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Abstract: The problem of regulating the effluent concentration in an open-loop unstable exothermic 

jacketed reactor is addressed. The coolant temperature must be adjusted according to temperature as well 

as flow measurements. First, the robust nonlinear feedforward-output feedback stabilizing control 

problem is addressed with advanced control theory, yielding: (i) solvability conditions with sensor 

location criterion, and (ii) closed-loop robust stability coupled with simple tuning guidelines. Then, the 

behavior of the advanced controller is recovered with a PI temperature controller equiped with: (i) 

antiwindup protection, and (ii) feedforward dynamic setpoint compensation driven by measured (feed 

temperature and volumetric flow rate) disturbances. The approach is applied to a representative case 

example through numerical simulations. 
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

1. INTRODUCTION 

An important class of products are manufactured in tubular 

exothermic tubular reactors. These reactors are spatially 

distributed nonlinear dynamical systems (modeled by partial 

differential equations -PDEs-) which in many cases exhibit 

complex dynamics: strong parametric sensitivity, 

multiplicity, limit cycling, and structural instability (Jensen et 

al., 1982). Due to bifurcation, an open-loop stable reactor 

may become unstable with input and kinetics-transport 

disturbances. The control task is the regulation of yield and 

selectivity with guarantee of robust closed-loop stability. 

By far, industrial reactors are controlled with conventional 

temperature PI controllers (Shinskey, 1988; Jaisathaporn et 

al., 2004; Singh et al., 2008).  Even though these controllers 

are robust and cheap, their design and supervision rely 

heavily on per-reactor experience, testing and supervision. 

Thus, there is an incentive to systematize and improve 

through upgrade the existing designs. In principle, advanced 

control theory should contribute in such endeavour.  

While the estimation and control theory for nonlinear finite-

dimensional systems has advanced significantly in the last 

two decades (Sepulchre et al., 2011), the theory for nonlinear 

distributed systems lags far behind. The control design of 

nonlinear distributed systems is still an open subject of 

research (Christofides, 2001; Hoo et al., 2001). The majority 

of the advanced estimation and control studies in chemical 

tubular reactors have been performed with early lumping 

approach: first, the distributed system is discretized with 

orthogonal collocation or finite element method; then, 

advanced finite-dimensional control-observer techniques are 

applied. 

These consideration motivate the methodology of the present 

study: an interlaced control-observer design for the 

distributed reactor on the basis of finite-dimensional of the 

reactor control. To concentrate on the fundamental interplay 

between advanced and conventional control, a rather simple 

single concentration-temperature pseudo-homogeneous 

exothermic reactor class will be regarded as case study 

(Varma et al., 1973). In spite of its simplicity, the reactor 

example exhibits the complex nonlinear behavior of an 

important class of industrial reactors (Eigenberg, 1975; Van 

Heerden, 1958): steady-state multiplicity, parametric 

sensitivity, structural instability, and hot spot in the 

temperature profile. 

In this study, the problem of designing a feedforward-output 

feedback (FF-OF) control scheme to regulate (with quick 

response and reduced offset) the exit concentration of an 

open-loop unstable exothermic reactor by manipulating the 

coolant temperature according to reactor temperature and 

feed flow temperature disturbance measurements is 

addressed. The aim is to obtain a control scheme, as simple as 

possible in terms of nonlinearity, coupling, and model 

dependency, and tuning. We are interested in: (i) ensuring 

robust closed-loop stability, (ii) identifying the solvability 

conditions, and (iii) connecting the advanced and 

conventional control approaches. 

2. CONTROL PROBLEM 

Consider the jacketed tubular reactor (Fig. 1), where a 

reactant is fed at volumetric flow rate (𝑞), temperature (𝑇𝑒) 

and concentration (𝐶𝑒) and converted into product through an 

exothermic reaction. The mass and energy balances in 

dimensionless form are given by the partial differential 

equations with initial (1e) and boundary (1c,d) conditions, 

regulated output (exit concentration) (𝑧), measured output 

(𝑦), control input (coolant temperature) (𝑢), and load 

disturbance inputs  (feed temperature and volumetric 

flowrate) (𝒅𝑒): 

Preprints of the
9th International Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control
June 7-10, 2015, Whistler, British Columbia, Canada

WeM2.6

Copyright © 2015 IFAC 1076



 

 

     

 

 

∂𝑡𝑐 = 𝔇𝑚 ∂𝑠𝑠𝑐 − 𝓆 ∂𝑠𝑐 − 𝑟(𝑐, 𝜏),  𝑡 > 0, 0 < 𝑠 < 1  (1a) 

∂𝑡𝜏 = 𝔇ℎ ∂𝑠𝑠𝜏 − 𝓆 ∂𝑠𝜏 + β𝑟(𝑐, 𝜏) − 𝛿(𝜏 − 𝜏𝑐)  (1b) 

𝑠 = 0: 𝔇𝑚 ∂𝑠𝑐 = 𝓆(𝑐 − 𝑐𝑒),  𝔇ℎ ∂𝑠𝜏 = 𝓆(𝜏 − 𝜏𝑒)  (1c) 

𝑠 = 1:  ∂𝑠𝑐 = ∂𝑠𝜏 = 0; 𝑡 = 0: 𝑐 = 𝑐0, 𝜏 = 𝜏0 (1d,e) 

𝑧 = 𝑐(1, 𝑡),   𝑢 = 𝜏𝑐 ,   𝑦 = 𝜏(𝑠𝑚 , 𝑡),   𝒅𝑒(𝑡) = (𝜏𝑒 , 𝓆)′  (1f) 

 

Fig. 1. Tubular reactor and control scheme. 

𝑐(𝑠, 𝑡) [or 𝜏(𝑠, 𝑡)] is the time-varying concentration (or 

temperature) profile, 𝑐𝑒 (or 𝜏𝑒) is the feed concentration (or 

temperature), 𝓆 is the dilution rate, 𝜏𝑐 is the coolant 

temperature, 𝔇𝑚 (or 𝔇ℎ) is the mass (or heat) dispersion 

number, 𝛽 is the adiabatic temperature, 𝛿 is the heat transfer 

parameter, and 𝑟 is the reaction rate. The feed concentration 

𝑐𝑒 is constant. With suitable modifications (concentration in 

quasi-steady state, no mass dispersion, packed bed, 

multicomponent) reactor (1) can be adapted to a diversity of 

industrial tubular reactors. 

The problem consists in designing a feedforward (FF)-

output-feedback (OF) robust stabilizing controller for an 

open-loop unstable exothermic tubular reactor. The exit 

concentration 𝑧 must be regulated about a prescribed value 𝑧̅ 
in spite of feed flow rate and temperature disturbances (𝒅𝑒), 

by manipulating the control input 𝑢 (coolant temperature 𝜏𝑐) 

according to the two-load input  𝒅𝑒  and output (𝑦) 

(temperature at length 𝑠𝑚) measurements. We are interested 

in drawing an application-oriented reliable control scheme as 

simple (linear and dynamically decoupled) and model 

independent as possible. 

Let us recall as case example an extensively studied system 

(Varma et al., 1973): an irreversible first-order exothermic 

reaction 𝑟(𝑐, 𝜏) with Arrhenius temperature dependency  

𝑟(𝑐, 𝜏) = 𝑐𝛼(𝜏), 𝛼(𝜏) = exp (𝜙 − 𝛾 𝜏⁄ ), 𝜙 = 22.2  (2a) 

𝛾 = 25, 𝛽 = 0.5, 𝛿 = 1, 𝔇𝑚 = 𝔇ℎ = 0.2 

𝑐𝑒 = 𝜏𝑒̅ = 𝜏𝑐̅ = 𝓆 = 1 

The reactor (1) has the five steady-state (SS) profile pairs 

[𝑐̅(𝑠), 𝜏̅(𝑠)]𝑖=1,…5 shown in Fig. 2, with three stable SSs 

(continuous curves 1, 3 and 5), and two unstable SSs 

(discontinuous curves 2 and 4). The reactor must operate 

about the unstable SS [𝑐̅(𝑠), 𝜏̅(𝑠)]4 with: (i) exit 

concentration 𝑧̅ ≈ 0.006, and (ii) temperature hotspot at axial 

length 𝑠𝑚 ≈ 0.47. 

3. STAGED MODEL-BASED FEEDFORWARD STATE-

FEEDBACK (FF-SF) ROBUST CONTROL 

Here the model-based nonlinear feedforward state-feedback 

(FF-SF) robust control problem is addressed on the basis of a 

staged model approximation of the distributed system (1). 

The purposes are: (i) the identification of the solvability 

conditions, and (ii) the setting of the constructive point of 

departure for the development (in sections 4 to 6) of an 

application-oriented FF-OF control scheme.   

 
Fig. 2. Steady-state concentration-temperature profiles. 

3.1 Staged model 

The application of spatial finite differences (over N domain 

nodes and two boundary ones) to the distributed system (1) 

yields the 𝑛-dimensional model  

𝑐̇𝑖 = 𝜃𝑚∆2𝑐𝑖 − 𝜃∆−𝑐𝑖 − 𝑟(𝑐𝑖 , 𝜏𝑖),  1 ≤ 𝑖 ≤ 𝑁,      𝑧 = 𝑐𝑁 (3a) 

𝜏̇𝑖 = 𝜃ℎ∆2𝜏𝑖 − 𝜃∆−𝜏𝑖 − 𝛿(𝜏𝑖 − 𝑢) + 𝛽𝑟(𝑐𝑖 , 𝜏𝑖),    𝑦 = 𝜏𝑚 (3b) 

𝑖 = 0:   𝜃𝑚∆+𝑐𝑖 = 𝜃(𝑐𝑖 − 𝑐𝑒),  𝜃ℎ∆+𝜏𝑖 = 𝜃(𝜏𝑖 − 𝜏𝑒) (3c) 

𝑖 = 𝑁 + 1:  ∆−𝑐𝑖 = ∆−𝜏𝑖 = 0,              (𝜏𝑒 , 𝜃)′ = 𝒅 (3d) 

𝑡 = 0:  𝑐𝑖(0) = 𝑐𝑖0,  𝜏𝑖(0) = 𝜏𝑖0,         1 ≤ 𝑚 ≤ 𝑁 (3e) 

where 

𝜃𝑚 = 𝑁2𝔇𝑚, 𝜃ℎ = 𝑁2𝔇ℎ, 𝜃 = 𝑁𝓆,    ∆−(∙)𝑖 = (∙)𝑖 − (∙)𝑖−1 

∆+(∙)𝑖 = (∙)𝑖+1 − (∙)𝑖,     ∆
2(∙)𝑖 = (∙)𝑖+1 − 2(∙)𝑖 + (∙)𝑖−1  

In compact notation, this 𝑁-stage model is written as follows 

𝒙̇ = 𝒇(𝒙, 𝒅, 𝑢), 𝒙(0) = 𝒙0,       𝑦 = 𝒄𝑦𝒙,      𝑧 = 𝒄𝑧𝒙 (4) 

𝒄𝑦𝒙 = 𝜏𝑚,   𝒄𝑧𝒙 = 𝑐𝑁,  dim 𝒙 = 𝑛 = 2𝑁  

 
Fig. 3. Discrete approximations of the nominal open-loop 

unstable SS concentration and temperature profiles with 

𝑁 = 30 stages (, ▲), —: interpolation  

In Fig. 3 are shown the approximations of the nominal SS 

profile [𝑐̅(𝑠), 𝜏̅(𝑠)]4 (# 4 in Fig. 2) with 𝑁 = 30 and 180 

stages, showing that: (i) 𝑁 = 30 and 80 stages yield similar 

(root mean squared) error with respect to the “almost” 

distributed approximation (with 𝑁 = 180), and (ii) 𝑁 = 30 
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yields an adequate description of the distributed system in the 

light of typical kinetics-transport parameter errors.   

3.2 Primary concentration FF controller 

The aim is to keep the unmeasured effluent concentration 𝑧 at 

its prescribed value 𝑧̅ by adjusting the coolant temperature 𝑢 

according to the measured load disturbances 𝒅, this is, 

𝑧(𝑡) = 𝑐𝑁(𝑡) =  𝑧 ̅ (5) 

The FF controller is a model-based inverse of the plant 

(Shinskey,1988): for given (𝑧̅, 𝒅), the controller must 

determine the input 𝑢∗ so that 𝑧(𝑡) = 𝑧̅. In control theory, the 

FF control is the dynamical inverse (Hirschorn, 1979) with 

respect to the input-output pair (𝑢∗, 𝑧), and its dynamic 

component is called the zero-dynamics (𝑍𝐷) (Isidori, 1989). 

In industry it is known that the feedforward-feedback (FF-

FB) combination is the most effective way to control a 

difficult process (Shinskey, 1977): the FF executes most of 

the disturbance rejection task, and the FB achieves stable 

output regulation by compensating the FF model error. 

Let us rewrite the staged model (4) in the partitioned form: 

𝒙̇𝜻 = 𝒇𝜁(𝒙𝜻, 𝑥𝑧 , 𝒅, 𝑢),   𝒙𝜻(0) = 𝒙𝜻𝒐,      𝑦 = 𝒄𝜻𝒙𝜻 = 𝜏𝑚 (6a) 

𝑥̇𝑧 = 𝑓𝑧(𝒙𝜻, 𝑥𝑧 , 𝒅, 𝑢),   𝑥𝑧(0) = 𝑥𝑧𝑜,       𝑧 = 𝑥𝑧 (6b) 

𝑑𝑖𝑚 𝒙𝜻 =  𝑛 − 2,   𝑑𝑖𝑚 𝑥𝑧 = 2 = 𝑟𝑑 (𝑢, 𝑧),   𝑰𝜁(𝒙𝜁
′ , 𝑥𝑧)′ = 𝒙 

and 𝑟𝑑 (𝑢, 𝑧) denotes the relative degree of the input-output 

pair (𝑢, 𝑧) (Isidori, 1980). The pair (𝑢, 𝑧) has 𝑟𝑑 = 2 because 

the 𝑁-stage concentration dynamics (𝑐̇𝑁) do not depend on 

the coolant temperature 𝑢, and a the second time derivative 

(𝑐̈𝑁) of 𝑧 is needed to obtain an algebraic equation with 𝑢. 

The enforcement of the regulation condition (5) followed by 

the solution for 𝑢 of (6b) and its substitution in (6a) yields the 

FF composition controller 

𝒙̇𝜻
∗  = 𝒇𝜁

∗ (𝒙𝜁
∗ , 𝒅, 𝑧̅),   𝒙𝜁

∗ (0) = 𝒙𝜁
∗

0
;     𝑢∗ = 𝜇∗(𝒙𝜁

∗ , 𝒅, 𝑧̅) (7a,b) 

𝒇𝜁
∗ (𝒙𝜁

∗ , 𝒅, 𝑧̅) = 𝒇𝜁[𝒙𝜁
∗ , 𝒅, 𝑧,̅ 𝜇∗(𝒙𝜁

∗ , 𝒅, 𝑧̅)] (7c) 

with 𝑧-minimumphase solvability condition 

𝑟𝑑(𝑢, 𝑧) = 2 ↔ 𝑓𝑧: 𝑢-invertible;          stable 𝑍𝐷 (7a) (8a,b) 

Eq. (8a) says that the staged model (4) has 𝑟𝑑 = 2 for (𝑢, 𝑧), 

and eq. (8b) says that the associated 𝑍𝐷 must be stable. 

3.3 Secondary FF-SF temperature tracking controller 

Here the task is manipulate the coolant temperature 𝑢  to 

track time varying setpoint 𝑦∗ associated with the state 𝒙𝜁
∗  of 

the FF controller (7a) with the prescribed linear dynamics: 

𝑒̇𝑦 = −𝑘𝑒𝑦,   𝑒𝑦 = 𝑦 − 𝑦∗(𝑡),     𝑦∗ = 𝒄𝜻𝒙𝜁
∗  (9a-c) 

where 𝑘 is an adjustable gain. The enforcement of eq. (9a) on 

the staged model (4) followed by solution for 𝑢 yields the SF 

temperature tracking controller 

𝑢 = 𝜇𝑦(𝒙, 𝒙𝜁
∗ , 𝒅, 𝑧̅ ) (10) 

where 𝜇𝑦 denotes the unique solution for 𝑢 of the algebraic 

equation 

𝑓𝑚
𝜏 (𝒙, 𝒅, 𝑢) = 𝑓𝑚

𝜏∗(𝒙𝜁 , 𝒅, 𝑧̅) − 𝑘𝑦(𝒄𝑦𝒙 − 𝒄𝜻𝒙𝜁
∗ ) (11) 

𝑓𝑚
𝜏 (𝒙, 𝒅, 𝑢) = 𝑓𝑚

𝜏∗(𝒙𝜁 , 𝒅, 𝑧̅) = 𝜏̇𝑚  

The related 𝑦-passivity solvability condition is 

𝑟𝑑(𝑢, 𝑦) = 1 ↔ 𝒇𝜁: 𝑢-invertible; 𝑆𝑍𝐷  (7a) (12a,b) 

Eq. (12a) says that the staged reactor (4) has 𝑟𝑑 = 1 with 

respect to (𝑢, 𝑦), and eq. (12b) states that the associated 𝑍𝐷 

(12b) (the ones (7a) of the primary controller (7)) must be 

stable. The property 𝑟𝑑 = 1 of (𝑢, 𝑦) means that the 

temperature dynamics (𝜏̇𝑚) at the 𝑚-th stage depend on 𝑢. 

3.4 Cascade FF-SF dynamic nonlinear controller 

The combination of the primary composition (7) and 

secondary temperature (9) controllers yields the composition 

cascade controller 

𝒙̇𝜻
∗  = 𝒇𝜁

∗ (𝒙𝜁
∗ , 𝒅, 𝑧)̅,   𝒙𝜁

∗ (0) = 𝒙𝜁
∗

0
;   𝑢 = 𝜇𝑦(𝒙, 𝒙𝜁

∗ , 𝒅, 𝑧̅) (13a,b) 

with 𝑧-minimum phase (8), and 𝑦-passivity (12) solvability 

conditions  

𝑟𝑑(𝑢, 𝑧) = 2,     𝑟𝑑(𝑢, 𝑦) = 1,      stable 𝑍𝐷    (7a) (14a-c) 

The negative solvability assessment of this controller and its 

redesign are the subjects of the next section. 

4. CASCADE CONTROL REDESIGN  

Here, the solvability of the FF-FB cascade controller (13) is 

assessed, finding that the primary control is not stable. Then 

the control scheme is redesigned accordingly. 

4.1 Solvability of the cascade controller (13) 

Introduce the eigenvalues 𝜆𝑖 and eigenvectors 𝒗𝑖 of staged 

model (4) linearization about the nominal SS (|𝜆𝑖| < |𝜆𝑖+1|):  

𝑨𝒗𝑖 = 𝜆𝑖𝒗𝑖,  𝑖 = 1, … , 𝑛,  𝑨 = (𝜕𝒙𝒇)(𝒙, 𝑢̅, 𝒅̅) (15a) 

and denote by 𝜆𝑠 = 𝜆1 (or 𝜆𝑢 < 0) be the slowest (or 

unstable) eigenvalue of 𝑨 and by and 𝒗𝑠 (or 𝒗𝑢) the 

corresponding eigenvector. Following studies for linear 

distributed systems (Ichikawa et al., 1979), the domain sensor 

𝑦 must be located as follows. If there is an unstable 

eigenvalue 𝜆𝑢 < 0, to ensure closed-loop stability the 

location 𝑚 must be the node 𝑚− (15b) where the 𝑁 + 𝑚-th 

entry of 𝒗𝑢 reaches its maximum absolute value. To attain the 

maximum closed-loop response, the measurement must be 

placed at the node 𝑚+ (15c) where the 𝑁 + 𝑚-th entry of 𝒗1 

reaches its maximum value. This is, 

𝑚− = max1≤𝑖≤𝑁|𝑣𝑗
𝑢𝜏|,        𝑚+ = max1≤𝑖≤𝑁|𝑣𝑗

𝑠𝜏| (15c,d) 

where (𝜎 = 𝑠, 𝑢) 

(𝑣1
𝜎𝑐 , … , 𝑣𝑁

𝜎𝑐)′ = 𝒗𝜎
𝑐 ,  (𝑣1

𝜎𝜏 , … , 𝑣𝑁
𝜎𝜏)′ = 𝒗𝜎

𝜏 , (𝒗𝜎
𝑐′, 𝒗𝜎

𝜏′)′ = 𝒗𝜎  

The solvability conditions (14) of the cascade control (13) 

become 

𝑟𝑑(𝑢, 𝑧) = 2 ↔ 𝛿𝑐𝑁𝜕𝜏𝛼(𝜏𝑁) ≠ 0,  stable 𝑍𝐷 (7a) (16a-b) 

𝑟𝑑(𝑢, 𝑦) = 1 ↔    𝛿 ≠ 0,         𝑚 ∈ [𝑚−, 𝑚+] ≔ 𝑀 (16c,d) 

While eq. (16c) (secondary control) is robustly met with 

sufficient heat exchange capability (𝛿 > 0), eq. (16a-b) 

(primary and secondary control) is not met because: (i) the 

nominal exit concentration 𝑐𝑁̅ = 𝑧̅ ≈ 0.006 is very small 
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(𝛿𝑐𝑁𝜕𝜏𝛼(𝜏𝑁) ≈ 0), and (ii) the dynamics of the staged model 

with fixed 𝑐𝑁 = 𝑧 ̅ is unstable [the 𝑍𝐷 (7a) are unstable]. 

Observe that the sensor location condition (16d) requires the 

fulfilment of the 𝑍𝐷 stability condition (16b).   

Thus, as it stands, the cascade control (13) problem: is not 

solvable due to the instability of its primary component (13a).  

4.2 Cascade control redesign 

Recall the primary controller (7) and rewrite it as 

𝒙̇𝜻
∗  = 𝒇𝜁(𝑧̅, 𝒙𝜁

∗ , 𝒅, 𝑢∗), 𝒙𝜁
∗ (0) = 𝒙𝜁

∗

0
; 𝑓𝑧(𝑧̅, 𝒙𝜁

∗ , 𝒅, 𝑢∗) = 0  

neglect the state accumulation (𝒙̇𝜻
∗ = 0), incorporate the 

temperature setpoint map (9c), replace (𝒙𝜁
∗ , 𝑢∗) by (𝒙𝜁

s , 𝑢𝑠), 

𝒇𝜁(𝑧̅, 𝒙𝜁
∗ , 𝒅, 𝑢∗) = 0,  𝑓𝑧(𝑧̅, 𝒙𝜁

∗ , 𝒅, 𝑢∗) = 0,  𝑦∗ = 𝒄𝜻𝒙𝜁
∗  (17a-c)  

and rewrite (17) as follows  

(𝒙𝜁
𝑠′, 𝑢𝑠)′ = 𝝈(𝒅, 𝑧)̅,      𝑦𝑠 = 𝒄𝜻𝒙𝜁

s = 𝒄𝜻𝜎𝒙𝜁
(𝒅, 𝑧)̅ ≔ 𝜙(𝒅, 𝑧̅)  

where 𝝈 = (𝝈𝒙𝜁
′ , 𝜎𝑢)′ denotes the unique solution for (𝒙𝜁

s , 𝑢𝑠) 

of (7a-b). Pick the last component  and  add a first order lag 

(18b) to compensate the effect of the no-accumulation 

assumption (𝒙̇𝜻
∗ = 0), and obtain the setpoint compensator 

𝑦𝑠 = 𝜙(𝒅, 𝑧)̅; 𝑦̇∗ = −𝑘∗(𝑦∗ − 𝑦𝑠), 𝑦∗(0) = 𝑦0
∗, 𝑘∗ ≈ 𝜆𝑦(18a,b) 

where 𝜆𝑦 is the characteristic time of the open-loop 

temperature response. The related solvability condition 

det 𝐽(𝒙𝜁
s , 𝒅, 𝑢𝑠) ≠ 0 (19) 

is the 𝑧-passivity, with 𝑟𝑑 = 0 (Khalil, 2002) for (𝑧̅, 𝑦𝑠), of 

the static component (18a). Since the dynamic component 

(18b) is passive, with 𝑟𝑑 = 1 for (𝑦𝑠 , 𝑦∗), the setpoint 

compensator (18) is passive with respect to (𝑧̅, 𝑦∗). 

The combination of the primary (18) and secondary (10) 

controllers yields the redesigned stable dynamic cascade 

controller 

𝑦̇∗ = −𝑘∗(𝑦∗ − 𝑦𝑠),   𝑦∗(0) = 𝑦0
∗;     𝑦𝑠 = 𝜙(𝒅, 𝑧)̅  (20a,b) 

𝑢 = 𝜇(𝒙, 𝒅, 𝑢, 𝑦∗, 𝑦𝑠) (20c) 

where 𝜇 denotes the unique solution for 𝑢 of the equation 

𝑓𝑚
𝜏 (𝒙, 𝒅, 𝑢) = −𝑘∗(𝑦∗ − 𝑦𝑠) − 𝑘𝑦(𝒄𝑦𝒙 − 𝑦∗)  

The corresponding solvability conditions are: 

𝑑𝑒𝑡 𝐽(𝒙𝜁
s , 𝒅, 𝑢𝑠) ≠ 0,     𝛿 ≠ 0,   𝑚 ∈ 𝑀 (21a-c) 

5. FF-OF CONTROLLER 

The combination of the passivated cascade controller (18) 

with a geometric observer, with second-order detectability 

innovation structure (Fernandez et al., 2012) because 

𝛽𝛼(𝜏) ≠ 0, yields the robust FF-OF controller 

𝑦̇∗ = −𝑘∗(𝑦∗ − 𝑦𝑠), 𝑦∗(0) = 𝑦0
∗; 𝑦𝑠 = 𝜙(𝒅, 𝑧)̅ (22a,b) 

𝒙̇ = 𝒇(𝒙, 𝒅, 𝑢) + 𝒈𝑦(𝒙, 𝑢)(𝑦 − 𝒄𝑦𝒙) + 𝒈𝜾(𝒙, 𝑢)𝜄 ̂ (22c) 

𝜄 ̂̇ = 𝜔𝑦
3(𝑦 − 𝒄𝑦𝒙),   𝜄(̂0) = 𝜄𝑜̂,               𝒙(0) = 𝒙𝑜 (22d) 

𝑢 = 𝜇(𝒙, 𝒅, 𝑢, 𝑦∗, 𝑦𝑠),        𝜁𝑦[1, 3],  𝜔𝑦 ∈ [5,10]𝜆𝑦 (22e) 

where 𝑑𝑖𝑚(𝑦∗, 𝒙′, 𝜄)̂′ = 𝑛 + 3 = 63,    𝑛 = 2𝑁 = 60 

𝒈𝑖(𝒙, 𝒅, 𝑢) = [𝟎′, 𝑶−1′(𝒙, 𝒅, 𝑢)𝒌𝑖 , 𝟎′]′,    𝑖 = 𝑦, 𝜄 

𝑶(𝒙, 𝒅, 𝑢) = 𝜕𝒙𝜄
𝝋(𝒙, 𝒅, 𝑢),   𝝋(𝒙, 𝒅, 𝑢) = [𝜏𝑚, 𝑓𝑚

𝜏 (𝒙, 𝒅, 𝑢)]′ 

𝒌𝑦 = (2𝜁𝑦 + 1)(𝜔𝑦 , 𝜔𝑦
2)′, 𝒌𝜄 = (0,1)′ 

𝒈𝑦 (or 𝒈𝜾) is the proportional (or integral) nonlinear gain, 𝜁𝑦  

(or 𝜔𝑦) is the damping factor (or characteristic frequency) of 

the output convergence dynamics. The related solvability 

conditions are: 

𝑑𝑒𝑡 𝐽(𝒙𝜁
s , 𝒅, 𝑢𝑠) ≠ 0;   𝛿 ≠ 0;     𝛽𝛼(𝜏) ≠ 0;    𝑚 ∈ 𝑀 (23a-d) 

The sensor location criteria (21c) for the secondary control 

(22e) coincides with the one for state estimation (22c-d) 

(Fernandez et al., 2012). As we shall see in Section 7, this in 

agreement criteria of previous control studies and industrial 

practice (Harris et al., 1980). 

However, with respect to our application-oriented design 

specification, the dynamic controller FF-OF controller (22) 

for the distributed tubular reactor (1) is too complex: highly 

nonlinear, interactive and made of 2𝑁 + 2 ODEs (62 for the 

case example). The tackling of this complexity obstacle is the 

subject of the next section. 

6. PI TEMPERATURE CONTROLLER WITH DYNAMIC 

FF SETPOINT COMPENSATION 

Here, the behavior of the staged model-based robust FF-OF 

controller (22) is recovered with a simplified controller built 

according to passivity and observability properties: a PI 

controller with antiwindup protection and FF dynamic 

setpoint compensation.  

6.1 Secondary controller redesign 

Let us recall the N-stage model (4) and express its 𝑦-output 

dynamics in the form (Gonzalez and Alvarez, 2005) 

𝑦̇ = −𝑎𝑢 + 𝜄;       𝜄 = 𝑓𝑚
𝜏 (𝒙, 𝒅, 𝑢) + 𝑎𝑢,       𝑎 ≈ 𝑎̅ (24a,b) 

𝑟𝑑(𝑢, 𝑦) = 𝑟𝑑(𝜄, 𝑦) = 1,     𝑎̅ = (𝜕𝑢𝑓𝑚
𝜏 )(𝒙, 𝒅̅, 𝑢̅) > 0 

𝑓𝑚
𝜏  is defined after (11), 𝜄 is an observable input, and (𝑢, 𝜄) 

satisfies the matching condition  (meaning robustness for 

control design) (Sepulchre, 2011). The elimination of the 

static nonlinear component (24b) in eq. (24) yields the 

simplified model 

𝑦̇ = −𝑎𝑢 + 𝜄,          𝑟𝑑(𝑢, 𝑦) = 𝑟𝑑(𝜄, 𝑦) = 1 (25a,b) 

for temperature control design, with unmeasured-observable 

input 𝜄. The enforcement of the tracking condition (9) upon 

this model yields the secondary controller (10) in the 𝜄-
dependent form (26a), and a convergent estimate 𝜄 ̂of input 𝜄 
of model (25) is given by the reduced-order observer (26b) 

with adjustable (up to measurement noise) exponential 

convergence rate 𝜔 (Gonzalez and Alvarez, 2005):  

𝑢 = [𝑘∗(𝑦∗ − 𝑦𝑠) + 𝑘(𝑦 − 𝑦∗ ) + 𝜄]/𝑎 (26a) 

𝜒̇ = −𝜔𝜒 − 𝜔(𝜔𝑦 − 𝑎𝑢),  𝜒(0) = 0,  𝜄 ̂ = 𝜒 + 𝜔𝑦 (26b) 

The combination of control (26a) (with 𝜄 = 𝜄)̂ with observer 

(26b) yields the dynamic temperature tracking controller  

𝜒̇ = −𝜔𝜒 − 𝜔(𝜔𝑦 − 𝑎𝑢),       𝜒(0) = 0 (27a) 

𝑢 = [𝑘∗(𝑦∗ − 𝑦𝑠) + 𝜔𝑦∗ + (𝑘 + 𝜔)(𝑦 − 𝑦∗) + 𝜒]/𝑎 (27b) 
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with one linear ODE, and similar behavior than the one 

(22c,e) of its detailed model-based counterpart (22) with 

2𝑁 + 2 ODEs. 

6.2 PI temperature controller with FF setpoint compensation 

The combination of the primary (22a-b) and redesigned 

secondary (27) control yields the simplified FF-OF control: 

𝑦̇∗ = −𝑘∗(𝑦∗ − 𝑦𝑠), 𝑦𝑠 = 𝜙(𝒅, 𝑧̅) (𝒅 -feedforward) (28a,b) 

𝜒̇ = −𝜔𝜒 − 𝜔(𝜔𝑦 − 𝑎𝑢),   𝜒(0) = 0 (𝑦-feedback) (28c) 

𝑢 = [𝑘∗(𝑦∗ − 𝑦𝑠) + 𝜔𝑦∗ + (𝑘 + 𝜔)(𝑦 − 𝑦∗ ) + 𝜒]/𝑎 (28d) 

with: (i) two linear ODEs, and (ii) and similar behavior than 

the one (22c,e) of its detailed model-based counterpart (22) 

with 2𝑁 + 3 ODEs (63 for case example).  This control has 

antiwindup protection because the 𝜒-dynamics (28c) runs 

regardless of control saturation.  

For applicability and comparison purposes, assume there is 

no saturation and express controller (28) in PI form 

𝑦̇∗ = −𝑘∗(𝑦∗ − 𝑦𝑠),              𝑦𝑠 = 𝜙(𝒅, 𝑧̅) (29a) 

𝑢𝑓 = 𝑢̅ + 𝑘∗(𝑦∗ − 𝑦𝑠),          𝑢 = 𝑢𝑓 + 𝜋(𝑦 − 𝑦∗) (29b) 

where 

𝜋(𝑒) = 𝜅[𝑒 + 𝓉−1 ∫ 𝑒 𝑑𝑡
𝑡

0
], 𝑒 = 𝑦 − 𝑦∗, 𝜅 = 𝑘/𝑎, 𝓉 = 1/𝜔 

and 𝜅 (or 𝓉) is the proportional gain (or reset time). This 

signifies that the proposed controller (28) is an upgraded 

version the conventional PI: 

𝑢 = 𝑢̅ + 𝜋(𝑦 − 𝑦∗) (30) 

temperature control employed in industrial reactors (Del 

Vecchio et al., 2005), with the upgrade consisting in: (i) 

conventional-like tuning guidelines coupled with closed-loop 

robust stability assessment, (ii) antiwindup protection, and 

(iii) load measurement-based FF dynamic setpoint 

compensation. 

7. CONTROL FUCNTIONING 

The FF-OF controller (28) is tested compared with the PI 

(30) with fixed set-point, for the case example (2) with 

𝑁 = 30-stage model (4). The objective is to regulate with 

robust closed-loop stability the exit concentration z ≈ z̅ =
0.006 of the open-loop unstable SS [c̅(s), τ̅(s)]4 (Fig. 2). 

7.1 Sensor location 

The slowest and unstable eigenvalues coincide λu = λs, 

implying that m = m− = m+). In Fig. 4 are plotted the 

entries of the temperature vector 𝒗𝑠
𝜏 associated to the 

eigenvector 𝒗𝑠, showing that: the measurement must be 

located at stage 𝑚 = 8 of the 𝑁 = 30-stage model (4), or 

equivalently at length 𝑠𝑚  ~ 0.25 of the distributed reactor 

(1). In Fig. 4 are also plotted the temperature concavity ∂𝑠𝑠𝜏 

of the distributed system (1), and the gradient Δ+𝜏𝑖 of the 

staged one (4), showing that: the measurement must be 

located at: (i) the maximum m of 𝑣i
𝑠𝜏 of the staged system 

(1), (ii) the maximum of the temperature gradient (∂𝑠𝜏 = 0) 

of the distributed model (1) before the hot spot [in agreement 

with previous studies and control practice (Bashir et al. 

1992), and (iii) at the stage of maximum temperature gradient 

(Δ2𝜏𝑖 ≈ 0) before the hot spot of the staged system (in 

agreement with sensor location criteria for multicomponent 

distillation columns (Porru et al., 2014).  

 

Fig 4. Temperature eigenvector 𝑣i
𝑠𝜏  (○), gradient Δ+𝜏𝑖 (□) 

sequences of the staged model (4) with 𝑁 = 30, concavity 

∂𝑠𝑠𝜏 (- -) of the distributed model (1), and sensor  location: 

𝑚 = 𝑚𝑎𝑥
1≤𝑖≤𝑁

(𝑣i
𝑠𝜏) = 8 in (4) ≅ 𝑠𝑚~ 0.25 in (1). 

Thus, the proposed eigenvector-based sensor location 

criterion: (i) constitute an advanced control version of the 

previous insight and testing-based ones employed in previous 

reactor studies, and (ii) interestingly, coincide with the ones 

employed in distillation column control. 

7.2 FF static component 

 

Fig.5. Static component 𝑦𝑠 = 𝜙(𝒅, 𝑧)̅ of the setpoint 

compensator: computed (—) with 𝑁 = 30 stages and fitted 

(••••) with eq. (31d).  

𝑦𝑠 = 𝜙(𝒅, 𝑧)̅ ≈ 𝜙̂(𝒅); 𝜙̂(𝒅) = 𝑓𝜙(𝜂); 𝜂 = 𝜃𝜏𝑒 (31a-c) 

𝑓𝜙(𝜂) = 𝑎2 + (𝑎1 − 𝑎2) [1 + exp[(𝜂 − 𝑎3) 𝑎4⁄ ]⁄  (31d) 

where: (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (1.026,1.32,0.985,0.019) 

The asymmetry of 𝜙 reflects the strong parametric sensitivity 

of the nominal steady-state: a + 5° feed temperature increase 

yields a ≈ + 30°  temperature setpoint increase.  

7.3 Control functioning 

The application of conventional-like tuning guidelines 

(Gonzalez and Alvarez, 2005) with simulated measurement 

noise yielded (after a few iterations) the following gains for 

control (26) (𝜆𝑦 ≈ 𝓆 ≈ 1: open-loop characteristic time) 

𝑘∗ = 𝜆𝑦,      𝑘 = 𝑛𝑦𝜆𝑦,     𝜔 = 𝑛𝜔𝑘,    𝑛𝑦 = 3,    𝑛𝜔 = 5 
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In Fig. 6 are presented the behaviors of the standard (with 

fixed setpoint) (29b) and proposed (with setpoint 

compensation) (28) controllers when the reactor is subjected 

to a sequence of step changes, showing that the proposed 

controller (28): (i) robustly stabilizes the reactor, and (ii) in 

comparison to its standard PI counterpart (29b), reduces by ≈ 

70% the upper variability bound of the exit concentration. 

 
Fig.6 Closed-loop behavior with PI temperature control and 

feed temperature step disturbances (a), with (••••) and 

without (—) setpoint compensation. 

8. CONCLUSIONS 

The problem of regulating with robust closed-loop stability 

the effluent concentration of an open-loop unstable tubular 

reactor has been addressed. Advanced control theory was 

applied: (i) to develop an 𝑁-stage model-based FF-OF robust 

stabilizing controller with a large number (2𝑁 + 3) of 

nonlinear ODEs, and (ii) then, to approximate its behavior 

with a considerably simpler application-oriented controller 

with only two linear ODEs. The simple controller amounted 

to an upgrade of the standard PI temperature controller 

employed in industrial practice, with the upgrade consisting 

in: (i) efficient tuning/retuning with antiwindup protection, 

and (ii) dynamic setpoint compensation driven in FF manner 

by the measured load disturbances. The FF compensator had 

a precomputed 𝑁-stage model-based nonlinear static 

component with an on-line linear first-order lag. It was 

demonstrated that the staged model approach offers a 

tractable means to address control and estimation problems in 

highly nonlinear tubular reactors. 
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