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Abstract: Multi-stage Nonlinear Model Predictive Control (NMPC) is a promising strategy for the
design of robust NMPC controllers which is based on describing the evolution of the uncertainty as
a scenario tree. The scenario tree makes it possible to consider explicitly that the future control inputs
can be adapted to the future information (measurements), thus reducing the conservativeness of the
robust approach. This paper reviews the multi-stage approach and illustrates its main advantages using
a nonlinear CSTR example. We also provide guidelines for possible multi-stage NMPC users that
could help to identify the problems where the use of multi-stage NMPC can result in a significant
improvement with respect to standard NMPC or other robust NMPC approaches. Finally, we summarize
the different modifications that can be done to the multi-stage approach to enhance its performance. The
possible enhancements include: improved performance using parameter estimation, rigorous guarantee
of constraint satisfaction, and stability guarantees for the case of discrete-valued uncertainties.

1. INTRODUCTION

Model Predictive Control (MPC) has become a standard tech-
nique for process control, mainly because it can deal in a
straightforward manner with constraints on the inputs and on
the states. Increasingly also its nonlinear version, Nonlinear
Model Predictive Control (NMPC), is starting to receive more
attention in the industry. One of the main problems of any
NMPC approach is that its performance and stability properties
are strongly affected by the quality of the model used in the
predictions. However, all models are imperfect and therefore
it is necessary to introduce some robustification to any NMPC
controller used in reality.

The first robust MPC approaches were focused on a min-max
approach (Campo and Morari [1987]) using ideas of robust
optimization which were presented in Witsenhausen [1968].
These approaches compute a sequence of control inputs that
satisfy the constraints for all the cases of the uncertainty and
that minimize the worst-case value of the desired objective
function. It is well-known (Lee and Yu [1997]) that these ap-
proaches are very conservative because they ignore the fact that
new measurements will be available in the future and that the
future control actions can be adapted. To counteract this prob-
lem, closed-loop approaches were proposed e.g. in Scokaert
and Mayne [1998] in which a sequence of optimal control poli-
cies is computed. However, in the general case it is extremely
difficult to solve this problem and it has to be simplified by
assuming e.g. a fixed structure of the control policies (usually
assumed to be affine as in Goulart et al. [2006]). In the last
years, different tube-based NMPC methods have been devel-
oped (see e.g. Mayne and Kerrigan [2007], Yu et al. [2011]),
which solve the nominal NMPC problem and use a second
ancillary controller to guarantee that the real (uncertain) system
stays close to the nominal trajectory.
⋆ The research leading to these results has received funding from the European
Commission under grant agreement number 291458 (MOBOCON) and from
the Deutsche Forschungsgemeinschaft under grant agreement number EN
152/39-1.

Another possibility to achieve a robust NMPC controller is to
formulate the NMPC problem within the framework of stochas-
tic optimization, in a similar way as done in Scokaert and
Mayne [1998], Muñoz de la Peña et al. [2005] for the linear
case. In this manner, a scenario tree for the different possible
realizations of the uncertainty can be formulated, which makes
it possible to consider explicitly the fact that new measurements
will be available in the future and that the future control in-
puts can be adjusted accordingly. Such a formulation leads to
a multi-stage NMPC method (Lucia et al. [2013]) which has
shown very promising results for challenging nonlinear exam-
ples both in terms of performance and real-time capabilities.

In this paper, we review the multi-stage NMPC approach and
illustrate the main advantages and limitations of its use by
means of a nonlinear CSTR example using an economic cost
function and we also analyze its performance when using a
tracking cost function, which had not been studied before.
Additionally, we provide useful guidelines based on previous
publications that can help a user of multi-stage NMPC to find
the situations where the use of the approach is more beneficial.
We also describe how the approach can be extended in different
ways in order to enhance the performance of the method.

2. MULTI-STAGE NONLINEAR MODEL PREDICTIVE
CONTROL

This section reviews the main concepts of the multi-stage
NMPC approach presented in Lucia et al. [2013, 2014a]. In
multi-stage NMPC, the model uncertainty is represented by a
tree of discrete scenarios that branches at each future sampling
point for each possible value of the uncertainty as depicted in
Fig. 1. The formulation of a scenario tree makes it possible to
take explicitly into account that the future decisions can depend
on the new information (measurements) that will become avail-
able in the future. Thus the future control inputs can be adapted
according to the future realizations of the uncertainty and the
conservativeness of the approach is reduced compared to other
robust methods that search for a single sequence of control
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Fig. 1. Scenario tree representation of the evolution of the
uncertainty for multi-stage NMPC.

inputs to satisfy the constraints for all the possible values of
the uncertainty. Formulating the uncertain decision process as
a scenario tree is a well-known approach in the field of multi-
stage stochastic programming, which has been extensively used
in decision theory and finances (Shapiro [2009]). In the case
that the uncertainty is truly discrete-valued, this is the best
solution possible for a given prediction horizon. Generally this
is not the case, and multi-stage NMPC is an approximation of
the best solution.

In the multi-stage NMPC approach, we consider a discrete-time
nonlinear system:

xj
k+1 = f

(

x
p(j)
k , uj

k, d
r(j)
k

)

, (1a)

where each state vector xj
k+1 ∈ R

nx at stage k + 1 and

position j depends on the parent state x
p(j)
k at stage k, the

vector of control inputs uj
k ∈ R

nu and the corresponding

realization r of the uncertainty d
r(j)
k ∈ R

nd (e.g. in Fig. 1,
x6
2 = f(x2

1, u
6
1, d

3
1)). The uncertainty at the stage k is defined by

d
r(j)
k ∈ {d1k, d

2
k, . . . , d

s
k} for s different possible combinations

of values of the uncertainty. We define the set of indices (j, k)
in the scenario tree as I . Si denotes the ith scenario which is
the path from the root node x0 to one of the leaf nodes and it
contains all the states xj

k and control inputs uj
k that belong to

the ith scenario.

A common way to build a scenario tree is to consider, as
possible branches, a combination of values from the assumed
extreme values of all the uncertain parameters or disturbances.
For the general nonlinear case, it is not guaranteed that this
results in robust constraint satisfaction for the values of the
uncertainty that are not considered in the tree, but it has been
shown to give very good results in practice Lucia et al. [2013,
2014a]. If a rigorous guarantee for robust constraint satisfaction
of all the possible values of the uncertainty (including those that
are not in the tree) is required, the multi-stage approach can be
combined with reachability analysis as shown in Lucia et al.
[2014b].

Generating the full scenario tree including all the extrema of the
uncertainty space makes the size of the resulting optimization
problem grow rapidly with increasing length of the prediction
horizon Np and with increasing number of uncertainties. A
possible strategy to avoid the exponential growth of the sce-
nario tree over the prediction horizon is to consider that the

uncertainty remains constant after a certain stage (called robust
horizon Nr), until the end of prediction horizon (Fig. 1).

The optimization problem that has to be solved at each sam-
pling instant can be written as:

min
x
j

k+1
,u

j

k
, ∀ (j,k)∈I

N
∑

i=1

ωiJi(Xi, Ui) (2a)

subject to:

xj
k+1 = f

(

x
p(j)
k , uj

k, d
r(j)
k

)

, ∀ (j, k + 1) ∈ I, (2b)

0 ≥ g
(

xj
k+1, u

j
k, d

r(j)
k

)

, ∀ (j, k) ∈ I, (2c)

uj
k = ul

k if xp(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I, (2d)

where Xi, Ui are the set of states and control inputs that belong
to the scenario Si with the probability of occurrence ωi. The
constraints on inputs and states are denoted by g(·). The cost of
each scenario is denoted by Ji(·) and can be written as:

Ji(Xi, Ui) :=

Np−1
∑

k=0

L
(

xj
k+1, u

j
k

)

, ∀xj
k+1, u

j
k ∈ Si. (3)

The constraints (2d) are called non-anticipativity constraints
which imply that the control inputs cannot anticipate the real-
ization of the uncertainty, i.e. the control inputs uj

k that branch

at the same parent node x
p(j)
k must be the same and the con-

straints in (2c) are general nonlinear constraints.

3. CASE STUDY

We illustrate some of the advantages of multi-stage NMPC us-
ing a nonlinear CSTR benchmark problem adapted from Klatt
and Engell [1998]. The dynamics of the CSTR are described by
the following set of differential equations:

ċA = F (cA0 − cA)− k1cA − k3c
2
A, (4a)

ċB = −FcB + k1cA − k2cB, (4b)

ṪR = F (Tin − TR) +
kWA

ρcpVR
(TK − TR)

−
k1cA∆HAB + k2cB∆HBC + k3c

2
A∆HAD

ρcp
, (4c)

ṪK =
1

mKcpK
(Q̇K + kWA(TR − TK)), (4d)

where the reaction rates ki follow the Arrhenius law:

ki = k0,ie
−EA,i

R(TR+273.15) . (5)
The ODEs are derived from component balances for the con-
centration of component A (cA) and for the the concentration
of component B (cB). The energy balances for the temperature
of the reactor TR and for the coolant temperature (TK) form the
last two differential equations. The control inputs are the inflow
(F = V̇in/VR) normalized by the volume of the reactor and the
heat removed by the coolant (Q̇K). The parameters that appear
in the model equations are the same as those used in Klatt
and Engell [1998]. The initial conditions of the states together
with the constraints on the states are described in Table 1. The
constraints for the control inputs are shown in Table 2.

4. ECONOMIC OPERATION UNDER UNCERTAINTY

In this section we consider as the control task for the case
study the maximization of the production of component B
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Table 1. Initial conditions and state constraints.

State Init. cond. Min. Max. Unit
cA 0.8 0.1 2.0 mol l−1

cB 0.5 0.1 2.0 mol l−1

TR 134.14 50.0 Tmax
◦C

TJ 134.0 50.0 180.0 ◦C

Table 2. Bounds on the manipulated variables.

Control Min. Max. Unit
F 5 100 h−1

Q̇K 0 -8500 kJ h−1

(ṅB = V̇incb). It is considered that the activation energy EA,3 is
uncertain and it is assumed that it varies by ±10% with respect
to its nominal value. The stage cost minimized at each time
stage for each scenario is chosen as:

L = −ṅB + r1∆F 2 + r2∆Q̇2
K, (6)

where the penalty terms for the control movements are chosen
as r1 = 10−5 and r2 = 10−7. The prediction horizon is
Np = 40 steps and the sampling time of the controller is
tstep = 0.005 h. We consider the upper constraint for the
reactor temperature to be Tmax = 140◦C. For the multi-
stage case, a scenario tree is generated using the maximum,
minimum and nominal value of the uncertainty and a robust
horizon Nr = 1. Fig. 2 shows the results of applying standard
NMPC with an economic cost function to the CSTR under
consideration for different values of the uncertain parameter. It
can be seen that when there is no plant model mismatch, all the
constraints are satisfied because the predictions of the controller
are perfect. However, if the model is not perfect the constraints
on the temperature TR or on the concentration cA are violated.
Moreover, it can be observed that the control loop performs
a limit cycle for the higher activation energy. In contrast, if
multi-stage NMPC is used, none of the scenarios violates the
constraints, as shown in Fig. 3. It can be seen that multi-stage
NMPC stays sufficiently far away from the constraints such that
they are not violated for any of the cases, that is, multi-stage
NMPC computes an automatic backoff from the constraints.
The results of multi-stage NMPC also show that in this case
the constraint on cA is not important for the robust operation
of the reactor and the constraint on TR is the limiting one. This
robustness is achieved at the cost of a reduced production of
ṅB. The amount of material obtained with multi-stage NMPC
is significantly smaller in this case because of the required
robustness. The product yield under standard NMPC control
is misleading for the case of a lower activation energy because
the temperature constraint is violated largely (note that in that
case the constraint is violated by almost 20 ◦C). If it is possible
to estimate the uncertain parameter during the operation, a new
scenario tree can be generated with a reduced uncertainty range
in order to enhance the performance, as shown in Lucia and
Paulen [2014].

5. SETPOINT TRACKING UNDER UNCERTAINTY

In this section we discuss the tracking of a predefined setpoint
for the concentration of component B (cB). It is considered that
the activation energy EA,3 is uncertain and it is assumed that
it varies by ±10% with respect to its nominal value. The stage
cost is in this case:

L = (cB − cref
B )2 + r1∆F 2 + r2∆Q̇2

K, (7)
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Fig. 2. Concentration of component A, reactor temperature,
control inputs and product obtained by standard NMPC
with an economic cost function for different values of the
uncertain parameter (±10% w.r.t. the nominal value).
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Fig. 3. Concentration of component A, reactor temperature,
control inputs and product obtained by multi-stage NMPC
with an economic cost function for different values of the
uncertain parameter (±10% w.r.t. the nominal value).

with the same penalty terms r1 and r2 and NMPC parameters as
in the previous section. The setpoint is chosen to be cref

B = 0.5
for t ≤ 0.3 h and cref

B = 0.7 for t > 0.3 h.

The results for the tracking problem for standard NMPC are
shown in Fig. 4. The state constraints are chosen such that
they remain inactive to analyze only the tracking performance
(Tmax = 180◦C). Standard NMPC results in a steady state error
(Fig. 4) for all the cases of the uncertainty except when a perfect
model is used (0% variation with respect to the nominal value
of the parameter). If multi-stage NMPC is used, the steady
state error cannot be completely avoided, but the reason for
this offset is different than for standard NMPC. In standard
NMPC the steady-state error occurs because the controller
minimizes the tracking cost function using a wrong model for
the predictions. According to this model the calculated input
would drive the system to the setpoint but once the control is
applied to the system, it remains in the same position. For multi-
stage NMPC the controller calculates sequences of control
inputs (one for each scenario) that minimize the distance to the
setpoint on the average. Since the first control input is common
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Table 3. Performance comparison between stan-
dard NMPC and multi-stage NMPC.

Accumulated cost

Unc. in Standard Multi-stage
EA,3 NMPC NMPC

+10% 0.0602 0.0827
+0% 0.0389 0.0467
-10% 1.3041 1.1272

Average 1.403 1.256

due to the non-anticipativity constraints, it is not possible to
drive the system to the setpoint for all the scenarios in the
first stage and this results in the steady-state error. Table 3
shows that multi-stage NMPC achieves a better performance
on the average (11%) comparing the average accumulated cost
over the three scenarios. The accumulated cost was calculated
by integrating the tracking error over the whole time period.
Standard NMPC has better performance when the model is
perfect, but it has no control about the loss of performance for
the rest of the cases. Multi-stage NMPC calculates the inputs
that result in the best average performance. If the performance
of standard NMPC (with the nominal model) is very similar to
the average performance over different values of the uncertainty
(e.g. in the unconstrained linear case), standard NMPC and
multi-stage NMPC will provide almost identical solutions.

The strategies that are commonly used to achieve offset-free
behavior in standard NMPC can be also applied to multi-stage
NMPC. For example, a bias term can be used for each scenario
based on the difference of the measured and predicted output.
Another very simple strategy to achieve steady state accuracy
is to adapt the reference based on the integrated tracking error.
This update is given by:

c̃ref
B ← c̃ref

B + kbias(c
ref
B − cmeas

B ). (8)

where c̃ref
B is the actual reference used in the cost function and

cmeas
B is the measured concentration. Using kbias = 0.2 steady-

state accuracy (see Fig. 5) is achieved for all scenarios for
both standard NMPC and for multi-stage NMPC (the results
for standard NMPC are omitted here for brevity) . There is no
significant difference between the performance of standard and
multi-stage NMPC. The reason for this is that the bias term
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Fig. 5. Concentration of component B, reactor temperature, and
control inputs obtained by multi-stage NMPC with bias
term tracking a pre-defined setpoint for different values of
the uncertain parameter (±10% w.r.t. the nominal value).

0 0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.6

0.8

c B
 [m

ol
 L

−
1 ]

 

 
Multi−stage
Standard
Setpoint

0 0.1 0.2 0.3 0.4 0.5 0.6
120

140

160
T

R
   

[C
]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

F
 [h

−
1 ]

0 0.1 0.2 0.3 0.4 0.5 0.6
−10000

−5000

0

Q
 [k

J 
h−

1 ]

Time [h]

Fig. 6. Concentration of component B, reactor temperature
(with constraint), and control inputs obtained by standard
NMPC and by multi-stage NMPC with bias term tracking
a pre-defined setpoint for a value of the uncertain parame-
ter 10% smaller than the nominal value).

adapts the output model based on the measurement information.
In particular when the plant reaches the steady state the input-
output behavior is perfectly corrected for all the cases of the
uncertainty. During the dynamic part of the trajectory the bias
update is an approximation of the exact correction, but this does
not have to be worse than optimizing an average performance
for several scenarios (where only one scenario is the real one)
as it is done in multi-stage NMPC.

The importance of using a robust approach becomes apparent in
this case if constraints are active. Now it is considered that the
upper bound on the temperature of the reactor is Tmax ≤ 155. If
standard NMPC with the bias term is used, tracking is achieved
but the constraint is violated (for the case when the uncertainty
is 10% smaller than the nominal value). In contrast, multi-stage
NMPC with the bias term realizes that the defined setpoint is
unreachable and stays as close as possible without violating the
temperature constraint as can be seen in Fig. 6.

The rigorous analysis of the offset-free behavior is out of the
scope of this paper and the reader is referred to Morari and
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Maeder [2012] for an overview on the theoretical assumptions
required to guarantee offset-free tracking in NMPC.

6. WHEN AND HOW TO USE MULTI-STAGE NMPC?

This section presents some guidelines that provide insight on
the kind of problems that can be tackled by multi-stage NMPC
and on the problems where its use is more advantageous than
other approaches. Once it has been decided that multi-stage
NMPC is a suitable approach for the problem under consid-
eration the controller has to be designed. We present some
guidelines for the design of a multi-stage NMPC controller and
for the use of the different extensions and modifications that
have been presented in other papers.

6.1 When to Use Multi-stage NMPC

Multi-stage NMPC is a robust NMPC approach and as such, it
is in general suboptimal when compared to a standard NMPC
that uses the perfect model of the system, because the multi-
stage approach accounts for possible uncertainties. Therefore,
the best option to achieve a robust NMPC scheme is to estimate
the uncertainties if it is possible, removing the uncertainty from
the problem. However, if the uncertainties vary over time, the
application of standard NMPC (even in the case of exact and
instantaneous estimation of varying parameters) may result in
constraint violations. On the other hand, the use of multi-stage
NMPC can prevent the constraint violations because it takes
into account in advance that the uncertainty might change as
illustrated in Lucia et al. [2013].

For the cases when the uncertainty cannot be removed by
parameter estimation and disturbance feedforward, the use of
multi-stage NMPC is beneficial in comparison with standard
NMPC or with other robust approaches that do not take feed-
back into account. The benefits can be seen in the form of
increased average performance over the different possible sce-
narios of the uncertainty and in the form of robust constraint sat-
isfaction. A typical way of introducing feedback in MPC is the
use of affine control policies (Goulart et al. [2006]). However,
an affine policy is suboptimal even in the constrained linear
case. This suboptimality can be significant for nonlinear exam-
ples resulting in a considerable worse performance than multi-
stage NMPC as shown in Lucia et al. [2014a]. Furthermore, the
flexibility of the approach makes it possible to integrate it with
estimation techniques (see Lucia et al. [2013]) or with optimal
experiment design (see Lucia and Paulen [2014]) to enhance
the performance based on measurement information.

For the case of an economic cost function and tight constraints,
an important improvement in the performance is expected by
using multi-stage NMPC as it has been shown in several results
(see Lucia et al. [2013, 2014a]). If the control task is the uncon-
strained tracking of a pre-defined setpoint the benefits of multi-
stage NMPC might be small compared to the use of standard
NMPC with a bias term to achieve steady-state accuracy as
illustrated above. For each problem it should be analyzed by
simulation studies whether the possible improvements justify
the increase in the complexity of the controller.

Stochastic information about the uncertainty can be incorpo-
rated in the multi-stage formulation by choosing the weights
for each scenario. In multi-stage NMPC, the constraints are
satisfied with certainty for all scenarios. If chance constraints
are sufficient, other approaches can be considered such as the

scenario approach in the convex case (Calafiore and Campi
[2006]) or the use of polynomial chaos expansions (Mesbah
et al. [2014]).

For simple cases where it is possible to find the invariant sets
that are necessary for the design of tube-based controllers,
this approach might be preferred over the multi-stage NMPC
controller because it can be implemented with the same com-
putational complexity as standard NMPC (see Yu et al. [2011])
and provide set-theoretic guarantees about the possible trajec-
tories of the controlled system. However, for general nonlinear
systems it is very difficult to find the necessary elements for the
design of tube-based NMPC. Furthermore, the issue of optimal
performance under uncertainty is not addressed by tube-based
NMPC.

For cases in which the most important uncertainties can be
summarized in only a few parameters (or disturbances) with
known bounds, multi-stage NMPC is a very promising strat-
egy that provides excellent performance while satisfying tight
constraints for all scenarios if enough computation power is
available. Industrially relevant case studies can be solved in
real-time if an efficient implementation of multi-stage NMPC
is used.

6.2 How to Use Multi-stage NMPC

Once multi-stage NMPC has been chosen as the control ap-
proach for a given system, the following steps must be taken to
design the controller.

The first step consists in designing the scenario tree. An easy
rule to generate a suitable scenario tree is to consider the
combination of the maximum, minimum, and optionally also
the nominal values of the different uncertain parameters as
scenarios. If there are many uncertain parameters the resulting
scenario tree might be intractable, and it is therefore necessary
to lump the effect of several uncertainties into a few critical
uncertainties or to perform sampling.

Then the robust horizon has to be chosen. Several simulation
studies (e.g. Lucia et al. [2013]) show that branching the tree
only in the first stage (robust horizon NR = 1) results in
very good results with low computational effort. Nevertheless,
it has to be kept in mind that this assumes that at the next
sampling time different control inputs can be taken depending
on the uncertainty. This is not true because at the next sampling
time a new scenario tree (shifted in time) will be solved which
imposes that all the control inputs have to be the same in the
first stage. This can potentially lead to recursive infeasibility
of the controller, although we have not encountered this when
dealing with quite a number of examples.

Then it is possible to make use of the different enhancements
and extensions to improve the performance of multi-stage
NMPC. If some information about the uncertainty is available,
it can be introduced on-line into the scenario tree. This can be
done either by adjusting the probabilities of the different scenar-
ios of the tree (see Lucia et al. [2013]), or by narrowing the tree
based on the new bounds of the uncertainty that are provided by
confidence ellipsoids or other estimation techniques (see Lucia
and Paulen [2014]).

If theoretical guarantees are required it is possible to have an
a priori guarantee of stability and recursive feasibility under
the usual assumptions (terminal set and terminal penalty term)
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for standard and min-max NMPC for the case of discrete-
valued uncertainties. If only a guarantee of robust constraint
satisfaction is needed, the reachable sets of each scenario can
be computed as shown in Lucia et al. [2014b].

An efficient implementation is necessary for the successful
application of multi-stage NMPC. Based on a number of sim-
ulation studies, the use of interior point methods has shown
a superior performance compared to sequential quadratic pro-
gramming methods for the solution of the large scale optimiza-
tion problems that result from the formulation of multi-stage
NMPC, as compared in Lucia and Engell [2013]. In particular
the combination of a full discretization of the nonlinear dynam-
ics based on orthogonal collocation, the efficient generation of
exact first- and second-order derivatives (which can be achieved
very easily using e.g. CasADi (Andersson et al. [2012])) and
the solution of the NLP with the solver IPOPT (Wächter and
Biegler [2006]) has shown excellent performance. This method
was used in this paper to solve the example problems. We
describe the possibility to generate such an efficient implemen-
tation with a very low effort in Lucia et al. [2014c]. Scenario
generation techniques that can achieve a very good approx-
imation of the multi-stage cost with a a reduced number of
scenarios were presented in Leidereiter et al. [2014].

7. CONCLUSIONS

This paper shows the advantages and limitations of the multi-
stage NMPC approach. We illustrated by means of a nonlinear
CSTR example that generating a simple scenario tree and using
multi-stage NMPC results in robust constraint satisfaction for
both an economic and a tracking cost function. We show
that the constraint satisfaction is achieved by an automatically
calculated backoff. In addition, the approach can be used to
analyze which constraints are limiting the robust operation of
the system. We also provide guidelines that help identifying
the kind of problems for which the muti-stage approach can be
more beneficial: Solving highly nonlinear problems with tight
constraints and an economic objective will very often result in a
significant improvement compared to standard NMPC or other
robust NMPC approaches.

Finally, we reviewed different modifications that can be applied
to the approach to enhance its performance, e.g. including
parameter estimation for a better performance or reachability
analysis for a rigorous guarantee of robustness.

REFERENCES
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S. Yu, H. Chen, and F. Allgöwer. Tube MPC scheme based
on robust control invariant sets with application to Lipschitz
nonlinear systems. In Proc. of the 50th IEEE Conference on
Decision and Control, pages 2650–2655, 2011.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1021


