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Abstract: This work focuses on making the best possible decision at the RTO level, when it is not 
economically viable to have implemented a full Production scheduling and business planning optimization.  
It attempts to merge some of the longer-term decisions that are done in the production scheduling and 
inventory management into the RTO, thereby minimizing the total cost of implementations while 
attempting to get some of the benefits that a full production/inventory scheduling activity would bring. In 
the current work a decision on inventory levels is done within RTO by solving the optimization problem 
over a longer horizon and by augmenting the objective function for RTO with inventory cost based on 
historical average of marginal cost. The objective function in RTO is based on minimization of costs, and 
minimization of the proposed objective function leads to an overall reduction of long term marginal cost. A 
case study is presented in which average marginal cost is considered greater and lower than the current 
cost of production and shows that the long term marginal cost reduces over a period of time. 
Keywords: Real-time Optimization, Scheduling and Planning, Inventory Management, Marginal Cost 

 
1. INTRODUCTION 

In industrial setting different levels of optimization problems 
are solved to make a decision. Five different levels of 
optimization are shown in Figure 1 as: PID Control, MPC, 
RTO, Production Scheduling and Business Planning (Darby 
et al., 2011). However, doing all the optimizations is not 
economically viable and hence only some of the levels can be 
implemented. But to take advantage of some of the longer-
term decisions made in Production Scheduling and Business 
Planning in the RTO level; RTO optimization can be 
augmented with relevant costs and solved over a longer 
horizon.  

 
Figure 1: Different Levels of Optimization 

 

In the current work RTO is used to make decisions on plant 
production rates given a system of multiple plants making 

same product and varying plant efficiency with respect to 
cost. This kind of system usually is given direction about 
daily/weekly production targets from the business operations. 
However, sometimes these targets change and it becomes 
impossible for the system of plants to meet them. To plan for 
this uncertainty it becomes important to carefully decide on 
inventory levels when keeping infinite inventory is not an 
option. The challenge in increasing/decreasing the inventory 
levels is compounded by the fact that cost of production is 
highly fluctuating depending on when the extra product is 
produced. The cost of production can fluctuate due to various 
reasons, viz. contractual terms especially caused by the cost 
of utilities and raw material. In this work a methodology is 
presented to account for changing production cost over a 
longer horizon, while deciding on the inventory levels. 
Another important factor which changes the cost of 
production is that the RTO is performed over a system of 
plants, which means each plant has its individual costs which 
varies depending on the efficiency. So in this work two 
decisions are made i) which asset to use and ii) when to 
produce, to capture two levels of optimization. Rawlings and 
Amrit, 2009 have proposed combining RTO and MPC level 
by using an economic objective function, similarly in the 
current work, decision on inventory level is made within 
RTO by using an economic objective function valid over a 
longer horizon. 

Xenos et al., 2015, have proposed an integrated RTO scheme 
for a network of compressors, whereby they decide solve 
load sharing for each compressor in short-term and 
scheduling and planning in long-term. The integration 
scheme solves two separate optimization problems for short 
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and long-term.  

Section 2 describes the problem in detail and develops the 
objective function to combine the two levels of optimization 
in order to decide on the inventory levels. Section 3 and 4 
discusses the impact of marginal production cost on 
inventory and how the modified objective function results in 
reducing the long term marginal costs. 

2. PROBLEM DESCRIPTION 

2.1 System of Plants 

Consider a system of plants and each plant produces same 
product 𝑃𝑃𝑗  , represented by 𝑃𝑖 , 𝑖 ∈ [1,2, … , 𝑛𝑝𝑝𝑝𝑝𝑝𝑝]. It is 
important these plants meet daily and weekly production 
targets set by business personal, possibly arising from a 
higher level of optimization. In order to meet these in optimal 
way, a RTO is used to decide how much to produce at each 
plant given their minimum and maximum capacities. The 
objective here can be either to maximize revenue or minimize 
cost. In most cases, lets consider the objective is to minimize 
cost, then the problem becomes as follows: 

min
𝐹𝑖(𝑘)

� � 𝑃𝑃𝑃𝑛𝑃 𝐶𝐶𝐶𝑃𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖=1

+ � 𝑃𝑃𝑛𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝑃𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑐𝑐𝑝𝑝

𝑗=1

� (1) 

Subject to  

� 𝐹𝑖(𝑘)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖=1

= 𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝(𝑘) ∀𝑘 =

[1,2,3 …𝑝] 
(2) 

𝐹𝑚𝑖𝑝 ≤ 𝐹𝑖 ≤ 𝐹𝑚𝑝𝑚 (3) 

|𝐹𝑖(𝑘) − 𝐹𝑖(𝑘 − 1)| ≤ Δ𝐹𝑚𝑝𝑚  (4) 

Where, 𝑃𝑃𝑃𝑛𝑃 𝐶𝐶𝐶𝑃𝑖 is material and utility cost and 
𝑃𝑃𝑛𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝑃𝑗 is a term to account for some of the soft 
constraints, especially ramp constraints, 𝐹𝑖(𝑘) is production 
rate at each plant 𝑖 bounded by 𝐹𝑚𝑖𝑝and 𝐹𝑚𝑝𝑚 , and sum all 
the production 𝐹𝑖(𝑘) should meet the daily target 
𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝, 𝑘 is the time step in the prediction 
horizon 𝑝, which is a constant, 𝛥𝐹𝑚𝑝𝑚 is the maximum 
allowable change in production rate at every plant. Thus the 
daily production target is a combined set-point for the system 
of plants and it should be satisfied at every time step 𝑘 in the 
prediction horizon 𝑝. Above optimization (1) can easily be 
changed to include discrete decision variables to account for 
equipment switch on/off. However in the current formulation 
discrete variables have been ignored. Current formulation 
also assumes that if a plant is on then it should atleast run at 
the minimum rate and that the optimizer does not have the 
option to turn on/off the plant. The solution of Eq. 1, is 
expected to run the cheaper plants first and then the more 
expensive plants. However due to the minimum rate 
constraint (Eq. 3) even the more expensive plant will be 
producing some part of the product. Currently the order of 𝑘 
varies between 15-60 minutes and 𝑝 varies between 24 h to 1 

week depending on the type of system, however it stays 
constant for a given system.  

Another key aspect of evaluating the objective function is the 
plant models; which relates the amount of raw materials and 
utility is required to run the each of the plant 𝑖 at 𝐹𝑖(𝑘). These 
plant models can be developed either once or updated in real-
time parallel to the RTO.  

2.2 RTO with inventory Decision  

In Eq. 1, the system of plants is producing at the level of 
daily target, however if there is a sudden change in the target 
which is impossible to meet even if all the plants run at 
maximum capacity. In that scenario, it becomes important to 
decide on the inventory levels. In order to decide on these 
levels cost related to developing the inventory needs to be 
included in Eq. 1. If the inventory is decided to be increased 
by some level 𝛥𝛥 in the entire prediction horizon, 𝑝, then the 
cost of using the inventory can be shown as follows: 

𝐼𝑛𝐼𝑃𝑛𝑃𝐶𝑃𝑃 𝐶𝐶𝐶𝑃 = 𝑀𝑃����� ∗ 𝛥𝛥 
𝛥𝛥 =  ∑ ∑ (𝐹𝑖(𝑘) − 𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝(𝑘)𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖=1 )𝑝
𝑘=1  

𝐶𝑃 𝛥𝛥 = 𝛥𝑓 − 𝛥𝑖 
(5) 

where, 𝑀𝑃����� is the historical average marginal cost of 
developing the inventory in the past 𝑛𝑀𝑀 , days, and 𝛥𝛥 is 
result of change in final and initial volume of the inventory 
𝛥𝑓 and 𝛥𝑖 respectively. Inventory cost really represents the 
cost of building the inventory, however the effect of this cost 
is different depending on whether the inventory is being 
depleted or filled. Then Eq. 1 can be augmented with 5, 
leading to 6, where 𝛥𝑓 is bounded by 𝛥𝑚𝑖𝑝 and 𝛥𝑚𝑝𝑚. 

min
𝐹𝑖(𝑘),   𝑉𝑓

� 𝑃𝑃𝑃𝑛𝑃 𝐶𝐶𝐶𝑃𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖=1

+

� 𝑃𝑃𝑛𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝑃𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝

𝑗=1

− 𝑀𝑃����� ∗ (Vf − 𝛥𝑖) 

(6) 

Subject to         𝛥𝑚𝑖𝑝 ≤ 𝛥𝑓 ≤ 𝛥𝑚𝑝𝑚 ,𝐸𝐸. 2 − 4 (7) 

In eq. 6, if 𝛥𝑓 increases at the end of prediction horizon, then 
the cost of producing extra volume in the prediction horizon 
is already included in the ∑𝑃𝑃𝑃𝑛𝑃 𝐶𝐶𝐶𝑃𝑖 and 
∑𝑃𝑃𝑛𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝑃𝑗, and inventory cost represents the cost of 
building the inventory in past, however the inventory is being 
built in present. The effect of inventory cost is to compare the 
current marginal cost 𝑀𝑃 with historical average of marginal 
cost, 𝑀𝑃����� ∗ 𝛥𝛥. If the optimizer decides to fill the inventory, 
then the current marginal cost is lower than 𝑀𝑃�����, and this 
results in reducing the objective function. Similarly if the 
optimizer decides to lower the inventory then it is purely 
done because currently it is expensive to build the inventory. 
This behaviour is shown in Figure 2, where point A 
represents when 𝑀𝑃 < 𝑀𝑃����� and point C represents 
when 𝑀𝑃 > 𝑀𝑃�����. Point B represents the scenario when 
𝑀𝑃~𝑀𝑃����� in the prediction horizon, 𝑝. 
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Figure 2: Effect of Marginal Price on Inventory Levels 

2.3 Marginal Price Calculation 

Performance of Problem 6 is very sensitive to MP����. To 
determine MP���� a naïve approach can be used, whereby the 
production target 𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝 , is perturbed by Δ𝑃𝑃 ∗
𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝, (where Δ𝑃𝑃 is the % of change from 
𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝), in Eq. 1 which results in optimal cost 𝐶2. 
Then if 𝐶1 represents the cost without perturbation and Δ𝑃𝑃 is 
fixed as 10% or 20% of 𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝(𝑘), Current 
Marginal Cost 𝑀𝑃 can be computed as follows: 

𝑀𝑃 =
𝐶2 − 𝐶1

𝛥𝑃𝑃 ∗ 𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝
 (8) 

𝑀𝑃����� = �𝑀𝑃𝑖

𝑝𝑀𝑀

𝑖=1

,𝛥𝑃𝑃 = 10% 𝐶𝑃 20%  

When 𝑀𝑃 is computed using fixed perturbation method, it is 
observed that this results in discontinuous first-order 
derivative as shown in Figure 3. Points A and B  in Figure 3 
are points of discontinuity for first-order derivative. 

 
Figure 3: Marginal Cost 𝑴𝑴 vs Perturbation Size 𝚫𝑴𝑷 

 As a result, the naïve approach is modified to remove the 
discontinuities. If the demand and plant conditions do not 
change significantly between successive optimizer runs, then 
it is safe to assume that the solution at previous time step 

𝑘 − 1, can be used to determine perturbation size at current 
time step, Δ𝑃𝑃𝑘 . In this case, the solution for inventory 
change Δ𝛥𝑘−1 from Problem 6 is used to determine the 
perturbation for 𝑀𝑃 calculation, as shown in 9, where Δt is 
the length of prediction horizon 𝑝 as Δ𝛥 is the inventory 
change over the prediction horizon 𝑝. This removes the 
problem of discontinuity as 𝛥𝑃𝑃𝑘  allows to calculate marginal 
price averaged over the expected change in inventory. 

𝑀𝑃 =
𝐶2 − 𝐶1

𝛥𝑃𝑃 ∗ 𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝  
,  

𝛥𝑃𝑃𝑘 ∗ 𝑃𝑃𝐶𝑃𝑃𝑃𝑃𝑖𝐶𝑛𝑝𝑝𝑡𝑡𝑡𝑝 = 𝛥𝛥𝑘−1 
(9) 

Figure 4 shows the highly fluctuating behaviour of  𝑀𝑃 over 
time.  

3. ADVANTAGES OF INCLUDING MARGINAL COST 

As we discussed previously, when past averaged unit 
marginal cost is higher than current marginal cost, optimizer 
will try to produce more liquid for the next 𝑇 time buckets 
since liquid production is cheaper compared to previous time. 
However, if current marginal cost is higher than averaged 
historical marginal cost, optimizer will try to reduce liquid 
production for the next 𝑇 time buckets. Therefore 
theoretically over long term, this continuous optimization by 
including marginal cost will drive the averaged marginal cost 
decrease until stabilized at the optimal value, which means 
we could obtain lower unit production cost by this way. 

 
Figure 4: 𝑴𝑴����� over past 𝒏𝑴𝑴days 

Take a simple case as an example to illustrate this point. A 
simplified objective for optimization including marginal cost 
will be: 

min𝑃𝑃𝐶𝑃 ∗ 𝐶𝑃𝑃𝐶𝐶𝐶𝑃 − (𝑃𝑃𝐶𝑃 − 𝐷𝐷𝑃) ∗ 𝐴𝐼𝐴𝐶𝐶𝐶𝑃   

= min𝑃𝑃𝐶𝑃 ∗ (𝐶𝑃𝑃𝐶𝐶𝐶𝑃 − 𝐴𝐼𝐴𝐶𝐶𝐶𝑃) + 𝐷𝐷𝑃 ∗ 𝐴𝐼𝐴𝐶𝐶𝐶𝑃 

 

(10) 

Where 𝑃𝑃𝐶𝑃 is the decision variable of production amount, 
𝐷𝐷𝑃 is customer demand, 𝐶𝑃𝑃𝐶𝐶𝐶𝑃 is the calculated current 
marginal cost value, and 𝐴𝐼𝐴𝐶𝐶𝐶𝑃 is past averaged marginal 
cost. Given the range for decision variable 𝑃𝑃𝐶𝑃 is [0, 200], 
this monotonic function without any constraint will force 
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decision variable either goes to its upper bound 200 or its 
lower bound 0. Two simple cases of this optimization are 
shown in Table 1 and Table 2. Case A illustrates the 
optimization, when initial averaged marginal cost is higher 
than current marginal cost, and due to optimization the 
averaged marginal cost drops over the Time Bucket 𝑇. 

Case A: initial averaged cost is 120$/Unit, initial tank 
inventory is 800Unit, the target demand is 100Unit, and 
optimization is started when averaged marginal cost is higher 
than current marginal cost. With the above mentioned 
objective, optimal production amount will be either 200 when 
current production cost is lower than averaged marginal cost; 
or 0 when current production cost is higher than averaged 
marginal cost. Therefore over several time buckets, the 
averaged marginal cost is decreasing, which mean the unit 
cost of product is decreasing. 
 

Table 1: Case A. Initial Averaged Marginal Cost > 
Current Marginal Cost 

Time Bucket 1 2 3 4 5 6 7 
Target Demand 

(Unit) 
100 100 100 100 100 100 100 

Current Cost 
($/Unit) 

110 105 98 99 98 120 110 

Averaged Cost 
($/Unit) 

119 118 116 114 113 113 112 

Optimal 
Production (Unit) 

200 200 200 200 200 0 200 

Tank Inventory 
(Unit) 

900 1000 1100 1200 1300 1200 1300 

 
Case B: initial averaged cost is 90$/Unit, initial tank 
inventory is 800Unit, the target demand is 100Unit, and we 
start the optimization when averaged marginal cost is lower 
than current marginal cost. Similarly, optimal production 
amount will be either 200 when current production cost is 
lower than averaged marginal cost; or 0 when current 
production cost is higher than averaged marginal cost; or pick 
a random number (here we use 100unit) when current 
marginal cost is equal to averaged marginal cost. Similar with 
Case A, averaged marginal cost is decreasing over several 
time buckets too.  

Table 2: Case B. Initial Averaged Marginal Cost < 
Current Marginal Cost 

Time Bucket 1 2 3 4 5 6 7 
Target Demand 

(Unit) 
100 100 100 100 100 100 100 

Current Cost 
($/Unit) 

110 105 98 90 92 120 110 

Averaged Cost 
($/Unit) 

90 90 90 90 90 90 90 

Optimal 
Production (Unit) 

0 0 0 100 0 0 0 

Tank Inventory 
(Unit) 

700 600 500 500 400 300 200 

 
These two simple cases clearly illustrate that optimization 
with marginal cost will drive the averaged production cost 
decrease over long term optimization until stabilized at 
certain value. Although in the real condition, there may be 

additional constraints, such as tanks redline or a max capacity 
constraint, which means optimizer, cannot always select the 
upper bound or lower bound value.  However, over long term 
optimization, the averaged marginal cost will decrease until 
stabilized at certain point. 
 
 
4. OPTIMIZATION WITH MARGINAL COST FORECAST 

A further extension for optimization with marginal cost is to 
include long term marginal cost forecasting into short term 
operation optimization. As shown in Figure 5, operational 
level optimization is in daily interval, and optimization 
horizon is one week. We can calculate daily instant 
production cost over time, shown as purple line. After certain 
time periods, weekly averaged marginal cost could be 
calculated, shown as green line. With enough historical 
weekly averaged data, future weekly production cost could be 
forecasted by ARIMA model or simple moving average (MA) 
approach. The forecasted future weekly production cost can 

 
Figure 5: Marginal Cost Forecast using time series models 

serve as an input parameter to daily operational optimization, 
which could help making decision whether daily operation 
should build or decrease inventory. A modified optimization 
objective is illustrated below, where the forecasted weekly 
marginal cost is added into this objective to make the right 
decision whether daily production should build or decrease 
inventory. When forecasted marginal cost of next week or 
even more future is higher than current production cost, 
optimizer will suggest building the inventory to save the long 
term cost, and vice versa. This type of approach has been 
used by Singh et al., 2000 where forecasted values of the 
feedstock properties are used to optimize for gasoline 
blending operations. 

min𝑃𝑃𝐶𝑃 ∗ 𝐶𝑃𝑃𝐶𝐶𝐶𝑃 − 𝐷𝑃𝑃𝑃𝑃𝐼𝑛𝐼 ∗ 𝑁𝑃𝑁𝑃𝑁𝑃𝑃𝑘𝐶𝐶𝐶𝑃 (11) 

Similar with what we discuss for including the past averaged 
marginal cost into optimization, this could also drive the 
averaged production cost drop over even longer term.  

5. CONCLUSIONS 

In the current work it is proposed to account for some of the 
long-term decisions of Production Scheduling and Planning 
at the RTO level. RTO level objective function is augmented 
with costs from longer-horizon and this type of a model is 
applied to a RTO deciding on production rates for plants 
along with inventory levels (higher level optimization). The 
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proposed objective function results in comparing the current 
marginal cost and historical average of marginal cost, which 
drives the overall long-term production cost to a lower value. 
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