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Abstract: This paper presents an asynchronous distributed self-triggered MPC controller
design strategy for large-scale constrained linear systems. Based on the so-called relaxed dynamic
programming (RDP) inequality, at a triggered time that corresponding to a subspace of the
whole system, the synthesis procedure allows us to locally determine both the updated MPC
control action and the next triggering time for this subsystem. The subsystems update their
inputs asynchronously, while the resulting self-triggered MPC control law can still preserve
stability and constraint satisfaction. The derived conditions can be adapted to robust distributed
event-triggered MPC implementation with continuous monitoring of the systems, when the
system model is uncertain.

1. INTRODUCTION

Model predictive control (MPC) is an advanced and
promising methodology to optimally control and man-
age the energy consumption for constrained systems Ma-
ciejowski [2002], Mayne et al. [2000], Morari and Lee
[1999]. To design a MPC controller, we use a given model
of the system that you want to control to plan the future
control moves to make the process behave optimally with
some desired properties by solving a scalable optimization
problem periodically in real time at each sampling time,
which results in a unique sequence of optimal control
inputs. Since the control law is updated at each sampling
time repetitively, we call this type of control update as
time-driven update. Over the last fifty years, MPC tech-
nology have been widely and successfully applied in many
industries, including energy efficient building control, au-
tomotive powertrain systems Pekar et al. [2012], chemical
plants Qin and Badgwell [2003], power grids Negenborn
[2007] and water distribution systems Doan et al. [2002],
Kozma [2014].

However, there are still some challenges for time-driven
MPC, and I would like to address some of the challenges
that are related to this paper. The first is large-scale
distributed MPC and optimization. MPC depends on a
holistic model that incorporates dynamics and constraints
of the system, but in many situations, we can not obtain
a holistic model for an extreme large-scale system, like
power grids of a country. One solution for this kind of
large-scale distributed system is that we break the overall
system into a bunch of small subsystems that can be easily
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handled by scalable computation. So there is a growing
interest in distributed MPC and its related optimization
and implementation for large-scale heterogenous network
systems Bertsekas and Tsitsiklis [1997], Giselsson and
Rantzer [2013]. The second one is about the efficiency
and fast implementation of the MPC algorithm. At each
sampling instant, MPC control laws are computed by
solving an optimization problem, and for large-scale sys-
tems, the online computation processes can be quiet time
consuming, the MPC design procedures are also involved
with sensor communications among these subsystems over
each sampling instant Camponogara et al. [2002], which
consume a lot of energy in practice, and if we can not get
a solution for the next sampling time, the system may not
be stabilized.

To improve the efficiency of the traditional time-driven
MPC and motivated by the works on event-triggered
and self-triggered control Anta and Tabuada [2010],
Heemels et al. [2012], the paradigms of event-triggered
and the self-triggered MPC has drawn increasing attention
in recent years for economically updating the real-time
MPC control law. In event-triggered MPC, a prescribed
triggering condition is constantly checked with continuous
measurements and if it is violated, the actuator is triggered
for activation of the MPC update process, while in self-
triggered control, at a triggered time, both the updated
MPC control action and the next triggering time must be
determined. Since both event- and self-triggered updates
depend on some triggering rules, we call this type of
control update as event-driven update. The key issue in
choosing between the event-triggered and the self-triggered
MPC implementations, is whether the system states can
be continuously monitored .

Most of the existing event- and self-triggered control
results are for continuous-time systems, and utilize the
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input-to-state stability (ISS) property to derive the error
thresholds for triggering (see Tabuada [2007], Anta and
Tabuada [2010], Heemels et al. [2012], Sandee [2006],
and the references therein). Especially, my recent paper Lu
and Lee [2015] proposed a self-triggered receding horizon
mechanism for aperiodically implementing the receding
horizon controllers based on so-called relaxed dynamic
programming (RDP) inequality (Grüne [2009], Grüne
and Rantzer [2008], Lincoln and Rantzer [2006]). A
comprehensive review on event- and self-triggered MPC
literatures can be found in Lu and Lee [2015].

For distributed computation settings, asynchronous al-
gorithms are of great importance and more realistic to
implement than synchronous algorithms. The reason is
that we can not do the computation for all the states
simultaneously for arbitrarily large-scale systems. As we
mentioned, for this case, we divide a whole system into
many subsystems. Asynchronous distributed algorithms
often involve many processors, and one for each subsys-
tem, that exchange information with its neighbors. The
information in one processor about other subsystems’ com-
putation maybe outdated and may not be synchronized in
the updates. However, asynchronous algorithms have been
reported to work surprisingly well in the field of dynamic
programming Bertsekas [2013], Tsitsiklis [1994] and large-
scale convex optimization Bertsekas and Tsitsiklis [1997],
Liu et al. [2014].

In Giselsson and Rantzer [2010], the authors presented a
suboptimal distributed MPC computation scheme based
on relaxed dynamic programming. But the algorithm
seems a bit limited since all subsystems must be syn-
chronized, i.e. they all share the same sampling time. In
this paper, I will explore the asynchronous algorithm for
distributed MPC problem, and will extend my RDP-based
self-triggered algorithm Lu and Lee [2015] for large-scale,
highly distributed systems, which can maintain stability.
To the author’s knowledge, this is the first proposal to
explore the asynchronous convergence property for dis-
tributed MPC problem.

The organization of the paper is as follows. In Section 2,
we provide the definitions and the preliminary results that
will be used in this paper and formulate the separable
self-triggered MPC problem that will be dealt with in this
paper. In Section 3, the relaxed dynamic programming ap-
proach is adopted to prolong the inter-triggering times and
to reduce the number of MPC updates for each subsystem,
and each subsystem update its control law asynchronously.
The systematic asynchronous self-triggering scheme is pro-
vided. Section 4 presents an illustrative example and Sec-
tion 5 concludes the paper.

Notation: Let R, R+, Z and Z+ denote the set of real
numbers, non-negative real numbers, integers and non-
negative integers, and let Z[a,b) denote the set {k ∈ Z | a ≤
k < b}.

2. PROBLEM SETUP

Consider the linear system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x̄, (1)

y(t) = Cx(t) +Du(t) + g(t), (2)

where x(t) ∈ Rn, u(t) ∈ Rm , y(t) ∈ Rp and g(t) ∈ Rp

are the state, input, (generalized) output and external
signal at the time instant t, respectively. The sets X and U
represent the state and input constraints. We assume that
(A,B) is stabilizable, and (A,C) is observable.

In order to synthesize an optimal control law, we can for-
mulate the problem as an infinite-horizon optimal control
problem as follows.

min
u,[uT(0),··· ,uT(∞)]T

J (∞)(x̄,u) ,
∞∑
t=0

‖y(t)‖22, (3)

s.t. x(t) ∈ X,
u(t) ∈ U,
x(0) = x̄,

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t) + g(t),

where ‖y(t)‖22 is called the generalized stage cost for t =
0, 1, 2, · · · ,∞, and J (∞)(x̄,u) is the infinite horizon cost
function for some starting state x̄ control policy u from
time 0 to ∞. The optimal control policy is denoted by u∗,
and the corresponding optimal infinite horizon value is

V (∞)(x̄) , J (∞)(x̄,u∗).

In MPC, we take a finite horizon N ∈ Z+, instead
of infinity horizon and solve the following optimization
problem repetitively at each sampling time.

min
u,[uT

0 ,··· ,uT
N−1

]T
J (N)(x(t),u) ,

N−1∑
k=0

‖yk‖22, (4)

s.t. xk ∈ X, k = 1, . . . , N,

uk ∈ U, k = 0, 1, . . . , N − 1,

x0 = x(t),

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1,

yk = Cxk +Duk + gk, k = 0, 1, . . . , N − 1.

Because (A,C) is observable, i.e., we can reconstruct x0
from yk, k = 0, 1, · · · , N − 1, the optimization problem
(4) is strictly convex and has a unique global minimizer.
By adjusting the parameters in the matrices C, D and
the vector gk, we can easily adapt the MPC setup (4) for
the regulation and the reference tracking MPC problems.
Thus, we call the problem formulation (4) as the general-
ized MPC setup.

At each sampling time, solving the above optimization
problem for a particular x0, leads to a unique sequence
of optimal control law from time t to time t+N −1, given
by U∗N (x(t)) = [u∗0

T(x(t)), u∗1
T(x(t)), . . . , u∗N−1

T(x(t))]T.

The optimal (finite-horizon) value function is

V (N)(x(t)) , J (N)(x(t), U∗N (x(t))).

The corresponding infinite horizon value is

V (∞)(x(t)) , J (∞)(x(t), U∗∞(x(t))).

The optimal control sequence U∗N (x(t)) is turned into a
feedback control strategy by applying the first control
move to the system, i.e.,

u(t) = µ(x(t)) := u∗0(x(t)). (5)
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2.1 Relaxed dynamic prgramming

In this paper, we will use the relaxed dynamic program-
ming result in Lincoln and Rantzer [2006] to develop a
synthesis strategy for self-triggered MPC.

The next proposition is a variant version of the main
theorem stated in Lincoln and Rantzer [2006], Grüne
and Rantzer [2008] for approximating the Bellman’s opti-
mality equation based on the finite-horizon value function
V (N)(x(t)) and its corresponding optimal control policy
µ(x(t)).

Proposition 1. Consider the system (1)-(2) and the feed-
back control law µ : X 7→ U given as (5) that satisfies the
following inequality

V (N)(x(t)) ≥ V (N)(x(t+ 1)) + α‖y(t)‖22, (6)

for a given scalar α ∈ (0, 1). Then,

α

∞∑
t=0

‖y(t)‖22 ≤ V (∞)(x(0)),

where x(t+ 1) and y(t) is obtained by applying µ(x(t)) to
the closed-loop system, i.e. x(t + 1) = Ax(t) + Bµ(x(t))
and y(t) = Cx(t) +Dµ(x(t)) + g(t).

The inequality (6) is refered to as the relaxed dynamic
programming (RDP) inequality.

2.2 Separable Model Predictive Control

Introduce a non-overlapping partition of M subsystems
Si, i = 1, · · · ,M . Let xi(t) ∈ Rni denote the state of
subsystem Si, i.e.

x(t) = [(x1(t))T, (x2(t))T, . . . , (xM (t))T]T,

with
∑M

i=1 ni = n. Each subsystem Si has its own input
vector ui(t) ∈ Rmi and output vector yi(t) ∈ Rpi ,

u(t) = [(u1(t))T, (u2(t))T, . . . , (uM (t))T]T,

y(t) = [(y1(t))T, (y2(t))T, . . . , (yM (t))T]T,

with
∑M

i=1mi = m and
∑M

i=1 pi = p. For the linear
systems (1)-(2). Introduce a non-overlapping partition of
M subsystems Si, i = 1, · · · ,M .

The dynamics for subsystem Si can be expressed as

xi(t+ 1) =Aiixi(t) +Biiui(t)+
∑
j∈Ni

(Aijxj(t) +Bijuj(t)),

xi(0) = x̄i,

yi(t) =Ciixi(t)+Diiui(t)+gi(t).

Let Lij =

[
Aij Bij

Cij Dij

]
denote the interconnection matrices.

The set of neighbors of subsystem Si, which have direct
influence on subsystem Si, is defined by the set

Ni = {j ∈ {1, . . . ,M}|Lij 6= 0}, i = 1, · · · ,M.

The global constraint sets for the state and input are
defined as

X = X1 × · · · × XM , U = U1 × · · · × UM .

Let J (N) be partitioned as

J (N) = (J
(N)
1 , J

(N)
2 , . . . , J

(N)
M ),

where J
(N)
i is the cost function for the subsystem Si.

Consider the MPC setup for the subsystem Si
min

ui,[ui
0
T,...,ui

N−1
T]T

J
(N)
i (xi(t), xj(τij(t)), uj(τij(t)),

xj(τij(t) + 1), uj(τij(t) + 1), . . . , xj(τij(t) +N − 1),ui)
(7)

s.t. xik+1=Aiix
i
k+Biiu

i
k+
∑
j∈Ni

(Aijx
j
k +Biju

j
k), (7.1)

yik=Ciix
i
k+Diiu

i
k+g

i
k, (7.2)

xi0 = xi(t), (7.3)

(xj0, u
j
0, x

j
1, u

j
1, . . . , x

j
N−1, u

j
N−1)=(xj(τij(t)), uj(τij(t)),

xj(τij(t) + 1), uj(τij(t) + 1), . . . , xj(τij(t) +N − 1),

uj(τij(t) +N − 1)), (7.4)

xik ∈ Xi, k = 0, 1, . . . , N, (7.5)

uik ∈ Ui, k = 0, 1, . . . , N − 1, . (7.6)

where J
(N)
i ,

∑N−1
k=0 ‖yik‖22, and τij in (7.4) denotes the

time when processor i receives the information from its
neighbors, and t− τij(t) are communication “delays” with
τij(t) ≤ t. This means the values of neighbors’ information

(xjk, u
j
k), k = 0, 1, . . . , N−1, we use to do the MPC update

for subsystem i may not be up-to-date, and different
processors are used for different subsystems to calculate
the local MPC law separately. Denote the MPC trajectory
obtained by (7) as

ξi = (xi0, u
i
0, . . . , x

i
N−1, u

i
N−1), and

ξ = (ξ1, ξ2, . . . , ξM ).

One local processor i may have out-of-date information
about the computations of other processors. Thus, proces-
sor i’s knowledge of a vector ξi(t) may contain out of date
information of ξ(t), where

ξi(t) = [ξ1(τi1(t)), ξ2(τi2(t)), . . . , ξM (τiM (t))],

and ξi(τii(t)) = 0.

At each sampling time for subsystem Si denoted as ti,
solving the optimization problem (7) leads to a sequence
of control law from time ti to time ti +N − 1, given by

U i
N (xi(t), ξ

i(t)) = [ui0
T

(xi(t), ξ
i(t)), ui1

T
(xi(t), ξ

i(t)), . . . ,

uiN−1
T

(xi(t), ξ
i(t))]T.

For the subsystem Si, denote

V
(N)
i (xi(t), ξ

i(t)),J (N)
i (xi(t), ξ

i(t), U i
N (xi(t), ξ

i(t))), (8)

and we use separate processor i to compute the local MPC

control law and update the value V
(N)
i (xi(t), ξ

i(t)). Hence,
we call this kind of MPC update schemes as “separable

MPC”. V
(N)
i (xi(t0), ξi(t0)) and ξi(t0) can be computed as

a warm start for the result in this paper from any existed
distributed optimization algorithms for MPC, for instance,
ADMM algorithm for separable MPC (Lu [2014]).

Let I∞ denote the admissible finite solution set of the
infinite horizon LQ problem. As stated in paper Primbs
and Nevistić [2000], I can be an arbitrary compact subset
of I∞ which is forward invariant for horizon length N
under the receding horizon policy. Denote

I = I1 × I2 × · · · × IM .
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Assumption 1. For each subsystem Si, we assume the infi-

nite horizon cost V
(∞)
i (xi(t0), ξi(t0)) is finite and bounded

by a positive scalar V̄i for x(t0) ∈ Ii, that is, Ii is assumed
to be control invariant, for i = 1, . . . ,M .

2.3 Asynchronous Self-triggered MPC problem

Define the sets of triggering times of subsystem Si as
Ti := {til | l ∈ Z+}, which satisfy til+1 > til for all l ∈ Z+.
In between the interval [tl, tl+1),

ui(t) := ui(t−ti
l
)(xi(t

i
l), ξ

i(til)), t ∈ Z[ti
l
,ti

l+1
). (9)

Remark 1. As ui0(xi(t
i
l), ξ

i(til)), u
i
1(xi(t

i
l), ξ

i(til)), . . . ,
uiN−1(xi(t

i
l), ξ

i(til)) is a feasible open-loop input trajectory

from time til to til+N−1 and we follow this trajectory

until the next triggering time til+1 in self-triggered MPC,
the input constraint ui(t) ∈ Ui for t ∈ Z[ti

l
,ti

l+1
) is

automatically satisfied.

In order to achieve convergence in our asynchronous self-
triggered algorithm, we make the following assumptions.

Assumption 2. limt→∞ τij(t) =∞ for all i, j = 1, . . . ,M .

Assumption 3. Every processor update infinitely often,
i.e. the set of times t ∈ Ti that processor i updates

V
(N)
i (xi(t), ξ

i(t)) is infinite, for i = 1, . . . ,M .

Set an extended state zi(t) = (xi(t), ξ
i(t)), and define the

set
Ψi = {zi ∈ Ii × I× U | V (∞)

i (zi) ≤ V̄i}.

For all zi ∈ Ψi, we can express the asynchronous update
law for processor i as

V
(N)
i (zi(t)) =

{
J
(N)
i (zi(t), U

i
N (zi(t)), t ∈ Ti,

V
(N)
i (zi(t− 1)), t /∈ Ti ∪ {0}.

(10)

Let z = (z1, z2, . . . , zM ) be the collection of the in-
formation that possesses by each processor i for i =
1, . . . ,M , and Ψ = Ψ1 × Ψ2 × · · · × ΨM , V (N)(z) =

(V
(N)
1 (z1), V

(N)
2 (z2), . . . , V

(N)
M (zM )), and denote by R(Ψ)

for the set of these real-valued functions defined on Ψ.

The following Proposition is an amended theorem of
[Proposition 2.6.1 in the book Bertsekas [2013]], which
is essential for proving convergence of the asynchronous
separable self-triggered MPC algorithm in this paper.

Proposition 2. (Asynchronous Convergence Theorem) For
the MPC setup (7), let Assumptions 1,2 and 3 hold,
and assume that there’s a sequence of nonempty subsets
{S(h)} ⊂ R(Ψ) with S(h + 1) ⊂ S(h) for all h, and with
the following properties:

(1) Synchronous Convergence Condition: We have

V (N)(z(th+1)) ∈ S(h+ 1), ∀V (N)(z(th)) ∈ S(h), h ∈ Z.

(2) Box Condition: For all h, S(h) is a Cartesian product
of the form

S(h) = S1(h)× S2(h)× . . .× SM (h),

where Si(h) is a set of real-valued functions for subsystem
Si, i = 1, 2, · · · ,M .

Then for every V (N)(z(0)) ∈ S(0), the sequence {V (N)(z(t))}
generated by the asynchronous algorithm (10) converges
pointwise to a fixed point of V (N).

Proof. We show by induction that for each h ∈ Z, there
is a time th such that:

(a) V (N)(z(t)) ∈ S(h) for all t ≥ th.

(b) For all subsystems Si’s and t ∈ Ti with t ≥ th, we have

(V
(N)
1 (z1(τi1(t))), V

(N)
2 (z2(τi2(t))),. . . ,V

(N)
i (zi(τii(t))),. . . ,

V
(N)
M (zM (τiM (t)))) ∈ S(h), τii(t) = t.

The induction hypothesis is true for h = 0, since
V (N)(z(t0)) ∈ S(0). Assuming it is true for a given
h, we will show that there exists a time th+1 with
the required properties. For each i = 1, 2, . . . ,M , let
ti be the first element of Ti such that ti ≥ th. Ap-
plying the Synchronous Convergence Condition, i.e. set

V
(N)
j (zj(τij(t

i))) = J
(N)
j (zj(τij(t

i))), U j
N (zj(τij(t

i))) for
j = 1, 2, . . . ,M , then we have

(V
(N)
1 (z1(τi1(ti))), V

(N)
2 (z2(τi2(ti))), . . . , V

(N)
i (zi(t

i)), . . . ,

V
(N)
M (zM (τiM (ti)))) ∈ S(h),

implying (in view of the Box Condition) that

V
(N)
i (zi(t

i)) ∈ Si(h+ 1).

Similarly, for every t ∈ Ti, t ≥ ti, we have V
(N)
i (zi(t +

1)) ∈ Si(h + 1). Between elements of Ti, V (N)
i (zi(t)) does

not change. Thus,

V
(N)
i (zi(t)) ∈ Si(h+ 1), ∀t ≥ ti.

Let th
′ = maxi{ti}. Then, using the Box Condition we

have
V (N)(z(t)) ∈ S(h+ 1), ∀t ≥ th′.

Finally, by Assumption , we have τij(t) → ∞ as t → ∞,
t ∈ Ti, we can choose a time th+1 ≥ th′ that is sufficiently
large so that τij(t) ≥ th

′ for all i, j and t ∈ Ti with

t ≥ th+1. We then have, V
(N)
j (zi(t)) ∈ Sj(h + 1), for all

t ∈ Ti with t ≥ th+1 and all j = 1, . . . ,M , which (by the
Box Condition) implies that

(V
(N)
1 (z1(τi1(t))), V

(N)
2 (z2(τi2(t))),. . . ,V

(N)
i (zi(t)),. . . ,

V
(N)
M (zM (τiM (t)))) ∈ S(h+ 1).

The induction is complete. 2

3. RDP-BASED APPROACH

When the event triggered at time instant til, we have
to decide both the control law ui0(zi(t

i
l)) and the next

triggering time til+1 such that til+1(< til + N) is as large
as possible while still guaranteeing the relaxed dynamic
programming inequality condition.

Next, we present the main theorem of our asynchronous
distributed self-triggered scheme, which can be verified
locally for each subsystem.

Theorem 1. Let Assumptions 1-3 hold. If an upper bound

V̄
(N)
i (zi(t)) can be found for t ∈ {til | l ∈ Z+} such that

V̄
(N)
i (zi(t)) ≥ V (N)

i (zi(t)) (11)
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and

V
(N)
i (zi(t

i
l))−V̄

(N)
i (zi(t

i
l+1))≥ei(til)+α

til+1−1∑
t=ti

l

‖yi(t)‖22, (12)

satisfied for all i = 1, . . . ,M and a given scalar α ∈ (0, 1),
where the sequence {e(til)} is

ei(t
i
l)=ei(t

i
l−1)+α

til−1∑
t=ti

l−1

‖yi(t)‖22+V̄
(N)
i (zi(t

i
l))−V̄

(N)
i (zi(t

i
l−1))

for all l ≥ 2 and

ei(t
i
1) = α

ti1−1∑
t=ti0

‖yi(t)‖22 + V̄
(N)
i (zi(t

i
1))− V (N)

i (zi(t
i
0)),

and ei(t
i
1) = 0. Then

lim
t→∞

yi(t) = 0, 1 ≤ i ≤M.

Proof. First, we prove the synchronous convergence con-
dition of the Proposition 2 by letting the triggering time
be synchronized, that is, if one subsystem is triggered, we
do MPC for all subsystems simultaneously. They all share
the same sampling time tl = min til and we replace til with
tl in (11) and (12). Since ei(tl) < 0, summation of the
conditions (11) and (12) over i = 1, . . . ,M implies the
relaxed dynamic programming inequality

V (N)(z(tl)) ≥ V (N)(z(tl+1)) + α

tl+1−1∑
t=tl

‖y(t)‖22, (13)

which means for t ∈ {tl | l ∈ Z+}, V (N)(z(t)) converges,
as t increases. Thus, we prove the synchronous condition.

We observe from condition (11), the sup-norm spheres of

the Cartesian product of the upper bound ‖V̄ (N)
1 ‖∞ ×

‖V̄ (N)
2 ‖∞ × · · · ,×‖V̄ (N)

M ‖∞ satisfies the Box Condition
in the Proposition 2, and from Assumption 1 and (12),
we can conclude that this box converges to the optimal
value 0 as we proceeding the MPC updates. Hence, if
Assumptions 1-3 and the local conditions (11) and (12)
are satisfied, we can conclude that V (N)(z(t)) → 0 as
t → ∞ by the asynchronous update law (10). Thus,
limt→∞ yi(t) = 0, 1 ≤ i ≤M . This completes the proof. 2

Distributed Triggering rule:

At an distributed MPC triggering time til ∈ Z+ with
l ∈ Z+, we solve the distributed MPC problem (7), and
the next DMPC triggering time til+1 can be calculated by

til+1 = til +Mti
l
(xi(t

i
l)),

ui(t) = ui(t−ti
l
)(xi(t

i
l)), t ∈ Z[ti

l
,ti

l+1
),

where

Mti
l
(xi(t

i
l)) , sup{Nti

l
∈ [1, . . . , N − 1]}

s.t.V
(N)
i (xi(t

i
l))− V̄

(N)
i (xi(t

i
l +Nti

l
)) ≥ ei(til)

+ α

til+N
ti
l
−1∑

t=ti
l

‖yi(t)‖22

 .

In order to calculate an upper bound V̄
(N)
i (xi(t

i
l + Nti

l
)),

we will apply a ”shifted” input sequence Ū i
Ni(xi(t

i
l +

Nti
l
), ξi(til +Nti

l
)) = [ uiN

ti
l

T
(xi(t

i
l +Nti

l
), ξi(til +Nti

l
)), . . . ,

uiNi−1
T

(xi(t
i
l +Nti

l
), ξi(til +Nti

l
)), 0mi×Nti

l

]T.

Hence, the upper bound

V̄
(Ni)
i (xi(til +Nti

l
)) , J

(Ni)
i (xi(til +Nti

l
), ξi(til +Nti

l
),

Ū i
N (xi(til +Nti

l
), ξi(til +Nti

l
))).

4. ILLUSTRATIVE EXAMPLE

Let’s consider a model that is similar to the numerical
example in Giselsson and Rantzer [2013] which is ran-
domly generated. The dynamical system consists three
subsystems and each subsystem has five states and one
input. As the problem is a regulation problem, the output

of the ith subsystem is chosen to be yk =

(
I15
0

)
xk +(

0
I3

)
uk. Both state and input constraints are set within

the range [−2, 2]. The control horizon is chosen to N = 6
with α = 0.8. If the system’s states reach a small neigh-
borhood of the origin, the simulation is terminated. The
simulation results are presented in Fig. 1. The circle dots
trajectories represent the simulation results of synchronous
self-triggered MPC based on RDP in Lu and Lee [2015],
and the star dots trajectories represent the simulation
results for asynchronous self-triggered MPC. The MPC
triggering times are recorded in Fig. 2.

5. CONCLUSIONS

This paper proposed an efficient MPC implementation
scheme for large-scale distributed systems with a relaxed
dynamic programming based self-triggered MPC synthesis
procedure. All the subsystems update their control policy
asynchronously, and the intervals between each subsys-
tem’s local MPC updates are maximized. With the pro-
posed self-triggered MPC synthesis procedure, the overall
closed-loop systems can still achieve asymptotic stability
and constraint satisfaction.
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