constraints that need to be
respected.

We start with a condition that provides a bound on the
evolution of the constraint functions.

Lemma 3. Let gj : Rnu → R be continuously differentiable
over the compact set U ⊂ Rnu such that

−λi,j <
∂gj
∂ui

∣∣∣∣
u

< λi,j , ∀u ∈ U , i = 1, ..., nu, (13)

where λ are the univariate Lipschitz constants of gj . Then,
the evolution of gj between two successive inputs uk and
uk+1 is bounded by

gj(uk+1) ≤ gj(uk) +

nu∑
i=1

λi,j |uk+1,i − uk,i|. (14)

Proof. The proof can be found in Bunin et al. (2013). 2

Condition (14) can be used to enforce feasibility by com-
puting uk+1 that satisfies

gj(uk) +

nu∑
i=1

λi,j |uk+1,i − uk,i| ≤ 0. (15)

Consider an RTO scheme that enforces (15) at each
iteration. Then, as a plant constraint gets nearly active,
i.e., gj(uk) → 0, the step size for the next iteration
becomes smaller and smaller. Eventually, uk+1 − uk →

0, which may result in very slow or even premature
convergence to a suboptimal point. To avoid this, we use
the following concepts that were introduced by Bunin et al.
(2013).

Definition 1. (ε-active constraint). The constraint gj(uk)
is said to be εj-active at iteration k if, for εj > 0, −εj ≤
gj(uk) ≤ 0. The set of ε-active constraints is denoted by

Jk = {j ∈ {1, . . . , ng} : −εj ≤ gj(uk) ≤ 0} .
Definition 2. (δ-strict descent halfspace). The local strict
descent halfspace of the constraint gj at uk is defined as the
set {u ∈ Rnu : ∇gj(uk)T (u− uk) < 0}. Furthermore, we
define the δj-strict descent halfspace of the jth constraint,
with δj > 0, as

Dgj,k =
{
d ∈ Rnu : ∇gj(uk)T d ≤ −δj

}
. (16)

Note that the set representing the δj-strict descent half-
space is a subset of the strict descent halfspace of the same
constraint.
The reason for the introduction of the ε-active constraints
is to prevent getting too close to a constraint unless abso-
lutely necessary. The δj-strict descent halfspace ensures
that, once a constraint becomes εj-active, the iterates
stay away from the constraint and avoid convergence to
a suboptimal point.

4.1 RTO scheme

We propose an iterative RTO scheme that is based on the
following assumptions:

Assumption 4. The initial input u0 is strictly feasible with
respect to the constraint functions gj , i.e., gj(u0) < 0, j =
1, ..., nu.

Assumption 5. The plant constraint functions gj , j =
1, ..., nu, are continuously differentiable on an open set
containing the set U = {u ∈ Rnu : uL � u � uU}.
Assumption 6. The exact values and gradients of the plant
constraints gj are available.

Assumption 7. The univariate Lipschitz constants λi,j are
available for the plant constraint functions.

The proposed iterative RTO scheme uses the following
convex quadratic program

min
∆k+1

∇φ̂Tk ∆k+1 +
1

2
∆T
k+1Q̄∆k+1 (17a)

subject to

gj(uk)+

nu∑
i=1

λi,j |∆k+1,i| ≤ 0, j = 1, ..., ng (17b)

∇gj(uk)T∆k+1 ≤ −δj , ∀j ∈ Jk (17c)

uL−uk � ∆k+1 � uU − uk, (17d)

The next input update then becomes

uk+1 = uk + ∆?
k+1, (18)

where ∆?
k+1 denotes an optimal solution to (17). Note

that δj , εj > 0 are user-defined tuning parameters. Also,
constraint gradients are needed only when Jk 6= ∅.

4.2 Feasibility of the RTO scheme

We analyze here the feasibility of the RTO scheme (17)-
(18). We consider first the constraints (17b) and describe
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the feasible set for the input increment ∆k+1 with respect
to the jth constraint. By using the concept of Lipschitz
constants introduced in (15), one can write

Lj,k :=
{

∆ ∈ Rnu : ‖Λj∆‖1 ≤ −gj(uk)
}
, (19)

where ‖ · ‖1 represents the `1-norm and Λj = diag(λi,j) ∈
Rnu×nu . Let Fk denote the feasible set of Problem (17) at
uk. This set can be written as

Fk :=
( ng⋂
j=1

Lj,k
)
∩
( ⋂
j∈Jk

Dgj,k
)
∩ Uk. (20)

Similarly, let F ⊂ Rnu be the feasible set of Problem (1).

Using L :=
{
u ∈ Rnu : gj(u) ≤ 0, j = 1, ..., ng

}
, we have

F := U ∩ L.
We present next three lemmas that will be used to prove
recursive feasibility of the RTO scheme (17)–(18).

Lemma 4. If uk /∈ int(L), then Fk = ∅.

Proof. Consider first the case with uk ∈ ∂L. It follows
that gj(uk) = 0 for at least one j ∈ {1, ..., ng}. Hence,
from (19), we get

ng⋂
j=1

Lj,k = 0nu ,

where 0nu is the zero vector of Rnu . It follows from
gj(uk) = 0 that Jk 6= ∅. From (16) we have 0nu /∈ Dgj,k,
which gives ( ng⋂

j=1

Lj,k
)
∩
( ⋂
j∈Jk

Dgj,k
)

= ∅,

and with (20), Fk = ∅. Next, consider the case where
uk ∈ (Rnu \ L), which implies that, for at least one
j ∈ {1, ..., ng}, gj(uk) > 0, and Lj,k = ∅ follows from
(19). Hence, Fk = ∅. 2

The above lemma shows that the necessary (but not
sufficient) condition for (17) to be recursively feasible is
that, for each iterate k, uk ∈ int(L). The next lemma helps
in establishing the plant feasibility of the input update,
which is found by solving (17)-(18).

Lemma 5. Consider (17) with Assumptions 5–7. Let Fk 6=
∅ and the RTO iterate uk+1 be computed as

uk+1 = uk + ∆k+1, ∆k+1 ∈ Fk. (21)

Then, uk+1 ∈ F , i.e., uk+1 is a feasible input for the plant.

Proof. Since ∆k+1 ∈ Fk, then, ∀j = 1, ..., nu,

gj(uk) +

nu∑
i=1

λi,j |∆k+1,i| ≤ 0,

and, from (21) and (14),

gj(uk+1) ≤ gj(uk) +

nu∑
i=1

λi,j |uk+1,i − uk,i| ≤ 0. (22)

It follows from (17d) and (21) that uL � uk+1 � uU .
Hence, uk+1 ∈ F . 2

The following lemma helps further develop the recursive
feasibility of the RTO scheme.

Lemma 6. Consider Problem (17) with Assumptions 5–7.
If Fk 6= ∅ and the RTO iterate uk+1 be computed using
(21). Then, uk+1 ∈ int(L).

Proof. From (14) we get, for j = 1, .., nu,

gj(uk+1)− gj(uk) ≤
nu∑
i=1

λi,j |uk+1,i − uk,i|,

the right-hand side of which is always positive except for
uk+1 = uk. Therefore, from (22) and for uk+1 6= uk,

gj(uk+1) < 0 or uk+1 ∈ int(L). 2

The Lemma 6 says that if the input update generated
by the RTO scheme (17)-(18) is strictly feasible w.r.t.
the constraints (1b) then, as discussed in Lemma 4, the
necessary condition for the the feasibility of (17) is satisfied
for that input update. The following proposition states the
conditions for recursive feasibility of the RTO scheme.

Proposition 2. Let Assumptions 4–7 hold and the RTO
scheme (17)-(18) be initialized at u0. Then, the sequence
{uk}k≥1 generated by the RTO scheme satisfies

uk ∈ F ∩ int(L),∀k ∈ N.

Proof. u0 ∈ F ∩ int(L) follows from Assumption 4. It
follows from Lemma 5 and from Lemma 6 that
uk ∈ F ∩ int(L),∀k ∈ N. 2

We have shown that, given strict feasibility of the initial
input u0, we can ensure plant feasibility for the subsequent
inputs given by (18). Strict feasibility of the initial input
also provides recursive feasibility of the RTO scheme
(17)–(18). The tuning parameters δj and εj dictate the
feasibility of the RTO scheme through (17c). The larger
the values of these parameters, the smaller the feasible
region. Hence, in concrete terms, one can choose smaller
values of the tuning parameters to enlarge the feasible
region, thereby ensuring that the RTO scheme (17)–(18)
remains feasible. The price for that will be smaller steps
and slower convergence.

4.3 Conditions for cost decreasing iterations

This section provides conditions under which plant cost
decrease can be guaranteed at an iteration. To this end,
we define the set

DG−
k

=
{
d ∈ Rnu : ∃β > 0, βd ∈ G−k

}
. (23)

Note that G−k ⊂ DG−
k
⊂ Dk.

Proposition 3. Let the solution to (17) be such that
∆?
k+1 ∈ DG−

k
. Then, the RTO scheme (17)–(18) will give

φ(uk+1) < φ(uk).

Proof. Consider the cost of Problem (17)

φk := ∇φ̂Tk ∆k+1 +
1

2
∆T
k+1Q̄∆k+1.

The solution to (17) can be expressed as ∆?
k+1 = α?d?k,

α? > 0, d?k ∈ Rnu , ‖d?k‖1 = 1. The largest value that α?

can take, α?max, can be found by minimizing φk(αd?k) over
α > 0,

0 < α? ≤ α?max = − ∇φ̂Tk d?k
(d?k)T Q̄(d?k)

.

It follows from ∆?
k+1 ∈ DG−

k
that d?k ∈ DG−

k
. Therefore,

βd?k ∈ G
−
k for some β > 0 and

d?k = − 1

β
Γ̂k∇φk, Γ̂k∇φk ∈ Gk. (24)
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Since ∇φ̂k ∈ Gk, α?max can be written as

α?max =
β(Γk∇φk)T (Γ̂k∇φk)

(Γ̂k∇φk)T Q̄(Γ̂k∇φk)
.

Note that Γ̂k may be different from Γk. It follows from (7)
that the maximum eigenvalue of Γk is 2− ε for some fixed
scalar ε > 0. Hence, α?max can be upper bounded as

α?max <
2β(∇φk)T (Γ̂k∇φk)

(Γ̂k∇φk)T Q̄(Γ̂k∇φk)
. (25)

For the plant cost, consider the step length α > 0 in
the direction d?k. Next, we find the condition on α that
guarantees a decrease in the plant cost. Applying Lemma
1 to the plant cost and with ∆k+1 = αd?k, we get

φ(uk+1)− φ(uk) ≤ α∇φTk d?k +
1

2
α2d?Tk Q̄d?k.

In the direction d?k given by (24), the condition on α for
which the right-hand side of the above inequality is strictly
negative is

α <
2β(∇φk)T (Γ̂k∇φk)

(Γ̂k∇φk)T Q̄(Γ̂k∇φk)
.

From (25), α?max satisfies the above condition. Therefore,
φ(uk+1) < φ(uk). 2

Proposition 3 implies that, if ∆?
k+1 points in a direction

d ∈ DG−
k
⊂ Dk, the plant cost will decrease. Also note

that, if the solution ∆?
k+1 ∈ int(Fk), then Proposition 1

guarantees that the plant cost decreases by applying the
input update (18).

4.4 Choice of tuning parameters ε and δ

The tuning parameter εj defines the value of the corre-
sponding plant constraint at which we start projecting the
RTO iterates onto the constrained δ-strict descent half-
space through (17c). We propose to start with a reasonably
large values of εj and then decrease its value iteratively
when (17) become infeasible for a particular value of εj .
Similarly, we adapt δj . Also, once a feasible solution is
obtained, we recommend setting the value of δj back to
its initial value as the step length can get very small with
small values of δj . In summary, we propose to solve the
RTO problem (1) by iteratively solving the RTO scheme
(17)–(18) using Algorithm 1.

Remark 1. The RTO scheme (17)–(18) is based on the
exact same fundamentals, i.e., Lemmas 1 and 3, as the
experimental optimization scheme proposed in Bunin et al.
(2014). Moreover, to avoid premature convergence, the
RTO scheme (17)–(18) uses the same concept of ε-activity
that is used in Bunin et al. (2014). Yet, there is a
fundamental difference between the two. The experimental
optimization scheme is analogous to the exact line search
method, while the RTO scheme (17)–(18) is analogous to
the trust-region method. The scheme in Bunin et al. (2014)
includes two steps, namely, projection followed by filtering.
In the projection step, the method chooses the direction
in which it will move next, while the filtering step selects
the step length. Hence, the analogy.
Similar to trust-region methods, the feasible region defined
by the constraints (17b)–(17d) is searched to find the best
combination of direction and step length simultaneously.

Algorithm 1 Proposed RTO algorithm

DATA: u0, λi,j , Q̄φ, ε̄, δ̄, uU , uL, ηε , ηδ.
INITIALIZE k = 0, uk = u0, εj = ε̄, δj=δ̄

STEP 1.
GET gj(uk), ∇φ̂(uk)
for all j=1 to ng do

if gj(uk) > −εj then GET ∇gj(uk)
end if

end for

STEP 2.
while εj > ηε do

while δj > ηδ do SOLVE (17)
if (17) = ‘infeasible‘ then

for all j=1 to ng do δj=δj/2
end for

else
for all j=1 to ng do δj=δ̄
end for, break

end if
end while
if (17) = ‘infeasible‘ then

for all j=1 to ng do εj=εj/2
end for

else break
end if

end while
if (17) = ‘infeasible‘ then ∆?

k+1 = 0
end if
APPLY uk+1 = uk + ∆?

k+1, k → k + 1.
GOTO STEP 1.
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Fig. 2. One run of scheme (17)–(18) applied to (26).

4.5 Numerical Example

We introduce the following numerical example and apply
Algorithm 1 to solve

min
u1,u2

φ =(u1 − 0.5)2 + (u2 − 0.4)2

subject to g1 = − 6u2
1 − 3.5u1 + u2 − 0.6 ≤ 0

g2 = 2u2
1 + 0.5u1 + u2 − 0.75 ≤ 0

g3 = − u2
1 − (u2 − 0.5)2 + 0.01 ≤ 0

− 0.5 ≤ u1 ≤ 0.5, 0 ≤ u2 ≤ 0.8

(26)

with the initial input u0 = (−0.45, 0.05)T . It is assumed
that the constraint gradients are known exactly. Fur-
thermore, the Lipschitz constants of the constraints and
the quadratic upper bond on the cost are λ1,1 = 10.45,
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λ1,2 = λ2,2 = λ3,1 = 1.1, λ2,1 = 2.75, λ3,2 = 1.43 and
Q̄ = diag(4.05, 4.05).
To account for uncertain cost gradient, we perform a
Monte Carlo simulation consisting of 100 runs, each with
a different cost gradient estimate. These estimates are
generated randomly as follows. At each iteration k and
for each gradient component i, a random number γk,i is
generated from a uniform distribution in the interval (ε, 2−
ε), with ε = 0.002. Then, each true gradient component
is multiplied by the corresponding γk,i. Note that the
estimates obtained in this manner satisfies Assumption 3.

For all three constraints, we choose the same initial values
of the tuning parameters, ε̄ = 0.11, δ̄ = 0.0002. Algorithm
1 does not update the input when (17) becomes infeasible
and the tuning parameters have reached their threshold
values ηε = 10−3, ηδ = 10−10. However, uncertainty in
cost gradient causes the algorithm to keep searching in
the vicinity of the plant optimum u? = (0.35, 0.32)T . To
prevent this from happening, the optimization is consid-
ered complete once the cost has reached the value 0.03025,
which is 10% more than the optimal cost. One of the 100
runs is depicted in Figure 2. One can see that the RTO
iterations, marked by red dots, converge to the plant opti-
mum, plotted as a blue square. The contour curves for the
plant cost are shown as dotted circles. Note that the RTO
iterates traverse only through the strictly-feasible region
highlighted in green. Table 1 indicates the number of RTO
iterations needed to converge to the 10% neighbourhood
of the true optimum, for the 3 runs with the minimum,
median and maximum numbers of iterations.

Figure 3 depicts the evolution of the cost for these 3
runs. One also sees that the proposed RTO algorithm does
converge to the 10% neighborhood of the minimal cost.
Table 1 lists the number of gradient evaluations resulting
from a constraint becoming ε-active. The constraint g1

requires the most gradient evaluations. One sees that the
constraint gradients are not evaluated at each iteration;
for example, for the run Rmin, gradient of g1 is evaluated
86 times, that of g2 8 times and that of g3 56 times. Hence,
it suffices to compute the gradients of the constraints
only when they become ε-active. Note that this is a clear
advantage over modifier adaptation, which requires all
constraint gradients to be evaluated at each iteration, cf.
Marchetti et al. (2009, 2010).

Table 1. Summary of the three RTO runs

Run RTO Iterations Gradient Evaluations for
g1 g2 g3

Rmin 221 86 8 56

Rmedian 537 406 18 4

Rmax 649 511 27 3

5. CONCLUSION

This paper has presented a RTO scheme based on a surro-
gate model build around a quadratic upper bound on the
plant cost. The proposed scheme ensures plant feasibil-
ity and provides conditions under which cost decreasing
iterates are obtained despite the presence of uncertain
gradients for the plant cost.
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Fig. 3. Plant cost decrease for the three runs of Table 1.
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