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Abstract: It is well known that certain properties of the process dynamics can be deduced from
steady-state information about a process only. In this paper we consider the dual problem, that of
determining steady-state properties from process dynamics. In particular, we are concerned with
the problem of determining extremum points in the steady-state input-output map from dynamic
response data. This is a highly relevant problem in cases where the aim is to determine steady-
state optimal operating conditions using real time process measurements. For this purpose, we
first consider the connection between bifurcations of the zero dynamics and the steady-state
input-output map. Based on these results, we show that steady-state optimal conditions can be
determined from the process dynamics through consideration of local phase-lag properties of
the process only. We demonstrate the usefulness of this result by showing that the optimum of
a chemical reactor can be located, without any prior knowledge, using sinusoidal perturbations
and a phase-lock loop.

Keywords: Real time optimization, extremum seeking, zero dynamics, phase lock loop,
bifurcations, input multiplicity

1. INTRODUCTION

Bifurcation theory provides a link between the stability
of a dynamical system and the branching behavior of its
stationary solutions; solution branches meet where eigen-
values of the linearized dynamics cross the imaginary axis
[Guckenheimer and Holmes, 2002]. For the case of static
bifurcations, it implies that certain dynamic properties
can be predicted from steady-state information about the
system only, e.g., a singularity in the steady-state input-
output map implies that an eigenvalue crosses the imagi-
nary axis at that point and at least one of the steady-state
branches emerging from the singularity will be unstable.
For the specific case of feedback structures, Morari [1985]
derive a number of conditions from which stability prop-
erties of the closed-loop system can be deduced based on
steady-state information about the process only. He also
remarks on the close relationship between these results and
those of bifurcation theory.

In this paper we are concerned with what can be viewed as
the dual problem; that of deducing steady-state properties
of a process from information about its dynamics only.
This is in particular relevant when considering real-time
optimization problems where the aim is to locate a steady-
state optimum based on response data from the process
only. A steady-state optimum corresponds to a singular-
ity in the steady-state output-input map, and one would
therefore expect it to be related to a static bifurcation in
the corresponding zero dynamics. Indeed, as pointed out in
Jacobsen and Skogestad [1991], such a singularity should
imply that a real zero of the linearized system transfer-
function crosses the imaginary axis. Some sketches to

proofs for this is presented in Jacobsen [1994] and Sistu
and Bequette [1995]. Here we turn the problem around
and consider the implications of local bifurcations in the
zero dynamics for the stationary solution branches of a
process. In particular, we consider fold, or saddle-node,
bifurcations and Hopf bifurcations of the zero dynamics
and show that they give rise to different types of input
multiplicity. Somewhat surprisingly, very few results exist
on the implications of bifurcations of the zero dynamics.
One notable exception is Byrnes and Isidori [2002] who
use bifurcation analysis of the zero dynamics to study
the attractors of high-gain feedback systems in a small
neighbourhood of the origin. In the second part of the
paper we utilize the information obtained from consider-
ing bifurcations of the zero dynamics to predict steady-
state extremum points from dynamic response data. In
particular, we show how a phase-lock loop can be used to
drive a system to its steady-state optimum. All results are
demonstrated by application to simple CSTR models.

2. BIFURCATIONS OF THE ZERO DYNAMICS

We consider single-input single-output nonlinear dynami-
cal systems described by a set of ordinary differential and
algebraic equations on the input-affine form

ẋ= f(x) + g(x)u, x ∈ Rn, u ∈ R
y = h(x), y ∈ R (1)

Note that the main results derived below apply also to
systems that can not be written on input-affine form,
but the derivations are in that case more involved and
therefore not included here. The zero dynamics of system
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(1) correspond to the state dynamics when the output
y is forced to be zero or, more generally, constant. To
determine the zero dynamics of the system (1), introduce
a state transformation z = φ(x) to obtain

żi = zi+1, i = 1, r − 1 (2)

żr = b(ξ, η) + a(ξ, η)u (3)

η̇ = q(ξ, η) (4)

y = z1 (5)

where ξ = zi, i = 1, r and η = zi, i = r + 1, n and r is the
relative degree of the system. The zero dynamics are then
given by the dynamics of the n− r states η when the first
r states ξ are forced to be zero by means of the control
input u, i.e.,

η̇ = q(0, η) (6)

We are here interested in the consequences of bifurcations
of the zero dynamics, i.e., when eigenvalues of q(0, η)
linearised about an equilibrium point cross the imaginary
axis. The linear approximation of the zero dynamics at
an equilibrium point equals the zero dynamics of the
linearized system at the same equilibrium [Isidori, 1989].
That is, eigenvalues of the linearized zero dynamics coin-
cide with the zeros of the linearized dynamics of the open-
loop system (1) and bifurcations can hence be determined
from consideration of the transmission zeros of

ẋ=Ax(t) +Bu(t)

y(t) =Cx(t) (7)

where (A,B,C) is the linear approximation of (1) around
a given steady-state.

The transmission zeros of the linearized system (7) can be
determined from the rank of the matrix

M =

(
A− zI B
C 0

)
(8)

The transmission zeros are the values of z such that the
rank of M is less than the normal rank n+1. A bifurcation
of the zero dynamics (6) corresponds to at least one zero
z having zero real part. Using Schur’s identity we get

det(M) = det(A− zI)C(A− zI)−1B = 0 (9)

from which we get that z is a zero if detC(A−zI)−1B = 0
and z is not an eigenvalue of A. The latter condition
rules out pole-zero cancellations. Considering first the case
with z = 0, corresponding to a static fold or saddle-node
bifurcation of the zero dynamics, we get the condition
CA−1B = 0 which as expected corresponds to a zero
steady-state gain G(0) = 0 from input to output. To be
a bifurcation point, a transversality condition also needs
to be fulfilled, i.e., the zero must also move through the
origin as the input (and output) is varied. For this purpose,
consider the MacLaurin series of G(s) = C(sI −A)−1B

G(s) = Σ∞i=0cis
i (10)

where ci = CA−1−iB. For small non-zero s we can neglect
higher order terms and then find that the zero close to
s = 0 is given by

z = −c0
c1

= −CA
−1B

CA−2B

Since CA−2B must be non-zero (otherwise there is a
double zero at s = 0), we find that CA−1B = G(0) changes

sign as the zero changes sign. Thus, a static bifurcation of
the zero dynamics, corresponding to a real zero crossing
the imaginary axis, implies a change in the sign of the local
steady-state gain. This again corresponds to an extremum
point in the input-output map.

It is of interest to consider whether the converse of the
above result is also true, i.e., that an extremum point in the
steady-state input-output map implies a static bifurcation
in the zero dynamics. At an extremum point we have
CA−1B = 0 and we note from the MacLaurin series above
that then z = 0 is a transmission zero of G(s) unless also
all CA−iB, i > 1 are also all identically zero. The latter
case corresponds to having G(s) ≡ 0 at the extremum
point, and this is indeed possible if the zero gain is due
to a static nonlinearity, as in Wiener and Hammerstein
models. However, if the nonlinearity causing the extremum
point is inherent in the state dynamics then the system will
display a transient response also at the extremum point
and G(s) 6= 0 for which G(0) = 0 implies a zero at z = 0
and a change in the sign of G(0) implies a static bifurcation
in the zero dynamics at the extremum point.

Before turning to an example, we remark that the above
result does not imply that at least one solution has
unstable zero dynamics in the case of input multiplicity,
as is often claimed e.g., Sistu and Bequette [1995]. The
main reason for this is that transmission zeros may move
between the complex LHP and RHP through infinity as
well, and this does not correspond to a bifurcation and
does not affect the steady-state gain. Thus, all we can
conclude is that a static bifurcation of the zero dynamics
implies an extremum point in the steady-state input-
output map. This is also the fact that we will utilize to
determine steady-state optima from dynamic data in the
second part of the paper.

Example 1: isothermal CSTR. Consider an isother-
mal perfectly mixed tank reactor with two consecutive
reactions A → B, 2B → C, with standard mass action
kinetics

V ċA = F (cAf − cA)− V k1cA (11)

V ċB =−FcB + V k1cA − V k2c2B (12)

where cA and cB are concentrations of A and B, respec-
tively. With V = 1.0, cAf = 1.0, k1 = 2.0, k2 = 0.1 we get
from linearization of the model that a static bifurcation of
the zero dynamics occurs for

c∗A =
F

F + 2
; c∗B =

4

(F + 2)2

corresponding to c∗B = 0.71 for F ∗ = 0.375. As expected
this is also the maximum value of c∗B which can be seen
from Figure 1. From the figure it can also be seen that the
real zero in the RHP for low values of the flow F moves
towards the imaginary axis as F is increased from F = 0
and crosses into the LHP for F = 0.375. The fact that
a zero crosses the imaginary axis at the extremum point
implies that the process dynamics change significantly
around this point. In particular, there will be a large
change in the phase lag also for non-zero frequencies and
this is what we will utilize below to locate the vicinity of
the optimum using dynamic response data.
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Fig. 1. Steady-state product concentration c∗B as a function
of the feed flow F in the isothermal CSTR. The lower
plot shows the corresponding zero of the transfer-
function from F to cB .

While we in this paper mainly are concerned with the
relation between steady-state properties and process dy-
namics, and hence static bifurcations, it is of interest to
also consider the implications of other types of bifurcations
of the zero dynamics. Consider the case in which a pair
of complex zeros cross the imaginary axis, i.e., C(iω −
A)−1B = G(iω) = 0 for some ω > 0. This case corresponds
to a Hopf bifurcation of the zero dynamics given by (6),
and should according to the Hopf Bifurcation Theorem
[Guckenheimer and Holmes, 2002] result in a limit cycle
in the states η and hence the control input u, when y is
kept constant, on one side of the bifurcation point. An
interesting consequence of this is that we obtain a new
type of input multiplicity in which a constant value of the
output can be obtained by both a steady-state input and
an oscillating input. We next illustrate this with a simple
example below.

Example 2: exothermic CSTR. Consider a CSTR with
an exothermic reaction A → B, Arrhenius kinetics and a
cooling jacket

ẋ1 =−x1 +Da(1− x1)ex2 (13)

ẋ2 =−x2 +BDa(1− x1)ex2 − β(x2 − x2c) (14)

ẋ2c = εFc(xfc − x2c) + β(x2 − x2c) (15)

where x1 is the conversion of A and x2 and x2c denote
dimensionless temperatures in the reactor and cooling
jacket, respectively. With Da = 4.5, β = 3, xfc = −5 we
find a purely imaginary pair of zeros between the coolant
flow εFc and the coolant temperature x2c of the linearised

system for the dimensionless coolant flows εFc = 4.812
and εFc = 5.824, respectively. Thus, at these points a
branch of oscillations in the zero dynamics, and thereby
the input, should appear. Indeed, as can be seen from
Figure 2c, in the range between the two Hopf points of
the zero dynamics we have a stable limit cycle in εFc

coexisting with the steady-state flow (which has unstable
zero dynamics). Thus, we have a new type of input
multiplicity in which a given constant output, i.e., x2c,
can be achieved with two different stationary inputs; one
being steady-state and one being periodic. Note that the
zero dynamics are unstable for the first solution and stable
for the second, implying that while perfect control of x2c
can not be achieved with a constant input this is possible
with a periodic coolant flow. We also note that in this case
the average coolant flow for the periodic solution exceeds
the corresponding steady-state flow for a given x2c, thus in
that sense being less optimal. However, in a general system
the opposite can obviously be the case and this kind of
input multiplicity is therefore of interest to explore also in
this respect.

Obviously one can also find cases with further bifurcations
of the periodic inputs, resulting e.g., in chaotic inputs
producing a constant output, but we do not pursue this
here and rather move to the main topic of the paper; that
of locating steady-state optima from dynamic response
data.

3. USING DYNAMIC RESPONSES TO LOCATE
STEADY-STATE OPTIMA

A steady-state optimum, local or global, corresponds to
an extremum point in the steady-state input-output map.
From the above we conclude that, unless the steady-state
optimum is due to a purely static relationship, a real
transmission zero is crossing through the imaginary axis
at such a point. We here consider the implications of this
for the process dynamics and the use of this knowledge for
real-time optimization in cases where a process model can
not be used to accurately locate the optimum.

The fact that the transfer-function from input to output
contains a real zero at the extremum point implies partly
that the steady-state gain is zero at that point and partly
that the phase-lag is ±π/2 rad at steady-state, i.e., for
ω = 0. That this real zero crosses the imaginary axis
as the operating point moves past the extremum point
implies that the steady-state gain remains small close to
the extremum point while there is a change in the phase-
lag of π rad for ω = 0. For higher frequencies, i.e., for
the dynamic response, a similar conclusion holds; the gain
will be small while there will be a large change in the
phase-lag when the operating point is moved past the
extremum point. This is illustrated in Figure 3 for some
different frequencies in the complex plane. For small non-
zero perturbation frequencies we will have a large change
in phase lag and some point with a phase-lag ±π/2 rad
in the close vicinity of the optimum. To see this, consider
what happens if we fix the frequency ω and vary the point
of linearization locally about the optimum. As we vary
u, and thereby y, the transmission zero vary over some
interval [−ε1, ε2] with ε1, ε2 > 0. But, then the phase
contribution in G(iω) from the transmission zero will vary
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Fig. 2. Exothermic CSTR: Upper plot shows steady-state
values of the coolant temperature x2c as a function
of the coolant flow εFc. The middle figure shows
the corresponding root locus of the zeros of the
transfer-function from εFc to x2c. The lower figure
shows stationary solutions of εFc for fixed x2c; solid
(dashed) lines denote (un)stable steady-states while
circles denote amplitude of a stable limit cycle.

by ∆ϕ rad as the transmission zero varies over [−ε1, ε2],
as illustrated in Figure 3.

From the above discussion, by using a perturbation fre-
quency in the range approximately up to the dominating
pole of the open-loop process, one should be able to locate
the vicinity of the (local) optimum by moving the process
to the operating point where the phase-lag is ±π/2 rad at
that frequency. Having located the vicinity of the optimum
one can then move closer to the optimum by subsequently
lowering the frequency. As the frequency is reduced to-
wards zero the system will asymptotically reach the ex-
tremum point in the steady-state map. For the purpose of

Fig. 3. Change in phase contribution of varying real
transmission zero z in a linear system on the form
G(s) = (s + z)G0(s). ∆ϕi denotes the change in the
phase-lag of the system for the fixed frequencies ωi as
z varies over the interval (−ε1, ε2), ε1, ε2 > 0.

locating the operating point with phase-lag π/2 rad at a
given frequency we here propose to employ a phase-lock
loop (PLL). Phase lock loops are frequently employed in
communication systems and then for synchronization, i.e.,
to reproduce the frequency of an input signal [Best, 2007].
Since the difference in frequencies between two signals is
reflected in a phase difference, PLLs are generally based
on phase estimation combined with feedback of the phase
error in which the oscillator frequency is used as the control
input. A PLL can be used both for continuous time and
sampled systems. Here we employ a continuous PLL to
locate an operating point with phase-lag ±π/2 rad and
use the optimization variable u as the control input. The
phase-lock loop we employ is illustrated in Fig. 4. Note
that we map all phase angles φ into the range [0, π] by

employing the transformation φ̂ = acos(cos(φ)) in the
phase detection unit.

Phase
detection

Loop
filter

Plant
u

ref pert

Fig. 4. Phase-locked loop used for steady-state optimiza-
tion. The reference is set to π/2 rad.

Note that using a phase-lock loop to drive the process to
an operating point with a phase-lag of ±π/2 rad does not
guarantee that we get close to the optimum. Depending
on the choice of frequency, it is of course possible to have
a phase-lag of ±π/2 rad also at operating points arbitrary
far removed from the optimum. This will in particular
be the case if the perturbation frequency is chosen well
above frequencies corresponding to open-loop poles of the
system, and hence the perturbation frequency should be
chosen with respect to the dominant time-constant of
the process. However, to overcome the potential problem
of locking onto non-optimal solutions, while ensuring an
asymptotic approach to the true optimum, one can after
convergence with the chosen frequency slowly lower the
frequency towards lower and lower values. Since the true
optimum is a unique stationary solution as the frequency
approaches zero, provided the optimization problem is
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convex, this will guarantee that one asymptotically ap-
proaches the optimum. The reason for not choosing a
very low frequency initially is that the initial convergence
rate towards even a vicinity of the optimum then be-
comes impractically slow. Also note that the PLL can be
used both for locating the optimum and for maintaining
optimal operating conditions in the presence of various
disturbances.

Consider again the isothermal reactor in Example 1 above.
Figure 5 shows the local phase-lag of the process as a
function of the feed flow F for the frequencies ω1 = 0.01,
ω2 = 0.1 and ω3 = 0.2, respectively. As can be seen from
the figure, for all frequencies there is a large shift in the
phase-lag close to the optimal value F = 0.375 and the
phase crosses −π/2 rad close to the optimum. As the
frequency is increased, the deviation from the optimum
increases somewhat, but for all the considered frequencies
we would get close to the steady-state optimum by using
a phase-lock loop with setpoint π/2 rad.
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Fig. 5. Isothermal reactor in Example 1: local phase-lag
(upper) and gain (lower) of transfer-function from
feed flow F to product concentration cB for different
values of F and the three frequencies ω1 = 0.01, ω2 =
0.1, ω3 = 0.2. The steady-state optimal value is F =
0.375 and is marked by the dashed vertical line.

Also shown in Figure 5 is the corresponding local gain
of the process at the considered frequencies, and as can
be seen the gain reaches a minimum close to the steady-
state optimum of the process. However, as can also be
seen, compared to the large change in phase-lag around
the optimum, there is a relatively small change in the gain
as we move away from the optimum. Thus, considering
noisy and uncertain data it is clearly more advantageous
to utilize the distinct shift in phase-lag to locate the

optimum. Also, note that using the gain would require
finding the minimum gain and hence use of the derivative
of the gain which is even more sensitive to noise. With the
phase-lock loop one simply needs to estimate the phase
lag, for which many robust methods exist, and then set
the setpoint to π/2 rad irrespective of which process is
considered.

Figure 6 shows the response in the product concentration
cB when a phase-lock loop is closed around the isother-
mal CSTR with a setpoint of π/2 rad and perturbation
frequency ω = 0.2. The phase estimator employed here is
based on an extended Kalman filter that estimates both
amplitude and phase of the process response. As can be
seen, the phase-lock loop takes the process close to the
steady-state optimal operating point. To achieve a more
exact steady-state optimum, one could lower the frequency
of the loop when system gets close to steady-state.
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Fig. 6. Isothermal CSTR: response in product concentra-
tion cB when using a phase-lock loop with perturba-
tion frequency ω = 0.2 rad/s and set-point π/2 rad for
the phase lag. The dashed line shows the steady-state
optimum.

4. SUMMARY AND CONCLUSIONS

We have in this paper considered the connection between
the process dynamics and steady-state extrema. In partic-
ular, we have shown that static bifurcations of the zero
dynamics of a process implies an extremum point in the
corresponding input-output map. Since a static bifurcation
of the zero dynamics implies that there locally will be a
large shift in the phase-lag from the input to the output,
it is possible to locate extremum points using dynamic
response data. In particular, for a certain frequency band,
there will be a phase lag of ±π/2 rad in the close vicinity of
the optimum. We therefore proposed to use a phase-lock
loop with setpoint π/2 rad to locate the vicinity of the
steady-state optimum. The phase-lock loop proposed here
is effectively a new type of extremum seeking controller,
which traditionally have been based on steady-state gra-
dient estimation and control. The effectiveness of the pro-
posed control loop was demonstrated by application to
optimization of the conversion in an isothermal CSTR. To
avoid potential problems with the phase-lock loop locking
onto non-optimal solutions, and to ensure an asymptotic
approach to the true optimum, we proposed to lower the
frequency of the phase-lock loop when close to steady-state
conditions are obtained.
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