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Abstract: While most of the available Leak Detection Systems (LDS) can detect pipeline leaks,
leak localization is still an unresolved problem. The main reason for this problem is the limited
number of sensors installed in long pipelines. Because of lack of measurements, precise leak
location cannot be easily determined. This study uses particle filter as soft-sensor to estimate
the states at intermediate locations with the available end-point measurements. The residuals
between the estimated states and the real measurements at the intermediate locations are then
used for leak detection and localization. The proposed method can improve the leak localization
accuracy by proper use of the intermediate pressure measurements. Simulation results show the
efficacy of the proposed method.
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1. INTRODUCTION

Pipelines are now commonly used to transport hydrocar-
bon fluids over long distances from the production site
to the end-user [Chis, 2007], [Sivathanu, 2003]. The fluids
are often flammable, toxic, corrosive and hazardous to the
environment. Early detection and localization of leaks is
therefore of utmost importance [Chis, 2007], [Sivathanu,
2003].

Existing pipeline leak detection techniques can be clas-
sified as internal monitoring based methods and exter-
nal monitoring techniques [Stafford et al., 1996], [Zhang
et al., 2013]. Internal methods monitor internal pipeline
parameters by using already installed sensors; on the other
hand, external methods work on the principle of physical
detection of escaping fluid [Zhang et al., 2013]. External
methods can usually detect the leak location more pre-
cisely but they are more costly and cannot be retrofitted
on old pipelines in most cases. So, external methods are
not used for continuous monitoring. On the other hand,
internal methods can be used for continuous monitoring
with less cost. But most of them cannot detect the leak
location precisely. In particular, small leaks are difficult
to detect. If the leak detection methods are sensitized
to detect small leaks, there is always the issue that the
operators are overwhelmed by too many false alarms [Al-
Rafai and Barnes, 1999].

Internal methods can be broadly divided into two groups
: 1) model based methods and 2) data driven meth-
ods [Zhang et al., 2013]. For the model based meth-
ods, a dynamic pipeline flow model is required [Geiger,
2006], [Geiger, 2005]. The disadvantages of model based
methods are that the models are composed of nonlinear
partial differential equations and hence a closed form solu-
tion is not available. Furthermore, a lot of uncertainties are

involved due to changes or imprecise information on fluid
properties such as (fluid density and viscosity), fluctuation
in ambient and process conditions, changes in pipeline
properties such as scaling, roughness and grade changes.
On the other hand, data driven methods [Zhang et al.,
2013] do not require any model but they rely on the
statistical analysis of the steady state archived data of the
pipeline system. However the disadvantages are that this
method cannot detect leaks under transient conditions and
a lot of a-priori information plus data is required which
may not always be available. Data driven methods also
fail to localize the leak location when the leak size is small
(less than 5 percent of nominal flow rate).

Since data driven (statistical analysis) methods suffer from
poor performance during transient conditions and are un-
able to detect small leaks and localize the leak a model
based method (based on real time transient model) is con-
sidered for this study. To handle the uncertainties involved
with the model, Monte Carlo simulation based particle
filter algorithms [Arulampalam et al., 2002], [Ristic et al.,
2004] are used to estimate unmeasured states and filter
measured values using the available measurements. The
residual errors are used for leak detection. In a previous
study, a particle filter algorithm was used to detect leaks
in a gas pipeline in a simulation environment [Liu et al.,
2005].

This study considered a more complex pipeline (with
compressible fluid transport and elevation changes) model
than the available models in the literature. This study
focuses on both gas and liquid transport pipeline. The
efficacy of the proposed method is shown via simulation
results for leak detection and localization. Fluid leak is
detected by comparing the particle filter estimated states
with the available intermediate pressure measurements.
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Fig. 1. Soft-Sensing approach in pipe-line leak detection.

In this paper at first a detail problem description is given in
section 2 along with the solution methodology. In section
3 model selection for particle filter and modeling of a leak
is described. Section 4 deals with some of the important
features about the simulation methodology. Lastly, simu-
lation results are described in section 5.

2. METHODOLOGY AND PROBLEM DESCRIPTION

Figure 1 gives a rough idea about applying the soft-sensing
approach in pipeline leak detection. For simplicity, we
assume that the pipeline operates in an isothermal mode
of operation. So, the energy equation and temperature
measurements are neglected in the current study.

In most of the cases, measurements are available at the
ends of the pipeline. In the case of Figure 1, pressure, mass
flow rate and density of both node 1 ( p1,W1, d1 ) and node
7 ( p7, W7, d7 ) are available. We need at least 4 of these
6 inlet-outlet measurements, of which 2 will be used as
the boundary conditions for the continuity and momentum
equations and 2 will be used as measurements with which
the estimates of the particle filter will be compared to
update the estimated states.

Our goal is to use the particle filter to estimate the pres-
sure, mass flow rate and densities (states) of the interme-
diate nodes (denoted by ’hat symbol’ (ˆ) in Figure 1). For
example, let W1 and p7 be the boundary conditions and p1
and d1 are two available measurements. The particle filter
is then developed to estimate the rest of the 17 unknown
states from the non-linear model of the fluid transport
system.

The main advantage of the particle filter is that it can
estimate the unknown states quite accurately even if the
model is highly non-linear and the noise is non-Gaussian.
The main difference between the model predicted method
and particle filter estimated method is that, in case of
particle filter, the model predicted states are updated with
some of the available measurements. So, we have more
confidence on particle filter estimated states rather than
the model predicted states. Of course if we had some more
true measurements in hand (suppose nodes 3 and 5), the
accuracy of the estimated states will increase. This is often
the case when some intermediate nodes are measured in
real life specially pressure at the intermediate pump and
valve stations. Using these data and the power of particle
filter we can generate estimated data states at every 10
kilometers or even smaller intervals.

Now, if a leak occurs, both the true end data (nodes

1 and 7) and true intermediate data (nodes 3 and 5)
will show some discrepancy from normal condition. By
capturing these discrepancies (deviation), a leak can be
detected. When leak occurs in a section, the subsequent
pipeline sections (length of pipeline between two subse-
quent measurements) will also show the signature of this
deviation. So, by comparing the available intermediate
pressure measurements with the particle filter estimated
pressure at those intermediate nodes, this method can
isolate the section where the possible leak was generated.

To best of our knowledge, the available leak detection
methods can localize leak within a range of 50 km. Often
pressure measurements are available in each 20-30 km
interval of a long pipeline. The proposed method can
localize leak within a range of 20-30 km when real pressure
measurements are available in each 20 or 30 km segment.

3. MODEL SELECTION FOR PARTICLE FILTER

Any state estimator such as a particle filter works in two
steps. In the first step, it predicts the unknown states
with the help of the model of the process. In the second
step, it corrects the predicted states with the help of
available measurements and regenerates the initial state
for the next set of simulations [Arulampalam et al., 2002].
The difference between a particle filter and other classical
state observer such as a Kalman filter or an extended
Kalman filter is that, the update stage of the classical
state observers are done with the help of update-equation
and the calculation of Kalman gain is a crucial part for
this step. Whereas in case of particle filter, some particles
(initial conditions) are chosen from an appropriate prior
probability distribution. After each simulation, weights of
each particle are calculated based on the error likelihood.
Then in the resampling stage, particles with negligible
weights are discarded and particles with higher weight are
again distributed to generate the same number of particles
as the first run. These new particles will then be used as
the initial state for the next simulation. In each simulation,
prediction of unknown states is carried out by using the
resampled (posterior) particles from the earlier step as
initial states and all the predicted states are kept stored.

The corresponding estimated states are then compared
with the available measurements and weights are calcu-
lated based on the likelihood of error. The final updated
states after each simulation is the average of the posterior
distribution of all the particles.

If the model in the prediction stage is not good, then no
state estimator will perform well, no matter how many
particles are chosen for the particle filter. That is why
this study investigates the validity and accuracy of the
model at first. In the literature, almost all the model based
pipeline leak detection methods were studied on the basis
of simpler version of pipeline models [Verde, 2001], [Nagel
et al., 2012], [Uilhoorn, 2014]. In this work we consider a
slightly complex model, to study if increasing the model
complexity can improve the prediction. In this initial study
we have not included the energy balance equation, instead
we increased the complexity of our momentum equation by
considering the liquid compressibility and elevation change
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term. These two terms were neglected in many of the
previous literature. But we believe that these two terms
can improve the prediction accuracy of our model and
make our model more general both for liquid and gas. This
is one of the main improvement that has been done in this
study.

Since analytical solution of the coupled partial differential
equations (continuity and momentum equations) system
is not easily accommodated in a particle filter, these
equations are discretized by the method of characteris-
tic [Thomas, 1999]. They are solved for computing the
mass flow rate and pressure at each of the nodes explicitly.
The discretized model is the one that is used in this parti-
cle filter study. While discretizing the Courant-Friederich-
Lewy(CFL) condition [Uilhoorn, 2014] was kept satisfied
by taking cson = ∆x

∆t . Details of the model appear below :

∂p

∂t
+

C2
son

A

∂W

∂x
= 0 (1)
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The discretized equations are :
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where,
p = pressure (Pa)
Cson = velocity of sound in the pipe fluid (ms )

A = cross-sectional area of the pipe (m2)

W = mass flow rate (kgs )
f = pipeline friction factor (Fanning friction factor)
D = pipeline diameter (m)
△t = sample time (s)

ν = specific volume = 1
d (m

3

kg )

d = fluid density ( kg
m3 )

g = gravitational acceleration (ms2 )
θ = angle of elevation from the flat land (degree)
i = number of space node
j = number of time node

Fig. 2. Schematic diagram of an orifice meter.

Fig. 3. Schematic diagram of a Leak in a Pipeline.

Fluid compressibility was simulated by using the following
equations ( Hayward [1967]) :

1

νi,j
=

1
ν0
Ki,j

Ki,j − pi,j
(5)

where,

Ki,j =
pi,jV0

V0−Vi,j
= bulk modulus of the liquid,

V0 = volume of the liquid at zero pressure (p0) and
Vi,j = volume of the liquid at pressure (pi,j).

3.1 Modeling Leak

In this study, a leak is modeled by modified orifice equa-
tion. Figure 2 is an example of an orifice meter that is used
to measure the flow rate in a pipeline. The orifice equation
is as follows [Daugherty and Franzini, 1977] :

Q = Cd
π

4
D2

2

√
2(P1 − P2)

ρ(1− β4)
(6)

where,
D2 = Orifice diameter
Cd = Discharge coeficient
ρ = Fluid density
β = Diameter ratio (D2

D1
)

D1 = Pipe inside diameter
P1 = Upstream Pressure
P2 = Downstream Pressure
Q = Volume flow rate

Equation 6 can be modified to give the mass flow rate
rather than the volumatric flow rate :

ṁ = Cdρ
π

4
D2

2

√
2(P1 − P2)

ρ(1− β4)
(7)

Now from Figure 3, we can see that there are two signif-
icant differences between the orifice flow and a pipeline
leak - a) in case of orifice, the direction of flow inside the
orifice and the pipeline is same, whereas in case of leak
they are perpendicular (Figure 3), b) for the same reason,
the diameter ratio for leak will be very negligible since,in
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this case the whole pipe length could be several kilometer
while the orifice diameter (dOri in Figure 3) could be only
few millimeter to few centimeter.

So, some modifications were necessary before applying the
orifice equation in case of a leak. It is also assumed that
in this case, Pout = Patm.

From Figure 3, we take Pin ≈ P1+P2

2 . Now we can define
our leak rate as the following :

ṁL = CL

√
(Pin − Patm) (8)

where, CL = Leak coefficient. Clearly, its value depends
on the leak diameter which is unknown while detecting a
leak. Equation 8 can be further simplified by noting that
Pin − Patm = Pin,gauge as follows :

ṁL = CL

√
(Pin,gauge) (9)

The discretized equation with leak can be written as
follows :

pi,j =
1

2
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2

2f

A2D
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△ t
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2
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1
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) (10)
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1
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A
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+△t
A

2

2f
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△ t
A

2
gsinθ(

1

νi+1,j−1
+

1
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)− ṁLi,j (11)

4. SIMULATION PREPARATION

In this study, the simulated pipeline is of 37 km in length
with 16 inch inlet diameter. For the simulation purpose,
the pipeline was divided into 19 equal divisions (20 nodes).
Figure 4 is a schematic of the nodes. We have total 60 vari-
ables which include pressure, mass flow rate and density
at each of these nodes.

Here, the boundary conditions were mass flow rate at
node 1 (W(1,j)) and pressure at node 20 (p(20,j)). We also
had two measurements as pressure at node 1 (p(1,j)) and
density at node 1 (d(1,j)). It is also assumed that 3 other
pressure measurements are available at nodes 5,10 and 15.

There were two significant mismatches introduced between
the simulated pipe system and prediction model of particle
filter (PF) estimation. Unequal initial condition was the
first mismatch. Process parameter uncertainty was the
second mismatch. Process parameter uncertainties were
simulated by adding Gaussian white noise with process
parameters.

In this study, the pipeline was simulated with the combi-
nation of equations 3, 4 and 5. Kerosene was chosen as

Fig. 4. Schematic diagram of the process to be used in the
simulation.

Fig. 5. Simulated and Particle Filter estimated pressures
(Pa) for nodes 5, 10 and 15.

the working fluid for these simulations. So, properties of
kerosene were used in equations 3 and 4.

Although in the real case, the mass flow rate is not con-
stant under leak free conditions, for simplicity we assume
it to be as constant with some noise. Similar simplifica-
tions were made for pressure and density. We also avoided
unpredictable or sudden changes in our simulated model.

In this study it is found that the friction factor (f) is the
most crucial tuning parameter for the simulated model to
converge with the true pressure profile. Relatively large
roughness is assumed to consider the old pipelines com-
monly seen in reality.

The next step was to add noise to the simulated data,
which will be used as measurement and boundary value
for the particle filter.

The particle filter was used to estimate the unknown
states. For brevity, in this study we have included the re-
sult for nodse 5, 10 and 15 to check the efficiency of particle
filter. Pressure, mass flow rate and densities of these two
nodes were investigated. In all these simulations, total 500
samples were simulated and the sampling frequency is 1s.
So the total simulation time was 500s.

5. RESULTS

5.1 Validating Model

The simulation results are shown in Figures 5 to Figure 7.
One crucial choice in the particle filter is to select the op-
timal number of particles. Generally the more the number
of particles used, the better the accuracy of estimation
but at the cost of more computational effort [Modisette
et al., 2013]. All the simulations of this study were done
by taking 50 particles.
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Fig. 6. Simulated and Particle Filter estimated mass flow
rates (kgs ) for nodes 5, 10 and 15.

Fig. 7. Simulated and Particle Filter estimated densities
( kg
m3 ) for nodes 5, 10 and 15.

Figure 5 compares the estimated pressure with the sim-
ulated pressure at nodes 5, 10 and 15. It should be noted
from Figure 5 that though there was a huge difference in
the initial states between the simulation model and the
estimation model, the particle filter was able to track the
original (simulated) pressure asymptotically. It should also
be noted that due to model uncertainty or noise in the
original (simulated states) states, exact estimation of the
states is not possible.

Figure 6 shows the comparison of simulated and estimated
mass flow rates at nodes 5, 10 and 15. It is seen that though
there were differences in initial conditions; the particle
filter was able to track the true mass profile.

Figure 7 shows the comparison of simulated and estimated
densities at nodes 5, 10 and 15. It is again clear that though
there were differences in initial conditions; the particle
filter was able to track the true(simulated) density profile.

By summarizing the above results, it can be said that with
a good model, the particle filter can capture the dynamics
of the process quite efficiently.

5.2 Leak Detection and Localization

In this section, a leak was introduced in the simulated
pipeline system. For simplicity, the value of ṁL was kept as
7 kg/s, which is approximately 10 percent of the nominal
mass flow rate. The idea of leak detection and localization
is based on the deviation method. A leak was not intro-
duced in the particle filter model. So, the particle filter

Fig. 8. Simulated (with leak at node 7) and Particle Filter
estimated pressures (Pa) for nodes 5, 10 and 15.

model is able to first generate the behavior of the pipeline
under normal operating conditions. Whereas, due to leak
the behavior of the simulated pipeline system will change.

The unused pressure measurement of nodes 5, 10 and 15
are used to detect and localize the leak. There are two test
cases : a) a leak was introduced at node 7 at 450 sample
time (450 seconds) and b) a leak was introduced at node
13 at 450 sample time (450 seconds). The deviations were
determined by an index called mean absolute deviation
(MAD). MAD is the mean of absolute deviations between
the real measurements and particle filter estimated normal
condition. When there is no leak, the deviation between
the estimated value and the real measurement is very low.
This deviation is larger around the leak point. So, the leak
point is in between two nodes with larger deviation values.
The unit of MAD index is Pa since we are comparing real
and estimated pressure measurements. Leak rate can be
determined by comparing the mass flow rates of the end
node. Generally mass flow rate is available at the end node
of the pipeline.

Figures 8 to 11 show the results for these test cases. From
Figure 8, it is clear that since the leak is introduced at
node 7, there is no change in the pressure at node 5. But
there are changes in pressure of nodes 10 and 15. Figure 9
is the zoomed version of Figure 8. This also confirms the
persistent deviation (i.e., the difference between estimation
and real measurement) at node 10 and node 15. So, from
this observation, we can say that leak has occured at
t = 450 seconds and in between node 5 and 10. Although,
exact leak location (node 7) is not yet possible with this
method, this method can at least isolate the section of the
long pipeline which is suffering from a leak. Generally, true
measurements are available in each 20-30 km segment. So
we need to look for leak in the section which is suspected to
have a leak. This is a clear improvement over the existing
leak detection methods which can localize leaks with an
accuracy of 50 km.

Similar results have been found from Figures 10 and its
zoomed version (Figure 11). Here, there is no deviation in
measured (simulated) and estimated pressure at nodes 5
and 10, the deviation has occured at node 15. So, it can be
inferred, that leak has occured between node 10 and 15.

6. CONCLUSION

This paper studies the application of particle filter for
pipeline leak detection. Simulation results show that the
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Fig. 9. Zoomed in version of Figure 8.

Fig. 10. Simulated (with leak at node 13 ) and Particle
Filter estimated pressures (Pa) for nodes 5, 10 and
15.

Fig. 11. Zoomed in version of Figure 10.

particle filter works very well to capture the dynamics of
the real system and it can serve the purpose of soft-sensor.

The proposed leak detection system can detect leak ef-
ficiently. Although leak localization is not yet exact, it
can at least isolate the smallest possible section of the
pipeline which is suspected to have a leak. Work is going
on to improve the leak location accuracy and to make this
method suitable even for smaller leaks as low as 1 percent
of the nominal mass flow rate.

Our ongoing efforts are underway to evaluate this method
on data without and with leaks from a real pipeline system.
More complex model as well as the energy conservation
equation will be also employed for the purpose of better
estimation of the dynamics of the real pipeline, which is
always challenging.
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