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Abstract: Partial least squares(PLS) regression has been widely used to capture the relation-
ship between inputs and outputs in static system modeling. Several dynamic PLS algorithms
were proposed to capture the characteristic of dynamic systems. However, none of these
algorithms provides an explicit description for dynamic inner model and outer model. In this
paper, a dynamic inner PLS is proposed for dynamic system modelling. The proposed algorithm
gives explicit dynamic inner model and makes inner model and outer model consistent at the
same time. Several examples are given to show the effectiveness of the proposed algorithm.
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1. INTRODUCTION

Since the work of Wold et al. (1984), partial least
squares(PLS) has been widely applied in prediction(Kaspar
and Ray (1993), Dayal and MacGregor (1997), Pan
et al. (2013)) and process monitoring(Wise and Gallagher
(1996), MacGregor et al. (1994), Zhou et al. (2010)) as an
effective dimension reduction method. The idea of PLS is
to extract latent variables from inputs and outputs such
that the covariance between latent variables is maximized.
However, only static relationships are considered in tradi-
tional PLS. In the case that dynamic relationships exist
between inputs and outputs, traditional PLS will leave
a large amount of covariance unmodeled. This reduces
the effectiveness of PLS and makes it even unsuitable for
dynamic system modeling.

Several modified PLS algorithms have been proposed to
deal with dynamic systems. A straightforward method
was proposed by Qin and McAvoy (1996), where a cer-
tain number of lagged inputs and outputs are included
in the augmented input matrix. Nonlinear finite impulse
response(NFIR) inner models are built between scores
of inputs and outputs after outer models converge. The
disadvantage of this method is that it doesn’t give explicit
representation of the dynamic relationship. The augment-
ed loading matrix makes it difficult to interpret the model
and explore the underlying data structures. Also, the di-
mension of the loading vector increases with the number
of lags, which will increase the computational complexity.

Kaspar and Ray (1993) proposed a modified PLS modeling
algorithm. It provides a compact representation: no lagged
variables are included in the outer model. Prior dynamic
knowledge was used to design filters such that dynamic
components in the inputs are removed. A dynamic inner
model is built between input scores and output scores after

a static model is built between filtered inputs and out-
puts. Lakshminarayanan et al. (1997) proposed a similar
method by building dynamic inner relationship between
inputs scores and output scores. The disadvantage of both
methods is that dynamic inner model is inconsistent with
static outer model.

Li et al. (2011) proposed a dynamic PLS method by
utilizing a weighted combination of lagged input data as
the input to the algorithm. An inner model is built between
output scores and a weighted combination of lagged input
scores. This gives a compact inner and outer model.
However, the inner model is not explicit and difficult to
interpret.

In this paper, a dynamic inner PLS (DiPLS) algorithm is
proposed. The proposed algorithm provides explicit inner
model and outer model. In addition, the inner model
and outer model this algorithm gives are consistent. The
explicit and consistent representation makes it easy to
interpret the results.

The remaining sections of the paper is organized as fol-
lows. Section 2 reviews the traditional algorithm. Section
3 presents the proposed DiPLS algorithm. Section 4 dis-
cusses several examples to show the effectiveness of the
algorithm. Section 5 gives conclusions and discussions.

2. PARTIAL LEAST SQUARES

PLS is first proposed by Wold et al. (1984) to perform
regression with interrelated input variables, which is com-
mon for routine operation data, to provide a way to trade
off between the model prediction variance and bias. PLS
extracts latent variables from inputs and outputs such
that the covariance between a pair of latent variables is
maximized. First, loading vectors for inputs and outputs
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are used to generate the latent variables and are calculat-
ed to maximize the covariance of latent variables. Then
a linear inner model is built between input scores and
output scores. The input scores are used to deflate the
input matrix, while the estimated output scores calculated
from the inner linear model are used to deflate the output
matrix.

Consider the input matrix X and output matrix Y, the
objective of PLS is

max qTYTXw

s.t. ‖w‖ = 1, ‖q‖ = 1
(1)

where w and q are input and output weights, respectively.
The solution to this optimization problem is

XTYYTXw = λww

YTXXTYq = λqq

(2)

which indicates λw and λq are eigenvalues and w and
q are eigenvectors of corresponding matrices. After the
weighting vectors w and q are obtained, the input latent
score vector t and the output latent score vector u can
be calculated as t = Xw, and u = Yq. The process that
builds the relationship between the latent score vectors
and the corresponding observations is called outer mod-
eling. After the outer model is obtained, the inner model
can be built between the latent scores u and t as follows

u = bt + r. (3)

Deflate X and Y

X := X− tpT . (4)

Y := Y − btqT . (5)

Iterate this process until enough factors are extracted.
Detail algorithm for PLS can be found in Höskuldsson
(1988) and Geladi and Kowalski (1986).

It is clear from the objective and procedure of PLS that
only static relations in the input and output are extracted
by PLS. In the case that dynamic relationships exist be-
tween the input and output data, traditional PLS will leave
the dynamics unmodeled. This restricts the applicability of
PLS and makes it unsuitable for dynamic data modeling.
To build dynamic PLS(DPLS) models, a straightforward
approach is to extend the input matrix with time-lagged
inputs, as proposed in Qin and McAvoy (1996) in a non-
linear dynamic PLS scheme. While this DPLS approach
is reasonable, it is difficult to interpret the extracted la-
tent factors and the dynamic relationship tends to have
excessive parameters. An alternative approach proposed
by Kaspar and Ray (1993) and Lakshminarayanan et al.
(1997) keeps the outer model the same as in static PLS,
but builds a dynamic inner model between u and t. This
approach is inconsistent between the outer model treat-
ment and inner model treatment, as the statically extract-
ed latent scores u and t are forced to have a dynamic
relation in the inner model. In the extreme case that u and
t are statically uncorrelated but dynamically correlated,
this approach fails.

To build a dynamic PLS model with consistent inner and
outer relation, both the inner model and outer model

should aim to extract a dynamic inner relation such as

uk = β0tk + β1tk−1 + · · ·+ βstk−s + rk

with the latent variables related to data as follows

uk = yTk q
tk = xTkw

where xk and yk are the input and output vectors at time
k. For each factor, the inner model prediction should be

ûk = xTkwβ0 + xTk−1wβ1 + · · ·+ xTk−swβs
= [xTk xTk−1 · · ·xTk−s](β ⊗w)

where β = (β0 β1 · · ·βs)T and β ⊗ w is the kronecker
product. The outer model that is consistent with the above
inner dynamic model should maximize the covariance
between uk and ûk, that is, to maximize

1

N

N+s∑
k=s

qTyk[xTk xTk−1 · · ·xTk−s](β ⊗w) (6)

This objective leads to the dynamic inner PLS (DiPLS)
algorighm to be derived in the next section.

3. DYNAMIC INNER PLS ALGORITHM

3.1 Objective

Let xk and yk be the input and output vectors at time
k, k = 0, 1, ...N + s, and N + s + 1 samples of input and
output are collected in the following matrices

X = [x0 x1 · · · xs+N ]T

Y = [y0 y1 · · · ys+N ]T

Define
Xi = [xi xi+1 · · · xi+N ]T

Zs = [Xs Xs−1 · · ·X0]

Ys = [ys ys+1 · · · ys+N ]T

The objective of DiPLS that is consistent with (6) should
be formulated as

max qTYT
s Zs(β ⊗w)

s.t. ‖w‖ = 1, ‖q‖ = 1, ‖β‖ = 1
(7)

where s is the dynamic order of the model. The dimension
of w is the same as the number of input variables, which
gives an explicit outer model. If s = 0, Ys is related to Xs

only, and DiPLS is reduced to traditional PLS.

3.2 Outer modeling

Lagrange multipliers are used to solve this optimization in
(7). Define

J =qTYT
s Zs(β ⊗w) +

1

2
λq(1− qTq)

+
1

2
λβ(1− βTβ) +

1

2
λw(1−wTw)

(8)

where
(β ⊗w) = (β ⊗ I)w = (I⊗w)β

Taking derivatives with respective to q,w,β and setting
the results to zero lead to:
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∂J

∂q
= YT

s Zs(β ⊗w)− λqq = 0

∂J

∂w
= (β ⊗ I)TZTsYsq− λww = 0

∂J

∂β
= (I⊗w)TZTsYsq− λββ = 0

(9)

Therefore

λq = qTYT
s Zs(β ⊗w) = qTYT

s Zs(β ⊗ I)w

= λw = λβ

This implies that λq, λw, λβ are equal to the maximum
value of J . However, from (9) we can see that the vectors
q,w,β cannot be solved for explicitly. Therefore, the fol-
lowing iterative method can be used to solve the problem.

(1) Initialize w,q,β to unit vectors

(2) Calculate w,q,β by iterating the following three re-
lations until convergence.

q = YT
s Zs(β ⊗w); q := q/ ‖q‖

w = (β ⊗ I)TZTsYsq; w := w/ ‖w‖

β = (I⊗w)TZTsYsq; β := β/ ‖β‖

(3) Calculate V = qTYT
s Zs(β ⊗w)

where V is the value of the objective function from (7).
Sometimes, the iteration converges to a local optimum.
This will lead to a smaller V . To avoid local optimum,
initialize the vectors w,q,β in randomly Step (1) and
perform multiple trials. Take the results w,q,β that
maximize value of V .

3.3 Inner modeling

After the outer model is obtained, the scores of input and
output can be calculated as

t = [t0 t1 · · · ts+N ]T = Xw
u = [u0 u1 · · ·us+N ]T = Yq (10)

Similar to Xi and Ys define ti and us as follows

ti = [ti ti+1 · · · ti+N ]T

us = [us us+1 · · · us+N ]T

It is obvious that
ti = Xiw; i = 0, 1, · · · , s
us = Ysq;

(11)

In dynamic PLS, a dynamic relationship is built between
inputs and outputs. Therefore, input scores and output
scores calculated from the outer model are maximally
dynamically related. Dynamic inner models should be
built to capture these dynamic variations.

The inner model describing the dynamic relationship be-
tween input scores and output scores should be built
between us and ts, ts−1, · · · t0 as

us = α0ts + α1ts−1 + · · ·+ αst0 + rs (12)

where rs is the residual of the regression. Ordinary least
squares can be applied to solve α0, α1, · · · , αs. After
α’s are solved, (12) can be used to predict us from
ts, ts−1, · · · , t0, where

ûs = α0ts + α1ts−1 + · · ·+ αst0 (13)

ûs can be used further to deflate Ys.

Remark 1. An AR model can be built for ts as long as ts
is auto-correlated.

ts = ϕ1ts−1 + ϕ2ts−2 + · · ·+ ϕst0 + et

This AR model can be used to predict ts from past
samples, and subsequently be used to predict X.

3.4 Deflation

After t, û are calculated, the loading vector q for X can
be derived as

p = XT t/tT t

Delation can be performed as

X := X− tpT

Ys := Ys − ûsq
T

(14)

After the residuals of X and Y are calculated, subsequent
factors can be obtained from these residuals by repeating
the same procedure.

3.5 Procedure of DiPLS modeling

In the DiPLS outer modeling, the kronecker expressions
can be simplified using (11) as follows.

w = (β ⊗ I)TZsYsq =

s∑
i=0

βiX
T
s−iYsq =

s∑
i=0

βiX
T
s−ius

q = YT
s Zs(β ⊗w) = YT

s

s∑
i=0

βiXs−iw = YT
s

s∑
i=0

βits−i

β = [ts ts−1 · · · t0]Tus

The procedure of DiPLS modeling can be summarized in
Table 1.

Since the procedure of proposed DiPLS is similar to
the procedure of PLS, the structure of DiPLS is sim-
ilar to PLS as well. Let W = [w1 w2 · · ·wl], P =
[p1 p2 · · ·pl], Q = [q1 q2 · · ·ql], Q = [q1 q2 · · ·ql],
T = [Xw1 Xw2 · · ·Xwl], where l is the number of latent
variables. Let R = W(PTW)−1, then we have

T = XR (15)

Ûs can be calculated from T such that

Ŷ = ÛsQ
T (16)

where Ŷ is the output predicted from X.

Therefore, once samples xk up to time k are measured, tk
can be calculated, and yk can be predicted.

Remark 2. In the case that it is desirable to include auto-
regression of the output, the objective of DiPLS can be
modified as
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Table 1. DiPLS Algorithm

1. Scale X and Y to zero-mean and unit-variance. Initialize β
with [1, 0, · · · , 0]′, and us as some column of Ys.

2. Outer modeling. Iterate the following relations until conver-
gence achieved.

w =

s∑
i=0

βiX
T
s−ius;w := w/ ‖w‖

t = Xw and form ts−i from t for i = 0, 1, · · · , s

q = YT
s

s∑
i=0

βits−i;q := q/ ‖q‖

us = Ysq

β = [ts ts−1 · · · t0]Tus;β := β/ ‖β‖

3. Inner model building. Build a linear model between
ts, ts−1, · · · , t0 and us

us = α0ts + α1ts−1 + · · ·+ αst0 + rs

Calculate predicted ûs

ûs = α0ts + α1ts−1 + · · ·+ αst0

4. Deflation. Deflate X and Y as

X := X− tpT

Ys := Ys − ûqT

5. Repeat to Step 2 until enough latent variables are extracted.

max qT (γ0Y
T
s + γ1Y

T
s−1 + · · ·+ γfY

T
s−f )

∗(β0Xs + β1Xs−1 + · · ·+ βsX0)w

s.t. ‖w‖ = 1, ‖q‖ = 1, ‖β‖ = 1, ‖γ‖ = 1

(17)

where γ’s are the weights of different lag of Y, f is the
order of the output. After (17) is solved, inner model can
be built as an ARX model of us

us = ϕ0us−1 + · · ·+ ϕfus−f

+α0ts + · · ·+ αst0 + rs
(18)

Then the prediction of output score ûs can be calculated
and be used to predict the output.

3.6 Determination of model parameters

In DiPLS modeling, there are two parameters to be deter-
mined. One is the lag number s, the other one is the num-
ber of latent variables. The lag number s is also the impulse
response order of the data. From the simulation results in
Section 4, we can see the prediction is not sensitive to s.
When more lags than the dynamic order of the system are
included in augmented input, DiPLS tends to diminish the
coefficients corresponding to the excess lags. Compared to
the number of lags, the number of latent variables usually
has more impact on the prediction results. Therefore, the
number of latent variables need to be determined carefully.
Cross-validation is a popular method used in PLS to select
the number of latent variables, aiming to minimize the
prediction error. Similar procedures can be applied to
DiPLS to obtain best prediction results.

4. CASE STUDIES ON SIMULATION DATA

In this section, three sets of data are simulated, each
corresponds to a scenario. In Scenario 1, both input X
and Y are generated from a static model. In Scenario
2, input X is generated from a dynamic model, and
output Y is generated from a static model. In Scenario
3, input X is generated from a static model, and output
Y is generated from a dynamic model. The advantages of
DiPLS over traditional PLS is demonstrated in these three
basic examples.

4.1 Scenario 1

X and Y are generated from static process.

xk = Ptk + ek
yk = Cxk + vk

P =


0.5765 0.2856 0.1614
0.3660 0.0458 0.9060
0.5889 0.4645 0.9942
0.3572 0.3450 0.7396
0.4036 0.6851 0.2262

, C =


0.7451
0.4928
0.7320
0.4738
0.5652


T

where ek ∈ R5 ∼ N([0, 0.52]), and vk ∈ R ∼ N([0, 0.52]),
tk ∈ R3 ∼ N([0, 22]).

1000 data points are generated. First 500 data points are
used as training dataset to train the model, the next 400
data points are used as development dataset to select the
parameter, the last 100 data points are used as test dataset
to evaluate the prediction result. The optimal parameters
determined by cross validation is s = 0 and the number
of components is 3. s = 0 indicates that DiPLS reduces to
traditional PLS, which is consistent with the static model
of inputs and outputs.

0 10 20 30 40 50 60 70 80 90 100

PLS Preidction
Y

0 10 20 30 40 50 60 70 80 90 100

DiPLS Preidction
Y

Fig. 1. Prediction result of DiPLS and PLS for Scenario1

Fig. 1 shows the prediction results of DiPLS and PLS, from
which we can see DiPLS gives the same result as PLS. This
is consistent with our analysis. If we increase s to 1, the
values of β0, β1, which are the weights of time lag 0 and
1, are listed in Table 2. We can tell from the table that
β2
0 >> β2

1 for each iteration, which implies the input data
with lag 1 has little impact in the outer model building.
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Table 2. β0, β1 for each factor in Scenario1

Value factor 1 factor 2 factor 3

β0 0.9998 -0.9590 -0.9978

β1 -0.217 0.2833 0.0670

DiPLS reduces to PLS even though excess time lags are
included.

4.2 Scenario 2

X is generated from dynamic process, Y is generated from
static process.

tk = A1tk−1 + A2tk−2 + fk
xk = Ptk + ek
yk = Cxk + vk

where fk ∈ R3 ∼ N([0, 0.52]), P and C are the same as
Scenario 1.

A1 =

(
0.6767 0.5809 0.9315
1.2812 −0.5343 −1.6000
−1.5083 0.9991 0.7529

)

A2 =

(
0.7155 −0.0652 1.1192
1.1132 −0.5371 −0.1691
−0.5571 −1.0748 0.2330

)
Same number of data points are used as training dataset,
development dataset, testing dataset. The optimal param-
eters determined by cross validation is s = 0 and the
number of factors is 3. The reason that s = 0 is that
DiPLS considers covariance between the input and output,
not covariance of input or output. Therefore, s is only
determined by the relationship between input and output.
In this scenario, there’s a static model between X and
Y. Therefore, s = 0. The prediction results of DiPLS and
PLS are shown in Fig.2 From the figure, we can see DiPLS

0 10 20 30 40 50 60 70 80 90 100

PLS Preidction
Y

0 10 20 30 40 50 60 70 80 90 100

DiPLS Preidction
Y

Fig. 2. Prediction result of DiPLS and PLS for Scenario2

gives the same result as PLS, which is consistent with the
analysis. If s is increased to 4, the values of β0, β1, β2, β3
are listed in Table 3. We can tell from the table that β0
is much larger than the square of other β’s, therefore, the
input data with no lag dominates the DiPLS result. DiPLS
performs like a PLS model even though excess lagged input
data are included.

Table 3. β0, β1,β3,β4 for each factor in Scenari-
o2

Value factor 1 factor 2 factor 3

β0 0.9940 0.9156 -0.9060

β1 0.0821 0.3233 -0.1166
β2 0.0691 0.0690 0.3554
β3 0.0197 -0.2290 0.1980

Table 4. β0, β1,β3,β4 for each factor in Scenari-
o3

Value factor 1 factor 2 factor 3 factor 4

β0 0.4251 0.1102 0.4528 0.9514

β1 0.9009 0.-0.9850 0.8808 0.2832
β2 -0.0707 0.1069 -0.1062 -0.0694
β3 -0.0517 -0.0789 -0.0888 -0.0996

4.3 Scenario 3

X is generated from static process, Y is generated from
dynamic process.

xk = Ptk + ek
yk = Cxk + C2xk−1 + vk

where P,C are the same as Scenario 1.

C2 = ( 1.9939 0.7728 1.0146 1.1563 1.2307 )

Same number of data points are used as training dataset,
development dataset, testing dataset. The optimal param-
eters determined by cross validation is s = 1 and the
number of component is 4. Since yk is related to both xk
and xk−1, s = 1 is consistent with the dynamic structure
between X and Y. The prediction results of DiPLS and
PLS are shown in Fig.3. From Fig.3, we can see when

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3
PLS Preidction
Y

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3
DiPLS Preidction
Y

Fig. 3. Prediction result of DiPLS and PLS for Scenario3

there are dynamics between inputs and outputs, DiPLS
gives much better results than PLS. If s is increased to 4,
the values of β0, β1, β2, β3 are listed in Table 4

We can see the squares of β2, β3 are much smaller than
β0, β1 in general. Therefore, the input data with a lag of
2 and a lag of 3 will have little impact on the result. The
DiPLS models built with s = 1 and s = 3 are similar.
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Table 5. MSE of DiPLS and PLS for TEP
XMEAS(38)

DiPLS PLS

MSE 0.5503 0.8817

5. CASE STUDY ON THE TENNESSEE EASTMAN
PROCESS

The Tennessee Eastman Process(TEP) was developed to
provide a realistic simulation of an industrial process for
the evaluation of monitoring methods (Downs and Vogel
(1993)). The process contains 12 manipulated variables
and 41 measured variables. The measured variables con-
tain 22 process variables sampled every 3 minutes, and 19
quality variables sampled with dead time and time delays.
In this case study, 22 process variables XMEAS(1-22) and
11 manipulated variables XMV(1-11) are used as input,
XMEAS(38), which is the calculated data from the analyz-
er, is used as output. Sampling frequency for XMEAS(38)
is 0.25h and dead time is 0.25h. 300 data points are used
as the training dataset, 100 data points are used as the
development dataset, and 960 data points are used as the
testing dataset. Data are pre-shifted to compensate the
0.25h delay. The optimal parameters determined by cross
validation is s = 5 and the number of component is 3. The
prediction results of DiPLS and PLS is shown in Fig.4

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

3

4
DiPLS Prediction
XMEAS(38)

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

3

4
PLS Prediction
XMEAS(38)

Fig. 4. Prediction result of DiPLS and PLS for TEP

Note that for XMEAS(38), there is only one measured
value every five data points due to the lower sampling rate,
and the subsequent four values are artificial. Therefore,
only 1/5 of the 960 data points are compared. The mean
squared error(MSE) for DiPLS and PLS are listed in Table
5 From Table 5, we can see the prediction of DiPLS
is closer to the true value than PLS. Fig.4 also show
that DiPLS captures trends in the data better than PLS.
Therefore, this case study shows that DiPLS performs
better than PLS in dynamic process modeling.

6. CONCLUTION

In this article, a dynamic inner PLS(DiPLS) was proposed
for dynamic process modeling. The proposed method gives
an explicit representation of the structures, and provides
consistent inner model and outer models at the same
time. For the data from static processes, DiPLS reduces
to traditional PLS, and provides the same results as PLS.
Cross-validation can be used to determine the optimal
number of lags and the number of components. Case
studies on simulation data and Tennessee Eastman Process
show the effectiveness of the proposed method.
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