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Abstract: Nonlinear Model predictive control (NMPC) is a popular control strategy for highly nonlinear
chemical processes. The ability to handle safety and environmental constraints along with the use of an
economic objective makes NMPC highly appealing to industries. The performance of NMPC depends
strongly on the accuracy of the model. In reality, there always are plant-model mismatch and state
estimation errors. Hence the NMPC controller must be robust to uncertainties in the model as well
as against estimation errors. Among the several approaches presented in the literature, the scenario-tree
based multi-stage NMPC approach is a non-conservative and efficient formulation. In this approach, the
evolutions of the plant for different realizations of the uncertainties are considered as different scenarios
and the optimization problem is formulated as a multi-stage stochastic programming problem with
recourse. In this work, we consider multi-stage output feedback NMPC using the Unscented Kalman
Filter (UKF) where the nonlinearities are represented using deterministically chosen sigma points for
state estimation. In the control problem, we explicitly consider the UKF estimation equations to predict
the future evolution of the system. The proposed approach is illustrated by simulation results of fed-batch
chemical reactor with an economic cost function.

Keywords: Model-based control, Output feedback Nonlinear model predictive control, Robust control,
Unscented Kalman Filter, Economic control objective.

1. INTRODUCTION

Nonlinear Model predictive control (NMPC) is an advanced
process control strategy for the control of nonlinear systems.
The control problem is formulated as an optimization problem
over a finite prediction horizon with an economic objective or
a reference tracking objective. In addition to the possibility of
optimizing an economic objective online, handling constraints
with ease makes this approach highly attractive. The perfor-
mance of the controller depends crucially on the accuracy in the
prediction of the plant evolution. Plant-model mismatch and es-
timation errors cause the prediction to be less accurate and may
lead to poor performance of the controller and in some cases
it can even lead to instability. A practically relevant NMPC
controller must be robust to the uncertainties and disturbances
and satisfy the constraints at all times. The most prominent
robust NMPC schemes in the literature are the min-max ap-
proach described in Scokaert and Mayne [1998], the tube-based
approach in Mayne et al. [2011] and the multi-stage NMPC
approach from Lucia et al. [2013]. Min-max approaches mini-
mize the worst case cost of the predicted evolution enforcing the
fulfillment of the constraints for all the cases of the uncertainty
for one optimal input trajectory. The tube-based approach of
nonlinear systems uses two controllers, a nominal controller
and an ancillary controller. For the nominal controller more
stringent constraints than the original constraints are imposed
and the task of the ancillary controller is to make sure that
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the path of the plant remains close to the nominal path so that
the original constraints are satisfied. In the multi-stage NMPC
approach (see Lucia et al. [2013] and Lucia et al. [2012]), the
possible future evolutions of the plant for different realizations
of the uncertainties are considered as different scenarios of the
problem. The important feature of this approach is that it takes
future information about the realization of the uncertainty into
account at every stage by admitting different control moves
for different future scenarios that branch from different points.
This makes the approach less conservative compared to open-
loop min-max NMPC schemes. If the scenario tree is an exact
representation of the future uncertainties, multi-stage NMPC
provides the optimal solution under the given feedback infor-
mation structure by solving an open-loop optimization prob-
lem. When the state vector is not measured at each sampling
interval but only noisy measurements of some outputs are avail-
able, additional uncertainty about the current state as well as
inexact information about the future states must be taken into
account. Thus the controller needs to be robust to the estima-
tion errors as well. Output based NMPC schemes have been
researched extensively in the literature using the robust MPC
schemes and accounting for the estimation errors as described
e.g. in Rawlings and Amrit [2009], Findeisen et al. [2003], Lee
and Ricker [1994]. Multi-stage Output feedback NMPC was
presented for the first time in Subramanian et al. [2014] using
an EKF for state estimation. The scheme was shown to be
robust against parametric uncertainties and bounded estimation
error. In this work, we formulate a multi-stage output feedback
NMPC using the Unscented Kalman Filter (UKF) where the
nonlinearities are better represented by using deterministically
chosen sigma points. In this controller, we consider the UKF
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estimation equations for the prediction of the future evolution
of the system. The innovations give the new information from
the measurement at each sampling time and are used to up-
date the predicted state using the system model. We model the
samples of the innovations as new scenarios in the scenario
tree in addition to the parametric uncertainties and we use
the UKF estimation equations for the evolution of the future
states along with the covariance information. The proposed
approach is shown to be robust to plant-model mismatches and
to estimation errors. The approach is illustrated by simulation
results of a fed-batch chemical reactor with an economic cost
function. In what follows, the UKF is discussed in Section 2
followed by standard multi-stage NMPC and multi-stage output
feedback NMPC in Section 3. In Section 4, a case study of a
highly nonlinear system is discussed followed by results which
validate the method in Section 5. After discussing the results,
we conclude this paper in Section 6.

2. THE UNSCENTED KALMAN FILTER

The most commonly used technique in the field of nonlinear
estimation is the Extended Kalman filter (EKF) mainly because
it is easy to implement. However because of the approximation
of the nonlinearities present in the system using the Jacobian
for the propagation of covariance information, higher order
information gets lost and this leads to a less precise estimate
of the states and the error covariance. The Unscented Kalman
Filter offers an alternate and an efficient way to estimate states
without the linearization of the model as presented in Julier
and Uhlmann [1997]. In this method, 2nx+1 deterministically
chosen sigma points are sampled from the initial confidence in-
terval and are propagated in time using the system model. Here
nx is the number of states in the system. From the propagated
sigma points, the mean of the state and the new covariance
information is obtained. A nonlinear system is assumed to be
given by

xk = f(xk−1, uk−1) + qk−1, (1)

yk = h(xk) + rk, (2)

where xk is the state vector, uk is the input vector, qk is the
process noise at a given time step k and f : Rnx ×R

nu → R
nx

is the model of the system with nx being the dimension of the
state and nu being the dimension of the input. In the equation
(2), yk represents the output vector with the dimension ny ,
h : Rnx → R

ny is the measurement model and rk represents
the measurement noise. The covariances of qk and rk are
represented as Qk and Rk respectively. The covariance of the
state xk is given as Pk . With the current state estimate x̂k and
the covariance matrix Pk, the 2nx + 1 sigma points x̂σk

are
calculated first as follows:

λ = α2(nx + κ)− nx, (3a)

Sk =
√

((nx + λ)Pk), (3b)

x̂0
σk

= x̂k, (3c)

x̂i
σk

= x̂k + Si
k, ∀i = 1, ..., nx, (3d)

x̂i
σk

= x̂k − Si
k, ∀i = nx + 1, ..., 2nx, (3e)

where λ here is a scaling parameter obtained by the tuning pa-
rameters α and κ. Sk is the square root of the scaled covariance
matrix Pk which can be obtained using Cholesky factorization.
Si
k represents the ith row of the square root matrix Sk. The

sigma points are then assigned different weights for the calcu-
lation of the mean and covariance of the resulting state estimate

(mean) and probability distribution. The associated weights are
given below.

w0
m =

λ

(nx + λ)
, (4a)

wi
m =

1

2(nx + λ)
, ∀i = 1, ..., 2nx, (4b)

w0
c =

λ

(nx + λ)
+ (1− α2 + β), (4c)

wi
c =

1

2(nx + λ)
, ∀i = 1, ..., 2nx, (4d)

where wi
m, ∀i = 0, ..., 2nx are the weights associated with

the sigma points x̂i
σk
, ∀i = 0, ..., 2nx for the calculation of

the mean and wi
c, ∀i = 0, ..., 2nx are the weights associated

with the corresponding sigma points for the calculation of the
covariance matrix and β is another tuning parameter to approx-
imate the probability density function. With these details, the
algorithm for the Unscented Kalman Filter is given as follows
(Wan and Merwe [2000]). In the Algorithm 1, the weighted sum

Algorithm 1 The Unscented Kalman Filter (UKF)

Require: x̂k−1, uk−1, yk, Pk−1, Qk, Rk, α, β, κ
1: Calculate xi

σk−1
, ∀i = 0, ..., 2nx as in equation (3)

2: Calculate wi
m, ∀i = 0, ..., 2nx as in equation (4)

3: Calculate wi
c, ∀i = 0, ..., 2nx as in equation (4)

4: for i=0 to 2nx do
5: xi−

σk
= f(xi

σk−1
, uk−1)

6: yi−σk
= h(xi

σk
)

7: end for
8: x̂−

k =
∑2nx

i=0 wi
m xi−

σk

9: y−k =
∑2nx

i=0 wi
m yi−σk

10: P−
k =

∑2nx

i=0 wi
c [x

i−
σk

− x̂−
k ][x

i−
σk

− x̂−
k ]

T +Qk

11: Pyy =
∑2nx

i=0 wi
c [y

i−
σk

− y−k ][y
i−
σk

− y−k ]
T +Rk

12: Pxy =
∑2nx

i=0 wi
c [x

i−
σk

− x̂−
k ][y

i−
σk

− y−k ]
T

13: Kk = Pxy · P
−1
yy

14: x̂k = x̂−
k +Kk(yk − y−k )

15: Pk = P−
k −KkPyyK

T
k

of all the propagated (time updated) sigma points gives the a
priori estimate x̂−

k and the a priori covariance P−
k is calculated

as given in step 10 of the algorithm. Then the Kalman gain Kk

is calculated from the cross covariance matrix Pxy and the mea-
surement covariance matrixPyy . The measurement information
is added to the a priori estimate with the Kalman gain Kk via
the innovations νk = yk − y−k . This gives the current state
estimate x̂k and with the update of the a priori state covariance
matrix to the a posteriori covariance matrix Pk in step 15 of the
Algorithm 1, the state estimation is complete.

3. MULTI-STAGE OUTPUT FEEDBACK NMPC

3.1 Multi-stage NMPC

We first shortly review the main concepts of the multi-stage
NMPC approach presented in Lucia et al. [2013, 2014a] and
then we discuss the main contribution of this paper: the integra-
tion of the Unscented Kalman Filter in the output based multi-
stage NMPC setting. In multi-stage NMPC, the evolution of
the uncertainty is represented by a tree of discrete scenarios
that branches at each sampling instance until the end of the
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Fig. 1. Scenario tree representation of the evolution of the
uncertainty for multi-stage NMPC.

prediction horizon, as it can be seen in Fig. 1. The use of
the scenario tree for the formulation of the real-time decision
problem makes it possible to take into account that in future
sampling times new measurements will be available and there-
fore it will be possible to adapt the future control inputs to the
measurements that become available. In other words, it is not
necessary to compute at the current sampling time a sequence
of control inputs that satisfies the constraints for all the possible
realizations of the uncertainty because the future decisions can
be adapted to the new available information as time progresses.
This reduces significantly the conservativeness of the controller.
If the uncertainty present in the system takes only the discrete
values which are included in the scenario tree (e.g. in the case
of discrete faults), multi-stage NMPC provides the best solution
possible for a given prediction horizon. Generally this is not the
case, and multi-stage NMPC is an approximation of the best
solution.

A possible strategy to generate a scenario tree is to consider
as branches the combinations of the maximum, minimum and
optionally also nominal values of all the uncertainties and
disturbances. Although for the nonlinear case this strategy
does not guarantee constraint satisfaction for the realizations
that are not included in the tree, it is very common that the
worst-case realization is located at one of the extrema of the
uncertainty set. In that case, the multi-tage approach leads
to robust constraint satisfaction for all the realizations of the
tree (see e.g. Lucia et al. [2013]). If a rigorous guarantee for
robust constraint satisfaction of all the possible values of the
uncertainty (including those that are not in the tree) is required,
the multi-stage approach can be combined with reachability
analysis as shown in Lucia et al. [2014b].

It can be seen that the main challenge of the approach is that
the size of the scenario tree and hence of the resulting opti-
mization problem grows rapidly with the prediction horizon and
also with the number of uncertainties considered. A possible
strategy to avoid the exponential growth of the scenario tree
with the prediction horizon is to consider that the uncertainty
remains constant after a certain stage (called the robust horizon
Nr) until the end of prediction horizon (Fig. 1).

In the multi-stage NMPC approach, we consider a discrete-time
nonlinear system:

x
j
k+1 = f

(

x
p(j)
k , u

j
k, d

r(j)
k

)

, (5a)

where each state vector x
j
k+1 ∈ R

nx at stage k + 1 and

position j depends on the parent state x
p(j)
k at stage k, the

vector of control inputs u
j
k ∈ R

nu and the corresponding

realization r of the uncertainty d
r(j)
k ∈ R

nd (e.g. in Fig. 1,

x6
2 = f(x2

1, u
6
1, d

3
1)). The uncertainty at stage k is defined by

d
r(j)
k ∈ {d1k, d

2
k, . . . , d

s
k} for s different possible combinations

of values of the uncertainty. We define the set of indices (j, k) in
the scenario tree as I . Si denotes ith scenario defined as the path
from the root node x0 to one of the leaf nodes and it contains
all the states x

j
k and control inputs u

j
k that belong to the ith

scenario.

The optimization problem that has to be solved at each sam-
pling instant can be written as:

min
x
j

k+1
,u

j

k
, ∀ (j,k)∈I

N
∑

i=1

ωiJi(Xi, Ui) (6a)

subject to:

x
j
k+1 = f

(

x
p(j)
k , u

j
k, d

r(j)
k

)

, ∀ (j, k + 1) ∈ I, (6b)

0 ≥ g
(

x
j
k+1, u

j
k, d

r(j)
k

)

, ∀ (j, k) ∈ I, (6c)

u
j
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I. (6d)

where Xi, Ui are the set of states and control inputs that belong
to the scenario Si with the probability of occurrence ωi. The
cost of each scenario is denoted by Ji(·) and can be written as:

Ji(Xi, Ui) :=

Np−1
∑

k=0

L
(

x
j
k+1, u

j
k

)

, ∀xj
k+1, u

j
k ∈ Si. (7)

g : R
nx × R

nu → R
ng represents general and possibly

nonlinear constraints on the states and on the inputs of the
control problem evaluated at each node of the tree. ng denotes
the number of constraints. The constraints (6d) are called non-
anticipativity constraints which implies that the control inputs
cannot anticipate the realization of the uncertainty, i.e. the

control inputs u
j
k that branch at the same parent node x

p(j)
k must

be the same.

3.2 Multi-stage output feedback NMPC based on the UKF

As discussed in Section 2, the estimated states are not accurate
but are assumed to lie in a certain confidence interval given
by the covariance matrix Pk. We propose here a method to
propagate the current state estimate and the covariance matrix
given by the UKF algorithm in order to predict the future evo-
lution of the system in a more robust way by accounting for the
initial uncertainty and the future measurement noise. The UKF
combines initial state covariance information along with the
system model and the measurement information and estimates
the state of the plant. This can be used as a part of NMPC to
predict the future evolution of the system. However the future
measurements are not known. The innovations νk = yk−h(x̂−

k )
are the new information used to update the predicted state using
the system model to get the optimal estimate. The innovations
information is in general bounded for a properly tuned filter,
and we exploit this fact by sampling them and adding those
samples as additional scenarios in the scenario tree in addition
to the parametric uncertainties. The UKF estimation equations
are used for the prediction of the future state estimates for
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the sampled innovations. The prediction and the measurement
update are carried out simultaneously as a part of the NMPC
algorithm as given by the UKF equations in Algorithm 1. With
the assumption that the worst-case innovations always lie on
the boundary given by Nk := [νLk , ν

U
k ], the scenarios on the

boundary can be included in the scenario tree leading to robust
controller performance against the worst-case estimation errors.
The Kalman gain Kk is updated taking into account that new
information on the innovations will be available at the next
sampling times and the future control inputs can act as recourse
variables to counteract the effect of the uncertainties including
the estimation error. The feedback information that is present in
the scenario tree not only makes the approach less conservative
but also helps in the propagation of the covariance matrices
along the possible future realizations of the states for all the
considered scenarios. Based on the covariance of the state esti-
mates along the prediction horizon for all scenarios, the predic-
tion of the Kalman gainKk at all time-stages is possible leading
to a good predicted state estimate for all the scenarios. In order
to simplify the notations used in the problem formulation, the
details given in the Algorithm 1 are simplified as follows. The
covariance propagation (given in step 15 of Algorithm 1) is
represented using Pk = Φ(x̂k−1, uk−1, dk−1, Pk−1) and the
Kalman gain equation shown in step 13 of the Algorithm 1 is
represented as Kk = Ψ(x̂k−1, dk−1, uk−1, Pk−1). With this
simplification, the multi-stage output feedback NMPC problem
formulation is given as follows,

min
x
j

k+1
,u

j

k
, ∀ (j,k)∈I

N
∑

i=1

ωiJi(Xi, Ui) (8a)

subject to:

x
j
k+1 = f

(

x
p(j)
k , u

j
k, d

r(j)
k

)

+K
j
kν

r(j)
k , ∀ (j, k + 1) ∈ I,

(8b)

P
j
k+1 = Φ

(

x
p(j)
k , u

j
k, d

r(j)
k , P

p(j)
k

)

, ∀ (j, k + 1) ∈ I,

(8c)

K
j
k+1 = Ψ

(

x
p(j)
k , u

j
k, d

r(j)
k , P

p(j)
k

)

, ∀ (j, k + 1) ∈ I,

(8d)

0 ≥ g
(

x
j
k+1, u

j
k, d

r(j)
k

)

, ∀ (j, k) ∈ I,

(8e)

u
j
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I.

(8f)

The innovations part of the uncertain parameters is assumed to
be bounded and given by νk ∈ Nk := [νLk , ν

U
k ]. The UKF

equations (8c) and (8d) are used in the prediction of the state as
shown in the problem formulation and the method is thus robust
to plant-model mismatch and estimation error.

4. CASE STUDY

We consider as a case-study a semi-batch reactor with a cooling
jacket. A chemical reaction A + B →C takes place in the
reactor. The problem has been adapted from Srinivasan et al.
[2003] and Ubrich et al. [1999].

The reaction system can be described by the following set of
ODEs:

dcA

dt
= −kcAcB −

u

V
cA, cA(0) = cA,0, (9)

dcB

dt
= −kcAcB +

u

V
(cB,in − cB), cB(0) = cB,0, (10)

dcC

dt
= kcAcB −

u

V
cC, cC(0) = 0, (11)

dV

dt
= u, V (0) = V0. (12)

where ci represents the concentration of the substance i, k
stands for the reaction rate, V is the volume of the reactor,
and the control input u represents the feed flow-rate of reac-
tant B with concentration cB,in=10 mol L−1. We study the case
where the reaction is run under isothermal conditions, i.e., the
inlet cooling jacket temperature is adjusted to maintain the
temperature in the reactor at T = 70◦C. The evolution of the
temperature of the cooling jacket is given by

Tj(t) = T −
(−∆H)kcA(t)cB(t)V (t)

αHA(t)
, (13)

where ∆H is the reaction enthalpy, αH is a heat transfer
coefficient and A is the contact area between the jacket and the
reactor content.

In order to prevent an uncontrollable behavior of the reaction
in the case of a cooling failure, a safety-related constraint is
considered in which the reactor temperature is restricted by

Tcf = T (t) + min
i∈{A,B}

ci
(−∆H)

ρcp
≤ Tmax, (14)

where ρ denotes the density and cp the specific heat of the
reaction mixture. Additionally, the volume of the reactor is
bounded by its maximum value, V ≤ Vmax and the control
input is bounded (umin ≤ u ≤ umax). The parameters of the
problem and the initial conditions are given by Table 1. The
control goal is to produce a certain amount of product C (nC) in
the minimum possible time respecting the constraints. This goal
has to be achieved for all the possible values of the uncertain
parameters k, ∆H andαH which are assumed to vary by ±10%
with respect to its nominal value. We approximate this goal
by considering the maximization of nC for a finite horizon,
which according to different simulation studies provides almost
identical results compared to the minimum time problem.

We consider that we know the reactor temperature T (assumed
isothermal) and that noisy measurements of the jacket temper-
ature Tj are available at each sampling time with a measure-
ment noise that follows a normal distribution with σ = 0.1 K
bounded by ±3σ.

Table 1. Parameter values, initial conditions and
bounds.

Parameter Value Units

k 0.0482 L mol−1 h−1

∆H -60000 J mol−1

αH 20 W m−2 K−1

T 70 ◦C

ρ 900 g L−1

cp 4.2 J g−1 K−1

cB,in 10 mol L−1

cA,0 2 mol L−1

cB,0 0.54 mol L−1

V0 0.7 L

umin 0 L h−1

umax 0.1 L h−1

Tmax 80 ◦C

Vmax 1 L

nC,des 0.45 mol
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Fig. 2. Concentration cA, Concentration cB , temperature Tcf

and the input feed u obtained from using nominal NMPC
without accounting for parametric uncertainty and estima-
tion error.

5. RESULTS

This section shows the results for standard NMPC, multi-stage
NMPC and multi-stage output feedback NMPC for the case-
study presented above. In all cases we estimate the necessary
states for the initialization of the NMPC controller using an
UKF based on the nominal model at each sampling time. For
this case study, the tuning parameters are given as α = 0.9,
β = 3.0 and κ = 4.0. The initial state covariance is given as

P0 =









1 · 10−4 0 0 0
0 1 · 10−4 0 0
0 0 1 · 10−4 0
0 0 0 1 · 10−2









.

The process noise covariance matrix was chosen as

Qk =









2 · 10−4 0 0 0
0 2 · 10−4 0 0
0 0 1 · 10−4 0
0 0 0 1 · 10−1









.

The measurement noise covariance matric Rk is given by 0.01.
For all the results presented in this paper we discretized the
dynamics of the nonlinear system using orthogonal colloca-
tion on finite elements. The resulting nonlinear programming
problem is solved using IPOPT (Wächter and Biegler [2006])
via CasADi (Andersson et al. [2012]), which calculates exact
first- and second-order derivative information, leading to a very
efficient implementation as illustrated in Lucia et al. [2014a].
We consider a prediction horizon of Np = 5 steps with a
sampling time of tstep = 0.1 h. The cost function minimized
at each stage is the negative amount of product C (nC = CCV )
with a penalty on the control moves:

L = −nC + r∆u2, (15)

where the penalty term for the control movements is chosen as
r = 0.2.

Fig. 2 shows that standard NMPC (for the case of k = 0.0434,
∆H = −66, 000 and αH = 18) is not able to satisfy the
temperature constraint on Tcf resulting in significant constraint
violations which can produce a dangerous operation of the
reactor and should therefore be avoided. In order to account for
the parametric uncertainty we build a scenario tree considering
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Fig. 3. Concentration cA, Concentration cB , temperature Tcf

and the input feed u obtained from using standard multi-
stage NMPC without accounting for the estimation error
in the scenario tree.
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Fig. 4. Concentration cA, Concentration cB , temperature Tcf

and the input feed u obtained from using multi-stage out-
put feedback NMPC accounting for the estimation error in
the scenario tree.

the maximum and minimum values of the uncertain parameters
(k = {0.0434, 0.0530} ,∆H = {−54000,−66000} , αH =
{18, 22}) and we branch the scenario tree only in the first stage
(Nr = 1), which gives a total of s = 23 = 8 scenarios.
The results of this multi-stage NMPC approach can be seen
in Fig. 3 for the case of k = 0.0434, ∆H = −66, 000 and
αH = 18. It can be seen that the performance of the controller
is improved but there are minor violations of the constraints
because the estimation errors are ignored. Though the estimated
values of Tcf satisfies the constraints, the true value of the plant
violates the constraints marginally. In order to avoid violations
of the constraints due to the estimation error, it must be taken
into account in the design of the controller. We generate now
a scenario tree considering the maximum and minimum values
of the uncertain parameters (k = {0.0434, 0.0530} ,∆H =
{−54000,−66000} , αH = {18, 22}) and also its combina-
tions with the maximum and minimum values of the innova-
tions (νk = {−0.6, 0.6}) which result from the UKF approach,
as described in the Section 3. This gives a total of s = 24 = 16
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Table 2. Performance comparison between stan-
dard NMPC (ST), multi-stage NMPC (MS) and
multi-stage output feedback NMPC (MSOF) for

100 random batches.

NMPC Controller ST MS MSOF

Batch time [h] 15.08 16.57 16.71

Batches with violations [-] 60 11 0

Avg. constraint violations [K h] 3.22 0.12 0

Avg. comp. time per iter. [ms] 17 178 1620

scenarios. When the bounds on the innovations hold at all times,
it is possible to satisfy the constraints on the temperature for all
the values of the uncertain parameter and realizations of the
error using such an approach, as it can be seen in Fig. 4. The
robustness is achieved because the multi-stage output feedback
NMPC calculates an additional backoff from the constraint to
account for the estimation error. The additional backoff leads to
a smooth operation of the system in contrast to the correction
actions that happen because of the constraint violations when
estimation errors are ignored (see Fig. 3 and Fig. 4). Thus the
proposed method provides a robust, safer (avoids oscillatory in-
puts) method which results only in a slightly longer batch time.
The UKF based scheme presented in this paper has the added
advantage of possessing an inherent robustness compared to the
EKF based scheme given in Subramanian et al. [2014] because
the sigma points which are propagated along the scenario tree
are also constrained in addition to the predicted evolution of the
system with the innovations update. This already adds a certain
degree of robustness to the state estimation error because even
if the innovations sequence is 0 in the problem formulation, the
initial error is propagated through sigma points and this gives
the approach its inherent robustness to the estimation error.

We show in Table 2, a comparison of the performance for
standard NMPC, multi-stage NMPC and multi-stage output
feedback NMPC for 100 batches with random values of the
uncertain parameters (following a uniform distribution) and
different realizations of the initial conditions (following a nor-
mal distribution) in addition to the measurement noise (also
following a normal distribution). It can be clearly seen that
the multi-stage output feedback NMPC avoids violations of the
constraints for all the cases (also for those not included in the
scenario tree) at the cost of a higher average computation time
per iteration and a slightly longer batch time. It can also be
noted here that multi-stage NMPC can be applied in real time as
the maximum average computation time is less than 2 seconds.

6. CONCLUSION

This paper shows that an Unscented Kalman Filter strategy can
be combined with the multi-stage NMPC method to achieve a
controller which is robust not only to model uncertainties and
disturbances but also to estimation errors. The tree structure of
the multi-stage NMPC approach fits perfectly with the design
of the Unscented Kalman Filter, leading to a simple and non-
conservative approach with a superior performance compared
to standard NMPC or to a multi-stage NMPC which ignores
estimation errors. We illustrate the performance of the proposed
approach using simulation results of a fed batch reactor case
study.
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