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Abstract: The goal of this contribution is to study numeric solution techniques for imple-
menting optimizing control of polymerization processes in tubular reactors with multiple side
injections of monomer along the reactor. The configuration of the reactor causes long delays
between the inputs and the measurements at the reactor outlet and sharp moving fronts when
the inflows are changed. Moreover, the polymerization kinetics are strongly nonlinear. The
process is described by 1D partial differential equations along the reactor length. This makes
the application of optimizing control based on a rigorous process model challenging. The so called
weighted essentially non-oscillatory scheme (WENO) is used to discretize the spatial dimension
of the plant model. This method avoids the need for a very large number of discretization points
and still the model can be simulated sufficiently accurately. The resulting ode model contains
1600 states and comprises five manipulated variables. We implement the optimizing controller
using two different approaches: At first single shooting with control vector parametrization is
used which is simple to implement and has fewer decision variables. This is compared to full
discretization scheme using orthogonal collocation on finite elements which results in a very
large but very sparse and structured nonlinear programing problem. The simulation results
show that both approaches have a similar performance and drive the system to a significantly
more productive steady state.

Keywords: Optimizing control, Nonlinear model predictive control, Single shooting, Control
vector parametrization, Full discretization, Orthogonal collocation on finite elements.

1. INTRODUCTION

With the emergence of powerful hardware and efficient
numeric optimization techniques, model-based optimiz-
ing control can be used for more complex systems. In
this method, nonlinear models are employed to optimize
the performance of the controlled system over a moving
horizon under constraints on the future inputs and the
predicted system states. The application of this type of
controller has been studied for several different types of
systems e.g. (Idris et al. 2012). While early applications
of optimizing control concerned slow processes described
by pdes e.g. chromatographic columns (Toumi and Engell
2004), only recently applications to tubular reactors have
been investigated e.g. (Hashemi et al. 2013) and (Lao
et al. 2013). The process considered in this work, was
developed in the European project F3-Factory (Buchholz
2009) and is a benchmark for the transfer of batch poly-
merization to continuous operation. In this work, we follow
the idea of optimizing control and maximize the product
throughput directly while respecting product quality con-
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Commission in the project F3 Factory (FP7−NMP/2007 − 2013)
under the grant agreement n◦ 228867 and by the ERC Advanced
Investigator Grant MOBOCON (FP7/2012− 2017) under the grant
agreement n◦ 291458.

straints (Engell 2007). The long computation times of the
optimal inputs is a major bottleneck in using this type of
the controllers for complex systems. In this contribution we
compare the performance of the optimizing control using
two different numeric methods in a complex and nonlinear
process which is described by eight pdes.
The rest of this paper is organized as follows: The second
section describes the process model, its derivation and
the numerical method employed to discretize the spatial
domain of pde model of the reactor system. Nonlinear
model predictive control is briefly discussed in the third
section. Section four presents the formulation of the op-
timizing control using single shooting with control vector
parametrization and simulation results follow. In section
five the optimizing control is formulated using orthogonal
collocation on finite elements and the simulation results
are presented. Conclusions and an outlook on future work
follow in the last section.

2. PROCESS MODEL AND SIMULATION

The process which is investigated in this work is the con-
tinuous production of poly acrylic acid (PAA) in a tubular
reactor with multiple side injections of monomer. The
reactor consists of eight tubular reactor modules connected
in series with a total length of four meters. In order to
ensure an efficient mixing of the reactants, the reactor is
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equipped with static mixers. The P&ID diagram of the
reactor is shown in figure 1. The reactor is divided into four
segments where each segment consists of two modules. The
internal volume of the first two segments is 45 ml whereas
the other two segments are larger and each has a volume of
130 ml. This configuration leads to a total residence time
of about 2600 seconds at the nominal flow rate of 1 kg/hr.
Four side injections of monomer along the reactor serve as
manipulated variables to control the product quantity and
product quality. The temperature of the jacket, which is
assumed to be uniform along the reactor, is set via a ther-
mostat and offers another manipulated variable. At the
reactor outlet, a measurement of the viscosity is available
which is used to compute the average molecular weight
of the produced polymer (Mw). Furthermore, the residual
monomer in the product is assumed to be measured using
spectroscopy at the same position (cM ).
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Fig. 1: Flow sheet of the modular continuous polymeriza-
tion plant. Mw: weight average molecular weight (derived
from a viscosity measurement), cM : residual monomer,
(u1, u2, u3 and u4): side injections of monomer, Tjac :
uniform jacket temperature.

The energy and component balances are used to set up
a rigorous model for the reactor while a perfect mix-
ing in the radial direction is assumed. The free radical
polymerization of acrylic acid is modeled by the terminal
model approach and the method of moments is applied
to model the polymer chain length distribution (Crowley
et al. 1997). The resulting nonlinear partial differential
equations (pde) are shown in equations 1 to 8 (Hashemi
et al. 2013).
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where z ∈ [0, 4] and denotes the spatial domain. An
Arrhenius approach is used to model the temperature
dependent rate coefficients kd, kp and ktc as follows:
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The system is subject to Danckwerts boundary conditions
at the monomer injection points (Danckwerts 1953). The
weight average molecular weight of the product results
from the moments as:

Mw = Mω0

µ2 + λ2

µ1 + λ1

. (12)

Due to the near plug flow characteristic between the inputs
and the outputs, the reactor system reacts to the changes
of the input flow rates showing sharp concentration fronts
and long settling times.
The literature have proposed several methods to solve
such pde models numerically. In the method of lines,
the derivatives in all dimensions of the pde system are
substituted by algebraic approximations except of one.
In other words, in this approach, the pde system is
discretized on a grid/mesh and at every discretization
point one or more odes are derived from the original
pde. Thus the pde model is converted to a system of
odes. Well-established methods for solving odes can then
be applied to find an approximate solution of the pde
system. Usually the spatial derivatives are substituted by
algebraic approximations and the temporal derivatives are
kept. The intuitive and standard choice to approximate the
spatial derivatives is to use finite differences. However, as
we have shown it in (Hashemi et al. 2014), this method
is not capable to simulate stiff systems precisely unless
a very fine discretization grid is used. As an alternative,
nonlinear methods can be used to approximate the spatial
derivatives. The class of such nonlinear methods is called
high resolution methods. The weighted essentially non-
oscillatory (WENO) scheme is a type of high resolution
methods which uses the numerical flux of a variable
to compute the derivatives while the numerical flux is
computed on a dynamic set of stencils (Bouaswaig et al.
2009). A variant of this method, called WENO-Z (Borges
et al. 2008) is used in this work to compute the first
order spatial derivatives that appear in the pde model
of the reactor system. The second order derivatives are
approximated using the WENO scheme proposed by (Liu
et al. 2011) which computes the second derivatives directly.
The details about the computation of the numeric flux and
determination of the smoothness indicators and weights
can be found in the cited references. For the reactor system
under consideration here, it was shown in (Hashemi
et al. 2014) that using the above mentioned WENO
schemes on a discretization grid with 200 points, one can
reach a similar accuracy as by using finite differences
on a grid with 5000 points. Therefore in this work, the
spatial domain of the pde model of the reactor system is
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discretized on a grid with 200 equidistant points using the
WENO schemes. This results in an ode model with 1600
states which is used throughout this paper. The analytical
Jacobian of the model has been computed and will be used.
A typical distribution of the monomer concentration along
the reactor is shown in figure 2. The jumps happen at the
beginning of a segment where a side injection takes place.
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Fig. 2: Typical monomer distribution along the reactor.
The jumps occur at the positions of the reactor where the
side injections of the monomer take place.

3. NONLINEAR MODEL PREDICTIVE CONTROL

In this work, we follow the idea of online optimizing con-
trol. The goal of our controller is to maximize the reactor
economics under constraints on the product quality (En-
gell 2007). The controller utilizes the process model explic-
itly to optimize the process performance over a sufficiently
long horizon by adapting the flow rates and the reactor
temperature. For the numerical solution of the optimal
control problem, the dynamic optimization problem has to
be discretized. For this purpose, sequential optimization of
single shooting based upon control vector parametrization,
multiple shooting or full discretization can be used. In this
work we have used the first one and the last one of these
methods.
The iterative application of the optimizing controller re-
quires to reinitialize the process model with the current
states of the process at each time instance which provides
feedback. In reality, the states are not available but only
few measurements. State estimation for this tubular reac-
tor has been discussed in (Hashemi et al. 2014) and as
the focus here is on the numerical solution techniques, we
assume the availability of the state vector in the controller.
For a tubular polymerization reactor, the operation is
most efficient for a desired conversion if the throughput
is maximized i.e. the sum of all injections of monomer into
the reactor in figure 1. The end-use properties of a polymer
are highly dependent on its molecular weight. Therefore
the weight average molecular weight of the produced poly-
mer, Mw, is considered as a quality constraint. Moreover,
due to toxicological and environmental issues, the resid-
ual monomer in the produced polymer has to be kept
below a threshold. Therefore the monomer content of the
product, cM , is considered as another quality constraint
for the optimizing controller. A faster and smoother tran-
sient behavior, as well as a computationally less demand-
ing optimization problem, can be achieved if the quality

constraints are formulated as soft constraints. We have
shown in a previous work that the hard constraints can
be replaced by soft constraints if an appropriate weighting
factor for the constraints in the computed cost function
is considered (Hashemi et al. 2013). Formulation of the
quality constraints as soft constraints may result in short
term violations of the constraints from the given bounds.
However, if it is assumed that the produced polymer is post
processed in large vessels and will be sold in larger quanti-
ties, a considerable degree of mixing after the production
occurs and the short-time violations can be tolerated.
Considering the quality constraints as soft constraints, the
optimal control problem then can be formulated as follows:

min
S

Φ(x(tk), u(tk), Nc, Np) (13a)

Φ = −1000Φ1 + 2Φ2 (13b)

Φ1 =

j=k+Np
∑
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(u1k + u2k + u3k + u4k) (13c)

Φ2 = 500Φ21 + 3000

(

1

3950
Φ22 +

1

3750
Φ23

)

(13d)
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(max(cMj − cMu, 0))
2 (13e)

Φ22 =

j=k+Np
∑

j=k

(max(Mwj −Mwu, 0))
2 (13f)

Φ23 =

j=k+Np
∑

j=k

(min(Mwj −Mwl, 0))
2 (13g)

where S is the vector of manipulated variables. The
subscripts l and u denote the lower and upper bounds
of the corresponding variables. k refers to the sampling
time and Np denotes the prediction horizon. Throughout
this paper a sampling time of 500 seconds is used and the
inputs are considered to be piece-wise constant between
the sampling times. The product throughput is maximized
through the first part of the cost function (Φ1) and
the violations of the controlled variables from the given
bounds are minimized through the second part (Φ2). The
constants in the cost function have been chosen such that
a compromise between fast transition and small violations
of the constraints from the bounds is achieved.
In addition to the quality constraints, the optimal control
problem is subject to two physical constraints as follows:

0 ≤ u1, u2, u3, u4 ≤ 100 (14a)

340 ≤ Tjac ≤ 443 (14b)

The monomer side injections are modeled through the
opening of the controlled valves and the constraint eq.
(14a) results from the limitations on their opening. More-
over, since the reactor is operated at a pressure of 8 bars,
the highest temperature of the reactor before boiling the
water inside is 443 K which is imposed by the constraint
eq. (14b).
The solution of this problem is a sequence of inputs (u∗)
for [tk, tk+Np

]. As usual, the sequence is applied only for
the first sampling period (t ∈ [tk, tk+1]) and the inputs
are kept constant until the next sampling time. The opti-
mization problem is resolved at the next sampling instance
after new measurements have become available.
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4. SINGLE SHOOTING WITH CONTROL VECTOR
PARAMETRIZATION

4.1 Problem formulation

Our first approach to formulate the optimal control
problem is to use single shooting with control vector
parametrization. In this approach, only the control inputs
are discretized and an external integrator is used to com-
pute the trajectories of the states. The advantage of this
method is that it is simple to implement and the small size
of the resulting optimization problem in terms of degrees
of freedom. As the optimization problem in this approach
is solved in a sequential manner, the dynamic model of the
system is implicit in the constraints. The number of deci-
sion variables depends on the length of the control horizon.
Because of the high computational load, in this study, the
control horizon is set to one which means the control inputs
are kept constant for whole prediction horizon. Therefore
the decision variables of the optimizing controller for this
formulation then are: S = [u1, u2, u3, u4, Tjac]. The jacket
temperature (Tjac) affects only the quality parameters
cM and Mw. For the nominal flow rates, the residence
time of the reactor system is about 2600 seconds. Since
the controller manipulates the flow rates of the monomer
side injections, the controller moves can cause a shift
in the states or even postpone or expedite the effect of
the previous control moves. In order to counteract this
behavior and to capture the dynamic evolution of the
process and to assure that the constraints are met, in this
work, a prediction horizon of 3500 seconds with a sampling
time of 500 seconds is used. The ode model is integrated
using the CVODE from the Matlab interface of Sundials
(SundialsTB) with the analytic Jacobian of the model.
The optimization problem is solved using the SNOPT
solver from the TOMLAB package where the solver uses
numerical derivatives of the cost function.

4.2 Simulation Results

In this section a simulation result of the optimal controller
described in section 4.1 is presented. It is assumed that the
reactor system is initially in a steady state and produces
the requested polymer with a designed set of inputs. At t =
0 the controller is switched on and the goal is to produce
same polymer with the maximum possible throughput.
The quality constraints are: cM ≤ 10 and 375 ≤ Mw ≤
395. The plant is simulated using the WENO scheme, and
the same model is used in the single shooting optimization,
so there is no model-plant mismatch. The manipulated
variables generated by the optimizing controller are shown
in figure 3. As it can be seen in this figure, the controller
drives the reactor to an operation point with higher
temperature and increases the sum of all feeds of monomer.
This is achieved by increasing the side feeds in the first
three sections while the feed in the last injection point is
set to zero. This makes sense, as for higher throughputs
the residence time in each segment is reduced and to
achieve the desired conversion, the monomer is fed mostly
at the initial locations. The final throughput is 2.12 times
the initial throughput. The controlled variables for this
simulation are shown in figure 4. The controller is able to
keep the controlled variables within the desired bounds for
whole simulation time.
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Fig. 3: Manipulated variables generated by the optimizing
controller realized by control vector parametrization.
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Fig. 4: Controlled variables of the tubular reactor for
control vector parametrization.

5. FULL DISCRETIZATION

5.1 Problem formulation

As the second method, we use the full discretization ap-
proach and parametrize the states in the time domain us-
ing the orthogonal collocation scheme. The discretization
of the spatial domain is performed as in the previous case
by the WENO scheme in a grid of 200 equidistant points.
Orthogonal collocation is a class of direct collocation
methods and approximates the states of a system by a
linear combination of orthogonal polynomials. Collocation
methods are generally more difficult to implement and
the resulting NLP problem is much larger. However, this
method does not need an additional integrator to solve
the model and the resulting NLP problems are sparse and
structured which can be exploited by many solvers.
The set of flipped Legendre-Gauss-Radau (LGR) collo-
cation points were chosen for the discretization in the
temporal domain (Patterson et al. 2009). This set differs
from other popular orthogonal collocation methods in that
it collocates the last point in the time interval while not
using the first point. The basis Lagrange polynomials have
the following form:

Li(t) =

N
∏

i=0,i6=j

t− tj
ti − tj

i = 0, ..., N (15)

where N is the order of the Lagrange polynomial. The
states are then approximated as follows:

x(t) ≈

N
∑

i=0

x(ti)Li(t) (16)
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It has to be noticed that the first point in the time
interval of each finite element is not collocated but it is still
included as an interpolation point in the sum of Lagrange
polynomials. By differentiating the series and evaluating
at the kth collocation point, it follows:

ẋ(tk) ≈

N
∑

i=0

x(ti)L̇i(tk) (17)

L̇i(tk) = Dki (18)

where Dki is called the Radau differentiation matrix.
Considering the system model as:

ẋ(t) = f(x(t), u(t)) (19)

the dynamics of the system model is collocated at the N
Legendre-Gauss-Radau collocation points. By evaluating
this approximated model at the kth point, the following
equation is obtained:

N
∑

i=0

Dkix(ti) = f(x(tk), u(tk)) (20)

Equation 20 is the full discretization of the system and is
included in the optimization problem as a constraint. The
decision variables of this scheme include the parametrized
states as well the input variables of the reactor system.

5.2 Simulation Results

In this section, the simulation result for the optimal control
problem which is solved using the collocation scheme is
presented. After several simulations, it turned out that a
scheme with four finite elements for the prediction hori-
zon and fifth degree Lagrange polynomials on each finite
element is a good compromise between the approxima-
tion accuracy and the size and the structure of the NLP
problem. The resulting NLP problem has 32,005 decision
variables and figure 5 shows its sparsity pattern.

Fig. 5: Sparsity pattern of the NLP problem using four
finite elements and fifth degree Lagrange polynomials.

In order to evaluate the performance of the fully dis-
cretized scheme, a step response of the system obtained
with the full discretization scheme is compared with the
case that only the spatial domain is discretized and
CVODE from the SundialsTB serves as the integrator. The
result is shown in figure 6.
For the optimizing controller, we assume that the reactor
system is initially at the same steady state as before and
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Fig. 6: Step responses of the controlled variables. For
this simulation the inputs have been changed from
u = [20.000, 25.000, 30.000, 35.000, 350.000] to u =
[24.687, 26.953, 32.679, 36.864, 350.603].

the controller uses the same cost function. The control
horizon is one and the prediction horizon is seven as before
with a sampling time of 500 seconds. The plant was sim-
ulated using CVODE where the WENO scheme was used
to discretize the spatial domain. The controller, however,
uses the fully discretized model. In this work we have used
IPOPT 1 as the solver which is suited for large scale sparse
nonlinear optimization problems (Wac̈hter and Biegler
2006). For this simulation, a distribution of this solver
in the OPTI toolbox 2 , with the MKL PARDISO as the
linear solver, was used. First order derivatives are provided
analytically while a quasi-Newton approach is used by
IPOPT to approximate the second order derivatives. The
manipulated variables are shown in figure 7. It can be
seen that the controller drives the reactor gradually to
an operating point with higher temperature and increases
the throughput 2.13 times. The inputs are slightly oscil-
lating more than in the first simulation but have a shorter
transient. Figure 8 shows the controlled outputs for this
simulation. The controller is able to keep the outputs
within the bounds with some violations which result both
from using soft constraints and by approximation errors.
Figure 9 shows the computation times per iteration of the
two schemes. The full discretization scheme results on the
average, in slightly shorter computation times. In contrast,
the single shooting method is numerically more stable and
keeps the bounds better. The steady states reached by the
two controllers are slightly different which may be due to
the settings of the solvers.
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Fig. 7: Manipulated variables generated by the optimizing
controller with full discretization scheme.

1 https://projects.coin-or.org/Ipopt
2 http://www.i2c2.aut.ac.nz/Wiki/OPTI/
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6. CONCLUSION

In this work, two numeric methods to implement an opti-
mizing controller for a continuous polymerization reactor,
modeled by a set of eight pdes, were studied. The reactor
system has a complex behavior and the concentrations ex-
hibit sharp fronts along the reactor length coordinate. The
WENO scheme was used to discretize the spatial domain
of the pde model to avoid the need for a fine discretization
scheme in this dimension. As the first approach, we imple-
mented the optimal control problem using single shooting
and control vector parametrization. In this approach only
the control inputs are discretized and an integrator is used
to compute the trajectories of the states. This method has
the advantage that it is simple to implement and a small
optimization problem results. Moreover it is numerically
more stable and the tuning of the solver is easier. However,
since a complex integrator must be used, computation of
the Jacobian and of the Hessian of the Lagrangian becomes
almost impossible which results in many evaluations of
the cost function. Moreover the computation times will
increase drastically if longer control horizon is used. As
an alternative, we implemented the orthogonal collocation
on finite elements scheme. This method discretizes the
states of the system as well and a large but sparse and
structured NLP problem results. However, efficient solvers
for this type of problems are available and it is possible
to compute the Jacobian and the Hessian of the optimal
control problem analytically. In this work only the first
order derivatives were available analytically and a quasi-
Newton approach is used to approximate the second or-
der derivatives. Tuning of the optimizer for this method
is more difficult. Using a longer control horizon in this
scheme will have hardly an influence on the computation
times. However, due to the long settling time of our reactor

3 Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, 24GB RAM

system, a longer control horizon needs a longer prediction
horizon which can increase the size of NPL problem. The
simulation results show that both formulations drive the
reactor to a similar steady state and increase the product
throughput considerably. For both implementations, the
worst-case computation times are still too long (up to 6
times). The use of analytical Hessians in the full discretiza-
tion approach could contribute to a further reduction, as
well as further model simplifications in both schemes. The
investigation of other discretization schemes, as well as
the multi-grid approaches are further planned extensions
of this work.
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