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Abstract: In this work, we propose a control-relevant multiple linear modeling approach for
simulated moving bed chromatography (SMBC) by linearizing the first principles model at
carefully chosen equilibrium points. Subsequently, sub-models to account for port switching for
each of the linear model are obtained. Model aggregation is done using Bayesian weighting to
generate multiple model predictions for the nonlinear dynamics of SMBC. The multiple model
approach is validated using simulations for cyclic steady state (CSS) of SMB as well as for a
transition between two optimal CSS points for separation of a glucose- fructose mixture.
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1. INTRODUCTION

Model predictive control (MPC) of SMB requires a simple
process model which describes the states and captures the
dynamics and switching of the inlet and outlet ports. The
first principles model of SMBC is typically a nonlinear
partial differential equation and its use in MPC will re-
quire an online solution of Nonlinear Program (NLP) in
a fraction of sampling period, which is computationally
demanding (Alamir et al., 2006; Erdem et al., 2004; Klatt
et al., 2002). In literature, linear modeling of SMBC has
been illustrated by Natarajan and Lee (2000) and Song
et al. (2006). An alternate approach consists of using a
multiple model strategy based on simpler approximate
control-relevant models, which when aggregated capture
both the switching behavior as well as nonlinear dynamics
and are suitable for model based control. Such control-
relevant models could be developed either from the first
principles models or directly identified from data. The mul-
tiple model approach is based on the “divide and conquer”
principle, that decomposes a nonlinear system into several
linear models to capture true nonlinear plant dynamics
(Du and Johansen, 2014; Murray-Smith and Johansen,
1997; Banerjee et al., 1997; Hariprasad et al., 2012). In
the present work, we propose a multiple modeling strategy
for SMBC, wherein the separation of a glucose/fructose
mixture is carried out. The first principles model of SMBC,
which consists of a set of bi-linear Partial Differential
Algebraic Equations is converted to an ODE-IVP and
linearized at various equilibrium points. These models are
further aggregated using a Bayesian weighting approach
to obtain a global linear model at each time instant.

The paper is organized as follows: Section 2 presents a brief
overview of the SMBC process and a summary of the first
principles model from the literature. Section 3 discusses
? Corresponding Author: bhartiya@che.iitb.ac.in (Sharad Bhar-
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generation of a bank of linear models and Bayesian method
for aggregation. Simulation results validating the multiple
model approach are presented in Section 4. Finally, con-
clusions are presented in Section 5.

2. MATHEMATICAL MODEL OF SMBC

SMBC process consists of multiple adsorbent-laden columns
which are connected in series in a circular manner as shown
in Fig. 1. Feed and desorbent streams continuously enter
the system and the extract and raffinate streams exit out.
A counter current movement of the solid bed is approxi-

Raffinate ( A+ (B)) 

Extract ( B+ (A)) Feed (A+B) 

Desorbent 

Direction of Fluid   
Flow 

Section 2 
 

Se
ctio

n
 3

 
 Se

ctio
n

 1
 

 

Section 4 
 

  

 3 

 2 

1 

 4 

Fig. 1. Schematic of 4 column SMBC unit

mated by sequentially switching the inlet and outlet ports.
Four port switches constitute one cycle of SMB operation
and after sufficient number of cycles, concentration profiles
inside the columns over a cycle become identical to those
observed in the previous cycle and a cyclic steady state
(CSS) is said to have been reached.

In order to synthesize multiple linear models of the SMB,
a first principles dynamic model of the continuous chro-
matographic process for the separation of glucose/fructose
from literature is used. We summarize the model equations
here but cite Rajendran et al. (2009); Kawajiri and Biegler
(2006) for details.
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Let cij , qij represent the concentration of the ith com-
ponent in the jth column in the liquid and solid phases
respectively, vj and Qj be the axial velocity and flow rates
respectively in the jth column, Di be the dispersion coef-
ficient for ith species and L be the length of the column.

Transport Model equations:

∂cij
∂t

+
(1− ε)

ε

dqij
dt

= −vj
∂cij
∂z

+Di
∂2cij
∂z2

(1)

∂qij
∂t

= ki
(
q∗ij − qij

)
; q∗ij = Kicij (2)

Initial and Boundary conditions

cij+1 (z, 0) = cij (z, t
∗) ; ci1 (z, 0) = ciNC (z, t∗) (3)

cij |z=0− = cij |z=0+ − Di

vjL

∂cij
∂z

|z=0+ ;
∂cij
∂z

∣∣∣∣
z=L

= 0 (4)

Node Balances

Q1 = Q4 +QD; cini1Q1 = couti4 Q4 (5)

Q2 = Q1 −QE ; cini2 = couti1 = cEi (6)

Q3 = Q2 +QF ; cini3Q3 = couti2 Q2 + cFi QF (7)

Q4 = Q3 −QR; c
in
i4 = couti3 = cRi (8)

Next, appropriately defined dimensionless variables are
introduced (see Rajendran et al. 2009 for details). Note
that since the states are multiplied by flow rates in Eqs.
5-8, the PDE represents a nonlinear model.

Glucose-fructose separation is considered as a test bed to
study multiple modeling approach of SMBC that corre-
sponds to an experimental setup of 1-1-1-1 column config-
uration as shown in Fig. 1, yielding NC = 4 and nc = 2.
Separation takes place on a strongly acid cationic resin
of gel type (Ca2+ form) on which fructose gets prefer-
entially adsorbed relative to glucose. Deionized water is
used as the desorbent. Fructose rich stream is drawn out
as extract, which is considered as the main product. Model
parameters corresponding to the SMBC and the glucose/
fructose separation are summarized in Table 1. We use
the method of orthogonal collocation on finite elements
(OCFE) with roots of the shifted legendre polynomial for
discretization of spatial finite elements to solve the PDE’s
in Eqs. (1)-(4) (Toumi et al., 2007). The spatial domain
is discretized with 12 finite elements per column and 5
internal collocation point per finite element. This results
in a total of 1160 states. This was found to be appropriate
by comparing with several discretization schemes to obtain
a set of ODEs of the form of Eq. (9) which is assumed as
plant. The model equations were solved using ode 23 in
MATLAB (R2007) on an Intel i7 machine.

Table 1. Parameters for Glucose/Fructose Sep-
aration

Parameter Values Parameter Values

dc (cm) 2.54 k (s�1) 0.1
L (cm) 40 ε 0.4
Kfru 0.5634 nc 2
Kglu 0.3401 cFglu, c

F
fru (g/l) 30

3. MULTIPLE MODELING OF SMBC: A BAYESIAN
APPROACH

This section deals with multiple model representation of
the SMBC given in Section 2. The following steps are
performed to obtain a global multiple model.

(1) Generation of control relevant models,
(2) Generation of “brother models” to account for the

four switching configurations of SMB,
(3) Aggregation of multiple linear models.

3.1 Generation of control relevant models

Eqs. (1)-(8) represent an index-1 PDAE model of SMBC
which performs the role of the true plant in this study. A
corresponding ODE-IVP is obtained by method of lines,
wherein only the spatial dimension is discretized using
OCFE (Toumi et al., 2007). This yields the following form:

Mẋ = f(x,u) (9)

where, x ∈ Rn represents the state vector, u ∈ Rm

represents the input vector, and M ∈ Rn×n is the mass
matrix. The state vector x includes the concentrations
at each collocation point for four columns of the SMBC.
Let cA, cB denote concentration of glucose and fructose
in liquid phase, respectively and let qA, qB denote their
respective concentrations in solid phase. Then the state
vector is represented by,

x =[c1A
T
. . . c4A

T
c1B

T
. . . c4B

T

q1A
T
. . . q4A

T
q1B

T
. . . q4B

T
]T (10)

where c1A, c
1
B , q

1
A, q

1
B represent spatially distributed con-

centration vectors in liquid and solid phases for respective
components for the first column of SMBC and similarly
for other columns. The input vector u = [Q1, . . . , Q4]

T

represents internal flow rates corresponding to the four
columns. In this study, a known constant switch time (t) is
assumed. To obtain multiple linear modes, the continuous
time nonlinear model Eq. (9) is transformed to a set of
linear models by Taylor series approximation at different
operating points. Let Mi represent the ith linear model
of the same order, obtained by linearizing at (xi

s,u
i
s) and

Nm be total number of linear models generated. Then the
linear model Mi evaluated at (xi

s,u
i
s) takes the form,

Mẋ = f(xi
s,u

i
s) +Ai∆x+Bi∆u (11)

where, ∆x = (x − xi
s), ∆u = (u − ui

s) Ai ∈ Rn×n, Bi ∈
Rn×m are Jacobian matrices with respect to state vector
(x) and input vector (u) respectively and f(.) is the affine
term. Since, the CSS points of SMBC operation do not
correspond to actual steady state equilibrium points of
Eq.(9), the affine term f(.) encountered in Eq. (11) along
CSS trajectory poses problems in terms of requirement for
large number of multiple models to track the operating
trajectory accurately. Hence, we choose equilibrium points
obtained without port switching and not states along the
CSS. This ensures that the multiple models are linear
without the affine term. Since each of these models do not
incorporate the effect of switching, we need to generate
linear models that account for the switching. These sub-
models are referred to as “brother models” and discussed
next.
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3.2 Generation of “brother models” to account for switching

The configurations of SMB due to switching need ad-
equate care while obtaining multiple models. The ini-
tial configuration corresponding to mode 1 is shown in
Fig. 1, with the feed entering between Sections 2 and
3. For an SMBC with four columns, there would be
four switching modes. For mode 1, linearization around
the CSS is performed to obtain lnear models. Let x1

s =

[c1A
T
c2A

T
c3A

T
c4A

T
c1B

T
c2B

T
c3B

T
c4B

T
q1A

T
q2A

T
q3A

T
q4A

T
q1B

T
q2B

T

q3B
T
q4B

T
]T and u1

s = [Q1 Q2 Q3 Q4]
T represent the steady

state vectors for state and input for mode 1, respec-
tively. A unique steady state input and state vector
results from solving the true plant model correspond-
ing to a specific performance objective as performed
in Vignesh et al. Since switching resets states, the
steady-state vectors for mode 2 is computed as x2

s =

[c4A
T
c1A

T
c2A

T
c3A

T
c4B

T
c1B

T
c2B

T
c3B

T
q4A

T
q1A

T
q2A

T
q3A

T
q4B

T
q1B

T

q2B
T
q3B

T
]T , u2

s = [Q4 Q1 Q2 Q3]
T and are similarly com-

puted for the other modes as well. The SMB model Eqs.
(1)-(8) are further linearized at these steady-states to
obtain a bank of models as shown in Fig. 2. This completes
a cycle of SMB operation and the result is a set of four
“brother models” (due to four columns here) for each
model Mi generated at equilibrium point, which forms the
basis for future prediction of SMB plant. Let Mi model’s
jth “brother model” Mi

j dynamics be represented by,

Mẋi
j = Ai

j∆xi
j +Bi

j∆u, j ∈ S = {1, 2, 3, 4} (12)

Let σ(t) be an indicator function,

R+ → S : σ(t) = j (13)

which identifies the switching mode of SMBC. Then,
Mi model dynamics considering the “brother models”
corresponding to the four switching modes of the SMBC
can be represented as

Mẋi = Ai
σ(t)∆xi +Bi

σ(t)∆u (14)

“Brother models” (see Fig. 2) represent a model corre-
sponding to a single equilibrium point (xi

s,u
i
s) that is

shifted in accordance with the switching modes of SMB
operation, namely, {1, 2, 3, 4} respectively. These “brother
models” are distinguished by rearranged entries of Jaco-
bian matrices corresponding to these shifted steady-state
vectors. However, in this work all the “brother models”
generated from an equilibrium point are considered as part
of a single model. The same process is repeated for a new
equilibrium point to obtain a new set of “brother models”.

3.3 Aggregation of multiple linear models using Bayesian
strategy

In conventional Bayesian weighting strategy, error between
true plant and one-step ahead predictions of multiple
models are used to generate the weights for aggregation.
The aggregated multiple model is then used for long
range predictions. But for systems which exhibit periodic
evolution in state dynamics, weights obtained using one-
step ahead predictions do not necessarily manifest in good
long range predictions. Hence, for SMB, a system which
exhibits periodic dynamics, a thorough analysis of the
periodicity should be considered in order to design a
successful weighting strategy. It was observed that at CSS,
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Fig. 2. Multiple models generation by linearization

the state (concentration) profiles repeat themselves in a
one-period regime as shown in Fig. 3 with a period p.
Hence we propose the notion of Bayesian weighting based
on one-period prediction and use one-period prior state
information, x(k − p), with reference to the current state
information, x(k), as initial condition in order to predict
one-period ahead state, x(k + p).

In the absence of full state measurement, an observer based
aggregation of multiple models using Bayesian strategy to
evaluate the weighted model is illustrated in Fig. 4. The
approach integrates two Bayesian weight calculations each
with specific functionalities:

Bayesian weight calculator 1: To predict x̂(k−p|k−p−
1), in order to estimate complete states from k−p+1, . . . , k
leading to prior period profile, the steps are indicated
below:

• Individually simulate the linear models Mi one-step
ahead; i = 1, . . . , Nm

• Compute the innovation vector for each model Mi

using plant measurement at k − p, as

ei(k − p) = y(k − p)− ŷi(k − p|k − p− 1) (15)

• Compute the posterior probability of the ith linear
modelMi which is calculated as follows (Nandola and
Bhartiya, 2008),

Pri,k−p(e) =
exp(− 1

2e
T
i,k−pKei,k−p)Pri,k−p−1(e)∑Nm

j=1(−
1
2e

T
j,k−pKej,k−p)Prj,k−p−1(e)

(16)
where Pri,k−p−1(e) is the prior probability

• Calculate the weights wi corresponding to each model
Mi given by,

wi,k−p =
Pri,k−p(e)∑Nm

l=1 Prl,k−p(e)
(17)

• Then the estimated state at k − p is obtained as:

x̂(k − p|k − p− 1) =
∑Nm

1 wi,k−px̂i(k − p|k − p− 1).
The states corresponding to the measurements are
updated directly.

Bayesian weight calculator 2: To predict one-period
ahead x̂(k + p|k) from the current state x̂(k|k − p) (refer
Fig. 3), the steps are indicated below:
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• Obtain x̂i(k|k− p) by simulating the models individ-
uals using estimated states (x̂(k − p|k − p− 1)) from
Bayesian weight calculator 1

• Compute the innovation vector for each model Mi

using plant measurement at k, as

Ei(k) = y(k)− ŷi(k|k − p) (18)

• Compute the posterior probability Pri,k(E) using the
Eq. (16) and weights Wi,k using Eq. (17)

• Obtain the global model for the kth instant by,

Mglobal
k =

Nm∑
i=1

(Wi,k)M
i, where i = 1, . . . , Nm (19)

Mglobal
k provides one-period ahead prediction.

S
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Fig. 3. One period ahead prediction
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Fig. 4. Bayesian weighting with multiple models

K is a diagonal matrix and acts as a tuning parameter. In
light of Bayes’ rule, K can be interpreted as the covariance
of the likelihood and is typically chosen to be diagonal.
Thus, higher the values of the elements of K, the rejection
of models with larger residuals is more likely. The user-
defined K allows strategies ranging from a winner-take-
all approach (large K) to a non-discriminating averaging
approach (small K).

In Bayesian aggregation, the weights of poorly performing
models are small but not zero, thereby contributing to the
overall model composition. This “excessive” competition
from “unnecessary” models deteriorates the composite

model performance, which motivates using a parsimonious
set of models.

4. SIMULATION RESULTS

In this section, we validate the performance of the multiple
models presented in Section 3 based on its (1) cyclic steady
state performance (2) performance during transition oper-
ation from maximum purity to maximum throughput.

4.1 CSS Performance: multiple model validation

Several researchers have presented the optimal CSS oper-
ation of SMBC (Zhang et al., 2002; Kawajiri and Biegler,
2006). Here we report validation of multiple models per-
formance using the optimal CSS profile for three different
fundamental goals:

• Maximum throughput at CSS: Referring to Fig.
1, throughput is defined as

QF = Q3 −Q2 (20)

• Maximum average extract purity at CSS: In the
maximal fructose purity mode of operation, the purity
of fructose in the extract averaged over a switch
period is maximised.

PurEx =

t∗∫
0

cFru,Ex(t) dt

t∗∫
0

cGlu,Ex(t) dt+
t∗∫
0

cFru,Ex(t) dt

(21)

Table 2. Optimal internal flow rates obtained
from CSS optimization case studies

Parameter
(ml/min)

Maximum
throughput

Maximum
Purity

Maximum
Recovery

Q1 43.23 43.23 43.23
Q2 32.89 35 33.90
Q3 37.17 36 34.90
Q4 29.34 28.73 30.03

Table 2 presents the optimal solution for the above 3
cases using the simultaneous approach for optimization
presented in Kawajiri and Biegler (2006) and Toumi et al.
(2007). For further details regarding the cyclic steady state
optimization problem formulation and results, the reader
is referred to Vignesh et al.. The results of the optimization
problem form the basis for performance validation of
multiple models at CSS operation.

The weighted multiple model as discussed in Section 3
is used to predict three operational modes corresponding
to: Maximum throughput at CSS and Maximum extract
purity at CSS. Here, we assume that full-state information
pertaining to 1160 true plant states are available. The one-
period ahead predictions based on the three linear models
individually and the estimation error (Ei) are computed by
comparing the true plant and predicted state information.
Calculated error (Ei) with respect to individual model
prediction is fed to Bayesian weight calculator to find the
weighted model. This weighted model is used to predict 1-
period ahead, which in turn corresponds to 10-step ahead
prediction as the step size is 0.1 times the normalized time.
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The errors and weights calculated at time instant k are
used to evaluate weighted model to perform prediction at
(k + 10)th time instant. These results are shown in Fig.
5, where Fig. 5a, 5b and 5c represent CSS corresponding
to maximum throughput, maximum purity and maximum
recovery, respectively. It can be seen from Fig. 5 that in
each steady state, one linear model behaves very well, but
other models perform poorly indicating that a multiple
model would perform adequately in all three cases. Thus, a
weighted multiple model based on the error from different
models can represent the SMB operation globally.
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Fig. 5. Multiple modeling performance validation

4.2 Optimal transition between maximum purity CSS to
maximum throughput CSS: Multiple model performance
validation

For flexible operation of SMB, it is imperative that the
same process unit be able to satisfy varied performance
objectives. This necessitates transiting from one optimal
operating point to another. The transition that we con-
sider here is from maximum purity CSS to maximum
throughput CSS. This transition is analogous to servo
control, where the objective is to steer the plant from one
operating point to another. In this regard, we validate the
quantitative performance of multiple model approach to
be viable for applications that need long range predictions
such as MPC.

Fig. 6 shows the comparison of multiple model perfor-
mance with evolution of true plant instantaneous extract
concentration (measured variable). During this transition
case study, we assume that only outlet extract and raffi-
nate concentrations (refer to Fig. 1) are measured, which
corresponds to only 4 out of 1160 states. The observer
initial condition for Bayesian weight calculator 1 (refer to
Fig. 4) is given as a 5% perturbation of the true plant
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Fig. 6. Multiple modeling performance validation of mea-
sured state: extract concentration

initial condition. Bayesian weight calculator 1 provides the
initial condition update (x̂(k − p|k − p− 1)) for Bayesian
weight calculator 2 which in turn provides the weights
(Wi) for aggregating the single models. Therefore, the
prediction using the weighted multiple model starts from
(2p + 1) normalized time instant as indicated in Fig. 6.
Initially, the response of the aggregated multiple model
is not in complete agreement with plant dynamics for a
measured state due to initial condition-mismatch. Subse-
quently, the plant measurement refines the observer states
and the multiple model dynamics come in close agreement
with true plant transition dynamics. Another reason for
this discrepancy is attributed to the time needed for the
prediction to capture the rapidly evolving state dynamics.
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Fig. 7. Multiple modeling performance validation of un-
measured state (323rd state of total 1160 states)

In addition, we validate the prediction capability of an
unmeasured state using the aggregated multiple models
and represent it in Fig. 7. It can be seen that the ag-
gregated multiple model is able to predict closely its true
state dynamics, after an initial offset. To show the superior
performance of the aggregated multiple model with single
models, 2-Norm prediction error is computed and plotted
in Fig. 9. It can be seen that aggregated multiple model
error decreases as the dynamics transit from a maximum
purity CSS to a maximum throughput CSS. The error
of the aggregated multiple model closely follows the best
single model prediction at any given instant and an im-
portant point to be observed is the adaptation of the
multiple model to align itself with the new CSS (maximum
throughput CSS), that can be seen from Fig. 9 around
normalized time = 11. The input profile for the transition
study adopted for simulation is shown in Fig. 8. To quan-
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Fig. 8. Optimal Transition Inputs used for validation

tify the performance of the multiple model, we report the
RMSE computed for the entire state dimension.

Table 3. RMSE for 1-period ahead prediction

Model Model 1 Model 2 Model 3 Weighted model

K = 10I4 K = 25I4 K = 50I4
RMSE 75.71 82.45 94.95 68.80 69.01 69.16

Table 3 reports performance of multiple models for differ-
ent values of K. It was observed that with K = 10I4, the
aggregated weighted model converged to the least RMSE
value as compared to individual linear models.
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Fig. 9. Error comparison for single versus multiple models

5. CONCLUSIONS

In this work, we propose a multiple model approach as
a control relevant model for SMBC. A key challenge was
to address the switching nature of SMBC in the multiple
linear models strategy.The simulation results confirm the
superior performance of multiple model approach over
single linear models. Such an approach will prove amenable
for implementing Model Predictive Control (MPC) for
faster online computation.
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