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Abstract: This paper further explores the link between irreversible thermodynamics and system
theory, and its use for port-based modeling for reaction systems. More specifically we show
here that a pseudo Hamiltonian representation with R(x) > 0 can be obtained by considering
the Brayton-Moser formulation via a unified potential function that verifies a thermodynamic
evolution criterion. As a consequence, it gives additional degrees of freedom (i.e. to construct
alternate pseudo Hamiltonian models with new passive outputs) usable for further studies on
the control design. A representative example of irreversible processes via the non isothermal
continuous stirred tank reactor model is used to illustrate the theoretical developments.
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1. INTRODUCTION

The analysis and design of control algorithms are largely
based on system theory tools that refer to energy con-
siderations. These obviously include Lyapunov stabil-
ity (Khalil (2002)) but also passivity-based approaches
(Willems (1970, 1972); Brogliato et al. (2007); Van Der
Schaft (2000b)). Over the last two decades it has been
shown that Port Hamiltonian (PH) framework as well as
the Brayton-Moser (BM) formulation can be considered
for passivity or power-based control of electromechanical
or reaction systems (Van Der Schaft (2000a); Maschke
et al. (2000); Hudon et al. (2008); Favache & Dochain
(2010)). Unfortunately for thermodynamical systems such
as chemical reactors it is not easy to determine the storage
function (Warden et al. (1964); Dammers & Tels (1974);
Tarbell (1977)).

The chemical reactor models, and in particular the refer-
ence case study known as the Continuous Stirred Tank
Reactor (CSTR) belongs to nonlinear non-equilibrium
thermodynamic systems via the reaction kinetics and ir-
reversibilities of the coupling between matter and tem-
perature. Following the first principle of thermodynamics,
the total energy (the energy of the simple system under
consideration and its surrounding medium) is conserved.
Yet this energy changes of nature moving irreversibly from
the material domain to the thermal domain. As a matter of
fact the internal energy cannot be considered as an Hamil-
tonian function because it does not allow to express the in-
herent irreversibility of the system governed by the second
law of thermodynamics. From thermodynamics concepts,
some storage functions have been proposed (Ydstie &
Alonso (1997); Hangos et al. (2001); Eberard et al. (2007)).
More recently pseudo Hamiltonian models have been also
proposed for thermodynamical systems such as chemical
reactors (Otero-Muras et al. (2008); Dörfler et al. (2009);

Ramı́rez et al. (2009); Hoang et al. (2011a)) as well as
Brayton-Moser (BM) models (Favache et al. (2011); Hoang
et al. (2011b)). In (Dörfler et al. (2009); Ramı́rez et al.
(2009)), the dissipation term does not capture the inher-
ently irreversible nature of the CSTR and the Hamiltonian
is not linked to any thermodynamic variable. The use of
the physical variables for the Hamiltonian storage function
is done in (Otero-Muras et al. (2008)) when considering
closed reaction networks in the isothermal case. Neverthe-
less the (local) Hamiltonian is not the Gibbs free energy
(as seen in (Hoang et al. (2011a))) but it is locally linked
to the chemical affinity. The use of the irreversible entropy
production (due to chemical reaction) as the Hamilto-
nian potential is proposed in (Favache et al. (2011)) with
some restrictions on the reaction kinetics. However the
derivation of the dissipation term is not straightforward.
In (Hoang et al. (2011a)), a thermodynamical pseudo
Hamiltonian representation of the CSTRs model using the
thermodynamic potentials (Gibbs free energy G (Callen
(1985)) and opposite of entropy −S, also called ectropy
(Haddad et al. (2005)), for isothermal and non-isothermal
cases respectively) as Hamiltonian functions is given. In
(Hoang et al. (2011b)) it has been shown that a dissipa-
tive pseudo Hamiltonian representation for non-isothermal
CSTRs can be derived from the BM formulation when a
positivity condition (also called thermodynamic stability
condition) is satisfied by some chosen potential function.
This formulation is based on a structured representation
of systems with the variables directly coming from ther-
modynamical considerations and considers the opposite of
entropy −S (extensive variable) and the square of the
chemical affinity A (intensive variable) as Hamiltonian
functions. In both cases, the dissipation term can be linked
to the natural irreversibility (entropy production) due to
chemical reaction.
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In this paper, we further explore the link between irre-
versible thermodynamics and system theory, and its use for
dynamical analysis and control design for reaction systems.
More specifically contrary to the previous work (Hoang et
al. (2011a)) where the damping matrix R(x) is singular, we
show here that a pseudo-Hamiltonian representation with
R(x) > 0 can be obtained by considering the Brayton-
Moser formulation (Brayton & Moser (1964)) via a unified
potential function that verifies a thermodynamic evolution
criterion. Consequently, it allows to express directly the
dissipation of the system dynamics associated to some
physical potential function when applied to reaction sys-
tems. In addition to this, it gives additional degrees of
freedom (i.e. to construct novel pseudo Hamiltonian mod-
els with relaxing (generalized) damping elements) usable
for further studies on the control design in the sense of
(Ortega et al. (2008)).

The paper is organized as follows. Section 2 is dedicated
to an overview of potential-based modeling (including a
general connection to Port Hamiltonian-based modeling
on the basis of the Brayton-Moser formulation). Section 3
illustrates the proposed developments for the case study
of the non isothermal continuous stirred tank reactor
(CSTR) involving one reversible reaction. Section 4 ends
the paper with concluding remarks and perspectives.

2. A THEORETICAL OVERVIEW

Let us consider open chemical systems that are affine in
the control input u and whose dynamics is given by the
following set of ordinary differential equations (ODEs) :

dx

dt
= f(x) + g(x) u, x(t = 0) = x0 (1)

where x ∈ Rn is the state vector, f(x) ∈ Rn represents the
smooth nonlinear function with respect to x, g(x) ∈ Rn×m
is the input-state map and u ∈ Rm is the input.

2.1 Brayton-Moser (BM) formulation

The BM formulation (Brayton & Moser (1964); Favache
et al. (2011)) requires :

• to find a non singular matrix Q(x) : Rn → Rn×n such
that its symmetric part is negative definite:

Q(x) +Q(x)T ≤ 0 (2)

where the exponent T stands for the matrix trans-
pose.
• to write the system dynamics (1) into the following

equivalent form :

Q(x)
dx

dt
= ∇xP(x) +G(x)u (3)

with P(x) : Rn → R a smooth potential function.

From (1)(3) we get the following relations :

G(x) = Q(x)g(x) (4)

∇xP(x) = Q(x)f(x) (5)

The necessary and sufficient condition for the existence of
(3) is the symmetry of the Hessian matrix of P(x) :

H(P) = H(P)T (6)

The condition (6) can also be viewed as a particular case
of the Poincaré Lemma (Garćıa-Canseco et al. (2010)).

2.2 Links with the Port controlled Hamiltonian (PCH)
systems

Because Q is invertible, the BM form (3) can be rewritten :

dx

dt
= Q(x)−1∇xP(x) + g(x)u (7)

Since any square matrix can be split into two (symmetric
and skew-symmetric) parts, (7) can be transformed into
the following form :

dx

dt
=

[
Q−1 −Q−1T

2
+
Q−1 +Q−1T

2

]
∇xP(x) + g(x)u

(8)
Hence (8) can be identified to a general class of PCH
systems with dissipation given by (Brogliato et al. (2007);
Van Der Schaft (2000b)) :{

dx

dt
= [J(x)−R(x)]∇xH(x) + g(x)u

y = g(x)T∇xH(x)
(9)

with (Jeltsema (2005)) :
J(x) =

Q(x)−1 −Q(x)−1T

2

R(x) = −Q(x)−1 +Q(x)−1T

2
≥ 0

(10)

The smooth function H(x) ≡ P(x) : Rn → R represents
the Hamiltonian storage function (or the generalized en-
ergy); J(x) = −J(x)T and R(x) = R(x)T ≥ 0 are the
structure matrices and correspond to the natural inter-
connection matrix and the damping matrix, respectively;
u, y ∈ Rm are the control input and output, respectively,
and are power conjugated port variables. The energy bal-
ance immediately follows from (9) :

dH(x)

dt
= −∇xH(x)TR(x)∇xH(x) + uTy (11)

The system (9) is passive in the sense that the dissipation

d = −∇xH(x)TR(x)∇xH(x) ≤ 0 (12)

is negative semidefinite and the Hamiltonian H(x) is
bounded from below (Brogliato et al. (2007); Van Der
Schaft (2000b)). The term d (12) corresponds to natural
dissipation (energy lost due to friction/damping in me-
chanical systems or resistance in RLC electrical systems
(Van Der Schaft (2000a); Maschke et al. (2000)) or entropy
production in the CSTR networks (Hoang et al. (2011a))
for example).

If we further impose that the symmetric matrix R(x) in
(10) is positive definite (i.e. R(x) > 0), R(x) will be full
rank, i.e. :

rank R(x) = n or det R(x) 6= 0 (13)

As a consequence, the negative definiteness property of
d (12) is guaranteed for ∇xH(x) 6= 0. Hence the sta-
tionary equilibrium of the unforced system (9) is already
asymptotically stable. No feedback control law is then
needed since the autonomous system reaches its stationary
equilibrium. It follows from (10) that a necessary and
sufficient condition for the positive definiteness condition
of the symmetric matrix R(x) is :

R(x) > 0 ⇐⇒ Q(x)−1 +Q(x)−1T < 0 (14)

The symmetric matrix Q(x)−1 + Q(x)−1T is negative
definite if and only if −(Q(x)−1 + Q(x)−1T) is positive
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definite. Equivalently it implies that all of the principal
minors determinants of −(Q(x) +Q(x)T) are positive.

3. THE CSTR CASE STUDY

For the sake of simplicity, let us consider a jacketed reactor
with one reversible reaction involving 2 chemical species
denoted by A and B (with molar masses MA and MB ,
respectively). Such a chemical reaction is described as
follows :

|νA|A
r
f−⇀↽−
rr

νBB (The stoichiometry) (15)

and

νAMA+νBMB = 0 (The molar mass conservation) (16)

where νA and νB are the suitable signed stoichiometric
coefficients νA < 0 and νB > 0 (Groot (1962); Antonelli &
Astolfi (2003); Hoang et al. (2011a); Ramı́rez et al. (2013)).
Note that any reversible reaction can be considered as a
simple reaction with the net reaction rate :

r = rf − rr (17)

with rf and rr the forward and reverse reaction rates,
respectively.

The following modeling assumptions are also considered :

(H1) The fluid mixture is ideal, incompressible and under
isobaric conditions.

(H2) In the inlet, the reactor is fed by the species A and
B at a given temperature TI .

(H3) The heat flow rate Q̇J coming from the jacket is
modelled by the following relation :

Q̇J = λ(TJ − T ) (18)

where λ > 0 is the heat exchange coefficient. The reactor
temperature and jacket temperature are denoted by T
and TJ , respectively.

We assume that the heat flow rate Q̇J and inlet molar flow
rates (FAI , FBI) are the manipulated process inputs.

If we consider energy and mass balances, the non isother-
mal system dynamics is then given by the following set of
ODEs (1) (see also (Hoang & Dochain (2013); Favache et
al. (2011); Hoang et al. (2011b)) for more details) with :

x =

(
NA
NB
H

)
, u =

 FAI
FBI
Q̇J

 , f(x) =

(
νArV
νBrV

0

)
(19)

g(x) =



(
1− NAMA

mt

)
−NAMB

mt
0

−NBMA

mt

(
1− NBMB

mt

)
0[

hAI −
MAH

mt

] [
hBI −

MBH

mt

]
1

 (20)

where (NA, NB) is the molar numbers vector and (hAI , hBI)
is the inlet molar enthalpies vector. The volume and en-
thalpy are denoted by V and H, respectively.

In the previous works (Hoang et al. (2011b); Hoang &
Dochain (2013)), it has been shown that there exists a
thermodynamic potential function P(NA, NB , H) associ-
ated to the reaction mixture (15)(16) and this potential
function fulfills :

∂P
∂NA

6= 0,
∂P
∂NB

6= 0,
∂P
∂H
6= 0 (21)

lim
r→0

νA
∂P
∂NA

+ νB
∂P
∂NB

rV
<∞ (22)

(
− νA

∂P
∂NA

− νB
∂P
∂NB

)
rV > 0 (23)

Equality holds only when the system reaches its steady
state. Inequality (23) that generalizes the positive defi-
niteness of the irreversible entropy production is called
the thermodynamic evolution criterion of the mixture with
chemical transformations (Hoang & Dochain (2013)).

Remark 1. As a consequence of the second law of thermo-
dynamics (Groot (1962); Ydstie & Alonso (1997); Hoang et
al. (2012); Callen (1985)), both the square of the chemical
affinity and the ectropy (defined as the opposite of the
entropy (Haddad et al. (2005))) satisfy (21)-(23) (Hoang
et al. (2011b); Hoang & Dochain (2013)). In addition,
if the reaction kinetics is such that νA

∂rV
∂NA

+ νB
∂rV
∂NB

≤ 0

(e.g. Eq. (4.2) and Assumption 2 in (Favache et al. (2011)))
the irreversible entropy production is decreasing along the
system trajectories and meets (23).

In what follows, we shall see that the thermodynamic
evolution criterion (23) gives some guidelines to derive
a dissipative PCH representation on the basis of the
BM formulation of the system dynamics (1)(17)(19)(20).
Consequently, the dissipation term is linked to the natural
irreversibility defined by (23).

3.1 On the Hamiltonian formulations of the CSTR

A pseudo Hamiltonian representation with singular damp-
ing element Let us first apply the method proposed in
(Hoang et al. (2011a)) to the system (1)(17)(19)(20) in or-
der to derive a PCH representation where its Hamiltonian
storage function is :

H = P (24)

with P given in (21)-(23). Indeed the non isothermal
system dynamics given by (1)(17)(19)(20) is rewritten as
follows :

dx

dt
= g(x)u+


νArfV − νArrV

νBrfV − νBrrV

0

 (25)

Since (21) holds for any evolution, (25) becomes :

d

dt


H

NA

NB

 = g(x)u+M



∂P
∂NA

∂P
∂NB

∂P
∂H


(26)

where M =



νArfV
1
∂P
∂NA

−νArrV
1
∂P
∂NB

0

νBrfV
1
∂P
∂NA

−νBrrV
1
∂P
∂NB

0

0 0 0


.
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This matrix M can be decomposed into symmetric and
skew symmetric parts as follows : M = J − R with

J = M−MT

2 and R = −M+MT

2 . Consequently, we have :

J =
1

2


0 −νAωB − νBωA 0

νAωB + νBωA 0 0

0 0 0

 (27)

and

R = −1

2


2νAωA −νAωB + νBωA 0

−νAωB + νBωA −2νBωB 0

0 0 0

 (28)

where : ωA = rfV
1
∂P
∂NA

and ωB = rrV
1
∂P
∂NB

. The control

input u and the input-state map g are given in (19) and
(20), respectively. The conjugate output y is then given as
follows :

y =



(
1− NAMA

mt

)
∂P
∂NA

− NBMA

mt

∂P
∂NB

+

[
hAI −

MAH

mt

]
∂P
∂H

−NAMB

mt

∂P
∂NA

+

(
1− NBMB

mt

)
∂P
∂NB

+

[
hBI −

MBH

mt

]
∂P
∂H

∂P
∂H



(29)

Finally it is easy to check from the definition (12) that the

dissipation term d equals
(
νA

∂P
∂NA

+ νB
∂P
∂NB

)
rV which is

negative due to the property (23).

Remark 2. Another pseudo Hamiltonian representation
with singular damping element can also be obtained by
using the same procedures as the previous case. Indeed
(25) with (17) can be rewritten :

dx

dt
= g(x)u+


νArV

νBrV

0

 (30)

(30) is equivalent to :

d

dt


H

NA

NB

 = g(x)u+M



∂P
∂NA

∂P
∂NB

∂P
∂H


(31)

where M =



νArV
1
∂P
∂NA

0 0

0 νBrV
1
∂P
∂NB

0

0 0 0


.

We can easily check in this case that J = 0 and R = −M.

Remark 3. The obtained structural representations are
suitable to the definition (9), in this case some structure
matrices depend not only on the state variables x but
also the co-state variables ∇H (i.e. J = J(x,∇H) and
R = R(x,∇H)). The resulting representation together
with this property define the so-called pseudo Hamiltonian
models. Furthermore, it is worth noting that the symmet-
ric damping matrix R is singular since its determinant is
equal to 0. In other words, this matrix violates the rank
condition given in (13).

It will now be shown that the evolution criterion (21)-(23)
provides some guidelines to obtain a pseudo Hamiltonian
representation with (strict) dissipation on the basis of the
Brayton-Moser formulation.

A structure preserving pseudo Hamiltonian representation
In this section we show that the proposed criteria (21)-(23)
can be helpful to obtain a Port Hamiltonian representation
with dissipation using the Brayton-Moser formulation for
the non-isothermal system dynamics (1)(17)(19)(20).

Proposition 1. The dynamics (1)(17)(19)(20) can be rep-
resented as a Port (pseudo) Hamiltonian system (9) with

x = (NA, NB , H)
T

. Its Hamiltonian storage function is
given by H = P and the structure matrices are written as
follows :

J =
1

2∆


0

(−γ − 2c) βe2

4(1− α)b
−γe

(
νA

νB

)
− (−γ − 2c) βe2

4(1− α)b
0 ec

γe

(
νA

νB

)
−ec 0



R = − 1

2∆


2αβe2

(
νA
νB

)2
(1− α)

αβe2
νA
νB

(1− α)
γe

(
νA

νB

)
αβe2

νA
νB

(1− α)
βe2

2(1− α)
−ec

γe

(
νA

νB

)
−ec 2

[
γ

(
b

(
νA

νB

)
+ c

)
+ c

2

]


with 0 < α < 1, β > 1, and

γ = 4αb
νA
νB
, b =

1

νA

(
νB
νA

∂P
∂NB

+
∂P
∂NA

)
1

rV

c=− 1

νA

∂P
∂NB

1

rV
, e = − 1

νA

(
∂P
∂H

1

rV

)
∆ =

αβe2

(1− α)

(
b

(
νA
νB

)2

+ c
νA
νB

)
+

βe2c2

4(1− α)b
6= 0

The input-state map is g(x) given by (20), and the input
u by (19). The output y is y = g(x)T∇xH(x). Finally, the
system is passive with dissipation (12) :

d =
(
νA

∂P
∂NA

+ νB
∂P
∂NB

)
rV < 0 (32)

Proof. The proof is done by using the Brayton-Moser
formulation (see Section 2). Let us consider Q on the form :

Q =

(
q11 q12 q13
q21 q22 q23
q31 q32 q33

)
(33)

The key requirement is that the solution Q of the Brayton-
Moser formulation is such that its symmetric part is nega-
tive definite (see (2)). Equivalently it implies that all of the

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1055



principal minors determinants of −(Q(x)+Q(x)T) are pos-
itive. See (Favache et al. (2011); Hoang et al. (2011b)) for
a complete version of the proof. �

Remark 4. Contrary to the previous singular cases (e.g.
(28)), the positive definiteness property (or the consequent
rank condition (13)) of the damping matrix R of Proposi-
tion 1 holds thanks to the BM formulation and since the
negative definite symmetric part of the matrix Q (14) is
mathematically guaranteed by the two scalars α and β.

As a consequence of the positive definiteness property
(or the consequent rank condition (13)) of the damping
matrix R, we state the following proposition which is
central to derive an alternate PCH model of the results
of Proposition 1. For the sake of simplicity, the explicit
expansions will not be given here.

Proposition 2. (New output with relaxing damping).
The PCH system defined by

dx

dt
= (J −R)∇xH+ g u

ynew =
[
g + 2T

]T
∇xH

(34)

where T = Tn×m and :

or T = R−1∇xH uT, or T = R∇xH uT, (35)

or T = −(J −R)−1∇xH uT, or T = −(J −R)∇xH uT

(36)
are such that the (generalized) damping matrix R =[
R T
T T 0

]
= RT satisfies the following relaxing damping

condition 1 : [
∇xHT uT

]
R

(
∇xH
u

)
≥ 0 (37)

is passive with storage function H, i.e. :

dH
dt
≤ uTynew (38)

Proof. Let us first rewrite (11) as follows :

dH
dt

= ∇xHT(−R)∇xH+∇xHTgu (39)

where y = gT∇xH has been used. From this we have :

dH
dt

=∇xHT(−R)∇xH

+∇xHT(−T )u+∇xHTT u
+uT(−T )T∇xH+ uTT T∇xH
+∇xHTgu (40)

(40) is equivalent to :

dH
dt

=−
[
∇xHT uT

]( R T
T T 0

)(
∇xH
u

)
+∇xHTT u+ uTT T∇xH︸ ︷︷ ︸

=∇xHT(2T )u

+∇xHTgu (41)

1 A (generalized) damping element R is relaxed if its quadratic form
restricted on the basis of the co-state variables∇xH(x) and the input
u only is positive semidefinite, and not R ≥ 0.

It follows that R−1 = (R−1)T > 0 since R = RT > 0 and
note also that

∇xHTT u > 0

with T given in (35) or (36) for ∇xH 6= 0 and u 6= 0. The
latter concludes the proof. �

Remark 5. It is important to note that the different values
of the damping matrix R of a given dynamics (e.g. R de-
fined in (28), Propositions 1 and 2) may change the dissipa-
tion nature and therefore affect the control design for the
stabilization purpose (e.g. the dissipation obstacle problem
when the conditions for Casimir generation are considered
using energy shaping via control by interconnection). The
infinite dissipation obstacle for energy balancing passivity-
based control may be overcome by a suitable choice of
Hamiltonian models. In other words, this eliminates the
possibility of infinite dissipation. Further discussions on
this issue are given in (Ortega et al. (2008)).

4. CONCLUSION

In this work, the pseudo Hamiltonian formulations of the
CSTR dynamics are considered in order to express the ir-
reversibility along the trajectories. The first one is realized
on the basis of the functional separation thanks to the sup-
port of constitutive equations of thermodynamics as shown
in (Hoang et al. (2011a)), a pseudo Hamiltonian represen-
tation with singular damping matrix is then obtained. The
second representation allows to circumvent this inherent
difficulty through the use of the BM formulation. In both
cases, although the amount of the dissipation is explicitly
derived, the latter gives more degrees of freedom usable
for further studies on the control design.

It remains now to further explore the properties of the
matrix Q (see e.g. the dissipation obstacle (Ortega et al.
(2003))) when the positive definiteness condition of the
damping matrix R (14) is met through the support of an
expansion given by (Xu et al. (1993)). In this context, the
adaptation of the Interconnection and Damping Assign-
ment Passivity-Based Control (IDA-PBC) method, control
by interconnection, energy balancing passivity based con-
trol or the power-based control (Ortega et al. (2002, 2008);
Garćıa-Canseco et al. (2010); Favache & Dochain (2010))
to the potential-based representations for the stabilization
purpose of the reaction system at any desired operating
point has to be studied. First results of such an approach
are given in (Hoang et al. (2014)).
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