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Abstract: We consider the robust output feedback control of uncertain systems utilizing a
robust predictive control scheme based on reduced order models. In detail, we assume that
for the plant an uncertain, linear full order model is available. For this model a reduced order
model is derived. The proposed control scheme utilizes an estimator based on the reduced order
model, which is combined with a robust model predictive controller to robustly stabilize the
system. The proposed framework allows to guarantee robust satisfaction of input and output
constraints as well as robust stability. An efficient implementation is possible, because online
only the solution of a standard model predictive control problem and a simple state estimation
problem are needed, which both involve the reduced model. The applicability of the control
scheme is outlined using simulation examples.
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1. INTRODUCTION

Model predictive control (MPC) is an often used advanced
control strategy in process control due to its ability to
take constraints into account and its applicability to han-
dle multi-variable systems, see e.g. Garcia et al. (1989);
Maciejowski (2002); Qin and Badgwell (2003); Rawlings
and Mayne (2009); Mayne (2014). The feedback in MPC
is based on repeated optimal control and requires at every
time instance the solution of an optimal control problem.
This can be challenging for large-scale systems such as
large plants, systems described by distributed parameters
or if only low-cost hardware is available. The last is the
case for example for the low cost control of small size
distillation column (see e.g. Lima et al. (2013)) or the man-
agement of Lithium-ion batteries (see Klein et al. (2011);
Suthar et al. (2013); Rausch et al. (2014)). One possibility
to decrease the computational burden is to utilize for MPC
reduced order models instead of full order models, which
is the focus of this paper.

Note that also other approaches to reduce the computation
time of MPC are possible such as e.g. tailored solution
methods for MPC (see for example Rao et al. (1998);
Ferreau et al. (2008); Wang and Boyd (2010); Kögel and
Findeisen (2011, 2013); Patrinos and Bemporad (2014)
and the references therein) or the distributed solution
for interconnected systems (see e.g. Stewart et al. (2010);
Kögel and Findeisen (2012)). Note that the proposed
approach is no replacement for these methods, in fact it
can be combined with these methods to further decrease
the computational burden.

One source of large scale systems arise from the control of
distributed parameter systems, where typically the partial
differential equations are discretized leading to a large set
of linear differential equations. These systems are often

further reduced using model reduction techniques (see e.g.
Antoulas (2005); Benner et al. (2005)) to facilitate the
controller design and implementation.

Other examples are high-purity fractionation distillation
columns consisting of many stages (see e.g. Skogestad and
Morari (1988)) where the size of the arising state space
system depends on the number of trays. Although the
arising state-space model is rather large, for the control
often a less accurate description of the input output
behavior is sufficient, see Findeisen and Allgöwer (2000).

Several approaches considering MPC utilizing reduced
order models exist. In Hovland et al. (2006) a reduced
order model is used to enable the utilization of an explicit
model predictive controller (Bemporad et al. (2002)) for
the control of systems arising from the heat equation,
but the reduction error is not taken into account. In
Hovland et al. (2008) conditions given by linear matrix
inequalities are presented for the stability of MPC based
on reduced order models using hard constraint for the
inputs and soft constraints for the output. Sopasakis
et al. (2013) considers the control of a discrete-time
linear, constrained system without external noise using a
reduced order model and assuming that all constrained
states are measured. Continuous-time, linear, constrained
systems are considered in Löhning et al. (2014). Therein,
the reduction error is bounded using an error bounding
approach to guarantee stability using a continuous time
MPC approach for the case that measurements without
noise are available and no external disturbances affect the
system.

The contribution of this work is to a control scheme
guaranteeing robust constraint satisfaction and robust
stability using an output feedback controller based on the
reduced order model. In detail, we propose to combine a
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linear estimator with a tailored robust model predictive
control scheme. The main idea is to derive bounds on the
estimation error to design an appropriate robust predictive
controller.

We outline an efficient approach based on convex optimiza-
tion for the offline computation of the estimation error
bounds. Online, the estimator based MPC can be effi-
ciently be implemented, because at each sampling instance
only a convex optimal control problem and the evaluation
of the simple estimator are necessary, which both involve
only the reduced order dynamics.

The remainder of the paper is structured as follows. The
next section outlines the problem setup. In Section III we
discuss the state estimation of the reduced order model
and present methods to bound the arising estimation error.
Section IV investigates the use of robust MPC techniques
to guarantee robust constraint satisfaction and robust
stability. Section V illustrates the proposed approach using
simulations.

2. PROBLEM SETUP

This section outlines the problem setup and proposes
an output feedback MPC scheme utilizing reduced order
models.

2.1 Full order model

We assume that the full order model of the plant to
be controlled is given by the following dynamics (the
superscript f is used for the full-order model)

x
f
k+1 =Afx

f
k +Bfuk + w

f
k , (1a)

yk =Cfx
f
k + v

f
k , (1b)

zk =Dfx
f
k + Efuk, (1c)

where xf ∈ R
n denotes the plant’s state, u ∈ R

p the
controlled input (also called manipulated variables), wf ∈
R

n bounded, unmeasured disturbances (disturbance vari-
ables), y ∈ R

q the measured output (measured variables)
corrupted by the additive, bounded measurement noise vf .
In (1c) z ∈ R

r denotes a performance output (also known
as controlled variables), which is controlled in order to
guarantee constraint satisfaction and to achieve a specific
performance. In general, p ≪ n and q ≪ n.

The process noise w
f
k and measurement noise v

f
k are

restricted to the convex polytopes W and V, respectively,

w
f
k ∈ W, v

f
k ∈ V. (2)

The input uk and the performance output zk are restricted
to the convex polytopes, U and Z, respectively: 1

uk ∈ U, zk ∈ Z. (3)

2.2 Output feedback based on reduced order models

We want to control the plant (1) via an output feed-
back. For this we combine an estimator with a MPC as
illustrated in Fig. 1. However for large system dimensions
utilizing the full order model for MPC results is in general
challenging, since:

1 Rate constraints can be added by extending the state and output.

1) it might be difficult to estimate all states reliable
2) the optimization problem resulting from MPC might

be large, i.e. cannot be solved in real-time.
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Fig. 1. Proposed output feedback control scheme.

Instead of the full order model (1) we propose to use
reduced order models with a robust predictive controller
and a state estimator that provides error bounds. The
reduced order model is assumed to have the state x ∈ R

m.
The nominal reduced order model is of the form

xk+1 =Axk +Buk, (4a)

yk =Cxk, (4b)

zk =Dxk + Euk. (4c)

We assume that (A,B) is stabilizable and that (A,C) is
observable.

Remark 1. (Model reduction method)
We do not require that the reduced order model (4) is
obtained from the full order model (1) by a special reduc-
tion method. The focus of this work is to derive conditions
such that one can guarantee robustness for a given reduced
order model; the actual design of the reduced order model
is beyond the scope of this work.

Note that the nominal reduced model (4) does not take
the effects of the process noise, the measurement noise and
the model reduction error into account. Therefore, we first
outline in the next section how we can quantify these errors
based on the error analysis of a linear state estimator.
Afterwards we combine the proposed state estimator with
a tailored robust MPC approach based on the reduced
order model to obtain the robust output feedback MPC.

3. STATE ESTIMATION AND ERROR BOUNDING

This section presents the state estimator used in this
work. First we discuss the structure of the state estimator.
Afterwards we show how the estimation error can be
bounded. Finally, we discuss the design of an estimator
based on Kalman filtering.

3.1 Structure of state estimator

To estimate the state of the reduced model (4) we utilize
a linear estimator based on the input u and measured
output y during the last M time instances and the current
measurement given by:

x̂k|k =Gyk +Huk, (5a)

uk =
(
uT
k−M , . . . , uT

k−1

)T
, (5b)

yk =
(
yTk−M , . . . , yTk

)T
, (5c)

where G ∈ R
m×pM and H ∈ R

m×r(1+M). Note x̂k|k is
estimated using only the previous history of inputs and
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outputs. Estimators of this type are e.g. (unconstrained)
moving horizon estimator with zero prior weighting (see
e.g. Rawlings and Mayne (2009)) or fixed interval estima-
tors (see Kailath et al. (2000)).

Larger values of M can improve the accuracy of the
estimate x̂k|k. Furthermore, below a specific value of M
one cannot guarantee that the estimate of x̂k|k is consistent
even in the absence of any noise or model reduction error.

In Section 3.3 we discuss the design of (5) using least-
square estimation by adding some fictitious process/ mea-
surement noise.

3.2 Error bounds

Due to the process noise wf , measurement noise vf and
model reduction two types of error arise: First, the esti-
mated performance output ẑk|k might be different from
the real performance output zk. We denote this error by

∆zk = ẑk|k − zk. (6)

Second, we have some disturbance dk on the dynamics of
the estimated state of the reduced order model given by

dk = x̂k+1|k+1 −Ax̂k|k −Buk. (7)

The idea of this work is to bound both errors and explicitly
consider them in the controller. Therefore, we aim to derive
convex, polytopic sets ∆Z and D such that

∆zk ∈ ∆Z, dk ∈ D, (8)

for any admissible state, input, process noise and measure-
ment noise.

Utilizing the sets D and ∆Z allows to utilize tailored
robust MPC setups to robustly control the system (1) and
guarantee constraint satisfaction, while utilizing only the
reduced order model (4) for estimation and prediction.

In the following, we assume for a parameter P that:

Assumption 2. (Consistency of past behavior)
Over the last P + M time instances the trajectory of
the full-order system (1) and input sequence satisfy the
constraints (3) and are consistent with the dynamics
(1), (2). In detail, xk = {xk−M−P , . . . xk} and uk =
{uk−M−P , . . . uk−1} satisfy

ui ∈ U, i = k −M − P, . . . , k − 1, (9a)

zj = Dfxj + Efuj ∈ Z, j = k −M − P, . . . , k, (9b)

and xk, uk satisfy (1) for some, admissible realizations of
the process and measurement noise.

Note that this assumption is often satisfied in process
control, since the system is started / the set-point is
changed only after staying long enough in or near a well
known (steady) state. Observe that if the Assumption 2 is
satisfied at k and a control scheme guaranteeing constraint
satisfaction is used, then it is also satisfied at k + 1.

Assumption 2 allows to explicitly characterize the sets ∆Z

and D due to the special form of the estimator (5):

Theorem 3. (Characterizing the set ∆Z)
Let Assumption 2 hold. The set ∆Z is given by all ∆zk
with

∆zk = ẑk|k − zk, (10a)

such that ui ∈ U, w
f
i ∈ W, v

f
i ∈ V, zj ∈ Z and for

i = k −M − P, . . . , k − 1 and j = k −M − P, . . . , k − 1

x
f
i+1 =Afx

f
i +Bfui + w

f
i , (10b)

yi =Cfx
f
i + v

f
i , (10c)

zj =Dfx
f
j + Efuj, (10d)

and

x̂k|k =Gyk +Huk, ẑk|k =Dx̂k|k + Euk, (10e)

with uk and yk as in (5).

The theorem directly follows from the problem definition,
the definition of the estimator (5) and Assumption 2.
Note that all appearing equalities and inequalities are
affine. Therefore, it is easily possible to compute off-line
an outer approximation of ∆Z in form of a box by solving
a sequence of linear programs (LPs). This is can be done
by minimizing/maximizing for all basis vectors ei, i.e. for
e1 = (1, 0, . . .)T , e2 = (0, 1, 0, . . .)T etc., the linear cost
function Ji = ei(ẑk|k − zk). Note that the size of these
LPs is influenced by the size of the full and reduced order
model as well as the choice of the design parameter P and
the estimation interval M . Fortunately, these LPs need to
be solved only once off-line.

Also the set D is described similarly.

Theorem 4. (Characterization of the set D)
Let Assumption 2 hold. The set D is given by all dk−1

satisfying

dk−1 = x̂k −Ax̂k−1 −Buk−1, (11a)

where

x̂k =Gyk +Huk, x̂k−1 =Gyk−1 +Huk−1, (11b)

with ul and yl as in (5) and where ui ∈ U, w
f
i ∈ W,

v
f
i ∈ V, zj ∈ Z with j = k −M − P, . . . , k, i = k −M −
P, . . . , k − 1 and

x
f
i+1 =Afx

f
i +Bfui + w

f
i , (11c)

yi =Cfx
f
i + v

f
i , (11d)

zj =Dfx
f
j + Efuj. (11e)

This theorem is an immediate consequence of the defini-
tion of D, of the estimator (5) and Assumption 2. As above
it is a set of affine equalities and inequalities, which allows
to compute a box as an outer bound of D.

In summary, one can compute an outer approximation
of ∆Z and of D by solving a number of large, but
efficiently solvable optimization problems. Fortunately,
these computations can be carried out offline.

3.3 Fixed interval, least square estimator

One possibility to design the linear estimator (5) is to
utilize (linear) least square estimation, see e.g. Kailath
et al. (2000). To utilize this setup let us add the artifi-
cial process noise wk and measurement noise vk on the
nominal, reduced order model (4) resulting in a model of
the form

xk+1 =Axk +Buk + wk, (12a)

yk =Cxk + vk. (12b)
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Using least square estimation we determine a state se-
quence x̂k and noise sequences v̂k and ŵk given by

x̂k = (x̂k−M|k, . . . , x̂k|k), (13a)

v̂k = (v̂k−M|k, . . . , v̂k|k), (13b)

ŵk = (ŵk−M|k, . . . , ŵk−1|k), (13c)

such that the convex quadratic cost function

Je =

k∑

j=k−M

v̂Tj|kV v̂j|k +

k−1∑

i=k−M

ŵT
i|kWŵi|k, (14)

is minimized and the equality constraints arising from the
dynamics and measurement equations are satisfied. V and
W are symmetric, positive definite penalty matrices. The
equalities to be satisfied are given by

x̂i+1|k =Ax̂i|k +Buk + ŵi|k, yj =Cx̂j|k + v̂j|k, (15)

where i = k − M, . . . , k − 1 and j = k − M, . . . , k. The
resulting estimate for ẑk|k is given by ẑk|k = Dx̂k|k +Euk.

This means that the estimate is based on the solution of
the equality constrained, convex quadratic program

min
x̂k,v̂k,ŵk

Je(v̂k, ŵk) subject to (15). (16)

Since there are no inequality constraints, one can solve
this optimization problem analytically, which results in
a solution of the form (5), see e.g. Nocedal and Wright
(2000). Note that for certain special cases, e.g. if the
matrix A is invertible, then one can solve (16) efficiently,
by using Kalman filtering based on the information filter
formulation.

Remark 5. (Choice of penalty matrices V and W )
In the cost function Je, the penalty matrices V = V T > 0
and W = WT > 0 are design parameters, which influence
how nonzero ŵi|k and v̂i|k are penalized. Therefore it is
important to tune them.

4. ROBUST MODEL PREDICTIVE CONTROL

In this section we present a robust model predictive control
scheme tailored to our problem setup. This scheme com-
bined with the state estimator and the bounding approach
presented above enables the robust output feedback con-
trol of the full order system (1) using only the reduced
order model (4) for the required online computations. We
first outline the proposed robust model predictive control
scheme and then discuss implementation issues.

In the previous sections we showed that the estimation
error and the dynamics of the estimates x̂ are given by

x̂k+1 =Ax̂k +Buk + dk, (17a)

zk =Dx̂k|k + Euk + zk − ẑk|k
︸ ︷︷ ︸

∆zk

, (17b)

where dk ∈ D and ∆zk ∈ ∆Z. In addition, as outlined in
the previous section it is possible to compute offline boxes
D ⊇ D and ∆Z ⊇ ∆Z as outer-approximations of these
two sets. This result is the basis for the proposed robust
control approach.

We consider a tube-based, robust MPC approach similarly
as in Mayne et al. (2006), see also Rawlings and Mayne
(2009) for more details. Note that also other robust MPC
approaches such as Chisci et al. (2001) might fit into
the considered framework, but are not discussed here

due to space limitations. Loosely speaking, in tube-based,
robust MPC the controller is based on a combination of a
predictive control law for the disturbance free case and a
linear feedback to take future disturbances into account.
This combination allows to reduce the conservatism, while
the required optimal control problem to be solved is of
similar complexity as in standard MPC.

We need the following definition (Rawlings and Mayne
(2009)).

Definition 6. (Robust invariant set S∞(K))
The set S∞(K) is a robust invariant set for the dynamics
x̂k+1|k+1 = (A + BK)x̂k|k + dk, dk ∈ D, if for every

s ∈ S∞(K) and every d ∈ D it holds that (A + BK)s +
d ∈ S∞(K).

Note that S∞(K) exists only if K is such that A+BK is
asymptotic stable (unless D = {0}).

The robust MPC optimizes a convex quadratic cost func-
tion using a nominal state trajectory x = (xT

k , . . . , x
T
k+N )T

and input sequence u = (uT
k , . . . , u

T
k+N−1)

T , where N > 1
is the horizon length. As in Mayne et al. (2006); Rawlings
and Mayne (2009) this nominal state trajectory need to
satisfy the dynamics 2

xi+1 =Axi +Bui, i = k, . . . , k +N − 1, (18a)

xk ={x̂k|k}⊕ S∞(K), (18b)

and the constraints

ui ∈ U, Dxi + Eui ∈ Z, xk+N ∈ X
f , (18c)

where i = k, . . . , k +N − 1 and the tightened constraints
U and Z are given by

U =U⊖KS∞(K),

Z =Z⊖ (D + EK)S∞(K)⊖∆Z.

The set Xf is the so-called terminal set.

The cost function is given by

V (x,u) = xT
k+NQfxk+N +

k+N−1∑

i=k

xT
i Qxi + uT

i Rui, (19)

where the state penalty matrix Q = QT and input penalty
matrix R = RT are design parameters, which need to
be chosen such that R is positive definite, Q positive
semi-definite and (A,Q

1

2 ) observable and Qf is given by
Qf = (A+BK)TQf (A+BK)+KTRK+Q. Under these
assumptions it is possible to establish the following results.

Corollary 7. (Robust, reduced order output MPC)
Let Assumption 2 hold and the terminal set X

f be given
such that ∀x ∈ X

f we have Kx ∈ U and (A + BK) ∈ X
f

and (D + EK)x ∈ Z.

If the optimization problem O(x̂0|0) given by

min
x,u

V (x,u) subject to (18), (20)

is feasible at k = 0 and uk = u⋆
k +K(x̂k|k − x⋆

k) is used as
feedback, where x⋆

k and u⋆
k are obtained from the optimal

solution of (20), then for any k ≥ 0

• uk ∈ U, zk ∈ Z (robust constraint satisfaction)

• for any w
f
k ∈ W and v

f
k ∈ V the optimization problem

O(x̂k+1|k+1) is feasible (robust recursive feasibility)

2 ⊕, ⊖ denote the Minkowski sum/difference, respectively.
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• xk converges to S∞(K) (robust stability).

This corollary is a rather straightforward combination
of the results of Mayne et al. (2006) and the results
derived in the previous section. Therefore a detailed proof
is avoided here. In summary, the corollary shows that
under mild conditions the closed loop system will satisfy
the constraints and the system state will be robustly
stabilized.

Note that X
f can be chosen either as an ellipsoid or a

polytope, compare Rawlings and Mayne (2009).

Remark 8. (Computation of sets S∞(K))
The sets S∞(K) can be computed using tailored algo-
rithms, see Rawlings and Mayne (2009) and the references
therein.

Remark 9. (Optimal control problem)
The optimal control problem (20) is a convex quadratic
program (QP), if the terminal constraint X

f is a convex
polytope and convex quadratically constrained quadratic
program (QCQP), if X

f is an ellipsoid. Various tailored
solution methods have been proposed in the context of
MPC to solve the arising optimal control problem such as
e.g. Rao et al. (1998); Ferreau et al. (2008); Wang and
Boyd (2010); Kögel and Findeisen (2011, 2013); Patrinos
and Bemporad (2014). Often the multi-stage structure
of the optimization problem (20) is exploited, e.g. by
considering the states as optimization variables (so-called
sparse formulation) to accelerate the solution speed.

Remark 10. (Reduced order / full order MPC)
To illustrate the advantage of the proposed reduced order
MPC approach, let us consider interior point methods (see
e.g. Rao et al. (1998); Wang and Boyd (2010); Kögel and
Findeisen (2013)) that utilize the multi-stage structure. In
this case the computational effort for an iteration is in
general O(N(m + p + q)3), i.e. the effort approximately
grows linearly with the horizon length N and cubically with
the problem dimensions (including the state dimension m).
Loosely, speaking, if we assume that m+ p+ q is half/one
tenth of n+ p+ q, then the reduced order MPC can speed
up the solution speed by a factor of (approximately) 8 or
1000, respectively.

Note that if in addition to the multi-stage structure of (20)
also structure of the dynamics and/or the cost function
is used, then methods as Rao et al. (1998); Wang and
Boyd (2010); Kögel and Findeisen (2013) have a lower
computational effort. As an example one might consider
systems with finite impulse response for which tailored
interior point methods, e.g. Kögel and Findeisen (2013),
have a computational effort quadratically in the system
dimension, if suitably adapted.

5. NUMERICAL EXAMPLES

We illustrate the approach using two examples. First we
consider a SISO toy example. The second is the control
of a high-purity distillation column. MATLAB and YALMIP
(Löfberg (2004)) were used for these studies.

5.1 Toy example

We consider a SISO system with the transfer function

G(s) =
270

(s+ 1)(s+ 3)
+

50

(s+ 2)(s+ 5)(s+ 1)
+

0.001

s+ 0.01

where the performance and measurement output are the
same except of the measurement noise (i.e. Cf = Df ).
The system has n = 5 states. We consider as a reduced
model an approximation by a system with one state, which
we obtained by balanced reduction (balred command
in MATLAB, without matched DC gains). For the chosen
sampling time of 0.1 Fig. 2 shows the Bode plot of G(s)
and its reduced order approximation.
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Fig. 2. Bode plot of G(s) (blue) and reduced order approx-
imation (black).

We assume that the noises are bounded by V = {v| |v| ≤
0.01}, W = {w| |w| ≤ 0.01} and that the constraints are
given by |ui| ≤ 2, |zi| ≤ 100 and |ui − ui−1| ≤ 1. Note
that the input rate constraints can be incorporated by an
extension of the system state.

For the state estimation we use a fixed interval least square
estimator as discussed in Section 3.3 usingW = V = 1 and
M = 5. For P = 100 we can obtain ∆Z = {∆z| |∆z| ≤
6.418} and D = {d| |d| ≤ 2.618}. For the robust MPC
setup we choose N = 20, R = 1 and Q = 0.01. Fig. 3 and
4 illustrate the closed loop behavior. The behavior of the
system is as expected: the system is robustly stabilized to
the steady state (zk = 0, uk = 0) and the constraints are
satisfied.

5.2 Fractional distillation column

We considers the control of a fractional distillation column,
the so-called Column A presented in Skogestad and Morari
(1988). The distillation column consists of 40 stages and
separates a binary mixture into products with a purity of
99%. The feed is at the middle of the column (stage 21)
and has a purity of 50%. The control inputs (manipulated
variables) are the distillate and bottom flow rates, the
reflux flow and boil-up flow. The performance output
(controlled variables) are the purity of the products as
well as the liquid holdup in the condenser and reboiler.

We only use a linearized model available from http://
www.nt.ntnu.no/users/skoge/book/matlab_m/cola/
cola.html, which we scaled for this simulation study.
The system has n = 82 states and is not asymptotic
stable: it has two integrating states. We choose a sampling
time of 3 minutes. We assume that measurements of the
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Fig. 3. Performance output zk for SISO system. Same
initial conditions. Different noise realizations.
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Fig. 4. Plot of controlled input uk (blue) for SISO system.
Same initial conditions. Different noise realizations.

composition and liquid holdup of stages 1, 11, 21, 31 and
the condenser are available.

We consider box constraints on the measurement noise
V = {v| ‖v‖∞ ≤ 0.001} and constraints of the form
‖uk|∞ ≤ 6, ‖zk‖∞ ≤ 10 and ‖uk − uk − 1‖∞ ≤ 1.5. With
respect to the process noise we assume that the main dis-
turbance is in the feed: the feed flow and composition can
each vary between −0.05 and 0.05 from the nominal value
and additionally on every state acts a small disturbance
with values between −10−4 and 10−4.

We consider a reduced order model with m = 10 states
obtained via balanced reduction and use a fixed interval
estimator based on least square estimation (compare Sec-
tion 3.3) using W = I and V = 10I and M = 30. We
obtained the outer bounds on the sets D and ∆Z assuming
that Assumption 2 holds for P = 90. For the robust MPC
setup we choose N = 120, R = 0.01I and Q = DTD and
X

f as a polytopic set.

Figure 5 and 6 show simulations of the closed loop system
using the linearized system. In the first period the steady
state is zk = 0 and uk = 0 and jumps in the second and
third period to different set points. We observe that the
constraints are satisfied and that the system is robustly
regulated to the set points.

The average computations necessary at each time instance
take about 240 ms using a 3.4 GHz Intel i7-4770 CPU
and the quadratic programming solver quadprog from
MATLAB. In comparison using the full order model the
average time is about 3.6s, i.e. using the reduced order
model allows to reduce the computational effort by a factor
of 15 in this example.
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k

k

Fig. 5. Plot of performance output zk for linearized distil-
lation column. Red: purity of distillate product. Blue:
purity of bottom product. Green: liquid holdup in
condenser. Black: liquid holdup in reboiler.
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Fig. 6. Plot of controlled input uk for linearized distillation
column. Red: reflux flow. Blue: boil-up flow. Green:
distillate product flow rate. Black: bottom product
flow rate. Magenta: input constraints.

6. SUMMARY AND FUTURE WORKING
DIRECTIONS

In this work we considered the control of a linear, discrete-
time, constrained process subject to additive process and
measurements noise using an output feedback based on
model predictive control and, especially, a reduced order
model. We outlined a robust model predictive control
approach for this problem setup using a fixed interval,
linear state estimator and a robust MPC. In detail, we
proposed an offline analysis based on linear programming
to bound the maximum possible estimation errors. This
allows to design the robust MPC such that it can take the
effects of the process and measurement noise as well as the
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reduction error into account. The results are illustrated
using simple examples.

In future works we will analyze and evaluate the proposed
framework in more details. Future works consider an ex-
tension to set-point tracking, similar as Alvarado et al.
(2007). Also methods to improve the design of the estima-
tor, reduced model and robust MPC are of interest as well
as co-design methods, i.e. methods to combine these design
processes into a single process. Another possible extensions
of the proposed approach is to use nonlinear estimators.
Finally, we aim to apply the proposed approach also to
applications arising in the optimal charging of Lithium ion
batteries and to other applications.
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F. (2006). Robust output feedback model predictive
control of constrained linear systems. Automatica, 42(7),
1217–1222.

Mayne, D.Q. (2014). Model predictive control: Recent
developments and future promise. Automatica, 50(12),
2967 – 2986.

Nocedal, J. and Wright, S.J. (2000). Numerical Optimiza-
tion. Springer.

Patrinos, P. and Bemporad, A. (2014). An accelerated
dual gradient-projection algorithm for embedded linear
model predictive control. IEEE Trans. Automatic Con-
trol, 59(1), 18–33.

Qin, S. and Badgwell, T. (2003). A survey of industrial
model predictive control technology. Control engineer-
ing practice, 11(7), 733–764.

Rao, C., Wright, S., and Rawlings, J. (1998). Application
of interior-point methods to model predictive control. J.
Optimization Theory & Applications, 99(3), 723–757.

Rausch, M., Klein, R., Streif, S., and Findeisen, R. (2014).
Model-based state estimation for Lithium-ion batteries
(in German). Automatisierungstechnik, 62(4), 296–311.

Rawlings, J.B. and Mayne, D.Q. (2009). Model predictive
control: Theory and design. Nob Hill Pub.

Skogestad, S. and Morari, M. (1988). Understanding the
dynamic behavior of distillation columns. Industrial &
Engineering Chemistry Research, 27(10), 1848–1862.

Sopasakis, P., Bernardini, D., and Bemporad, A. (2013).
Constrained model predictive control based on reduced-
order models. In Proc. IEEE Conf. Decision & Control
& European Control Conf., 7071–7076.

Stewart, B.T., Venkat, A.N., Rawlings, J.B., Wright, S.J.,
and Pannocchia, G. (2010). Cooperative distributed
model predictive control. Systems & Control Letters,
59(8), 460–469.

Suthar, B., Ramadesigan, V., Northrop, P.W., Gopaluni,
B., Santhanagopalan, S., Braatz, R.D., and Subrama-
nian, V.R. (2013). Optimal control and state estimation
of Lithium-ion batteries using reformulated models. In
Proc. American Control Conf., 5350–5355.

Wang, Y. and Boyd, S. (2010). Fast Model Predictive Con-
trol Using Online Optimization. IEEE Trans. Control
Systems Technology, 18(2), 267–278.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1015


