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Abstract: Process models that are affected by uncertainties need a robust mechanism to account for them 

in the model based design of experiments (DOE). The aim of this study is to design a set of experiments 

to estimate the parameters of multiscale kinetic models for the catalytic decomposition of ammonia. 

Along with uncertainties in the model, the problem is challenging due to constraints on experimental 

conditions. A stochastic D-optimal design is used to find the optimal experimental conditions using 

maximization of the expectation of properties of the Fisher information matrix (FIM).  The expectation of 

FIM is calculated by sample average approximation (SAA) based on Monte Carlo simulations. Particle 

swarm optimization (PSO) is used to perform stochastic optimization to find the optimal set of 

experimental conditions. A novel method based on the rescaling of velocities is proposed for handling of 

equality and inequality constraints in particle swarm optimization. 

Keywords: Optimal experimental design, constrained optimization, stochastic modeling and optimization, 

sensitivity analysis 



1. INTRODUCTION 

Dynamic mathematical models for chemical processes have 

been commonly applied in the area of control, optimization 

and monitoring of the processes. Additionally, for complex 

processes, these also aid in understanding the physics of the 

process. Experiments are performed for model validation and 

parameter estimation. However, with wide ranges of 

experimental conditions possible for chemical processes, and 

dependence of the model response on various parameters, 

optimal designs should be employed to reduce experimental 

effort. The design of experiments (DOE) is a technique used 

to design the experiments in a systematic manner. In general, 

DOE is applied to assess the factors that affect the response 

variables of the system (Telford, 2007). This organized way 

of designing experiments is helpful in achieving various 

experimental objectives such as hypothesis testing, model 

validation and parameter estimation with precise results 

(Jacquez, 1998).    Many conventional design methods such 

as factorial designs with different levels, fractional factorial 

designs, response surface designs and methodology, and 

optimal designs have been used for experimental design 

(Ryan, 2007; Sarabia, 2009). Bayesian experimental design 

techniques have also been employed for linear and nonlinear 

systems (Chaloner & Verdinelli, 1995; Laínez-Aguirre, et al., 

2015). However, unless carefully designed, they fail to 

account for uncertainties in model parameters. 

The model based DOE as suggested by Beltrán-Oviedo, et 

al., 2009 uses statistical criteria to provide kinetically 

relevant experimental conditions and estimate parameters.  
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The variation in estimated parameter influences the predicted 

output of the model, which is measured by the sensitivity 

matrix (S): 

𝑺 = (
𝜕𝒚

𝜕𝜽𝑻
)                                                                  (1) 

where y is the output of the system and θ is the parameter set 

for the problem. The output is affected by measurement noise 

that is often assumed to be normally distributed with zero 

mean and covariance ∑  . The Fisher information matrix 

(FIM) given in eqn. (2), which is related to the inverse of the 

covariance matrix, is commonly used in model-based 

experimental design as it provides the information on the 

effect of the parameters without performing any experiment 

or simulation (Ludwig, 2011; Myung & Navarro, 2005) 

𝑭(𝜽) =  (
𝜕𝒚

𝜕𝜽𝑻
)

𝑇

𝚺−1 (
𝜕𝒚

𝜕𝜽𝑻
)                                   (2)     

It provides a (probabilistic) measure of the identifiability of 

the parameters. If the measurement noise is uncorrelated and 

constant with time, the covariance matrix ∑  =  I, which 

leads to the following simplification: 

𝑭(𝜽) =  (
𝜕𝒚

𝜕𝜽𝑻
)

𝑇

(
𝜕𝒚

𝜕𝜽𝑻
)                                            (3)     

Various alphabetical optical designs (A, D, E, G and V) 

based on the FIM have been employed for selecting optimal 

experimental conditions (Ogunnaike, 2010). The presence of 

constraints on experimental conditions requires the 

development of constrained optimization techniques based on 

maximization of the properties of the FIM.  

An important and widely studied system consisting of the 

catalytic decomposition of ammonia on ruthenium catalyst is 

designed to illustrate the procedure for optimal experiment 

design and parameter estimation on a multi-scale kinetic 

model of the process.  This work uses stochastic optimization 
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techniques to maximize the value of the D-optimal statistical 

metric averaged over a number of samples. It is assumed that 

probability distributions governing the uncertainty in the 

parameters are known. Sampling average approximation, 

based on the Monte Carlo method, is used to evaluate the 

expectation of the objective function to be maximized. In the 

optimization step, particle swarm optimization (PSO) is 

performed with a heuristic procedure developed for 

constrained nonlinear optimization.   

2. KINETICS AND REACTOR MODEL 

The catalytic decomposition of ammonia is chosen as the 

system to design and implement a robust scheme for DOE 

using constrained optimization. The overall reaction is 

 

2NH3 ↔ N2 + 3H2                                                         (4) 

 

Various studies have been performed on modeling this 

catalytic system on ruthenium catalyst (Deshmukh, et al., 

2004; Lee, et al., 2011; Prasad, et al., 2009). Based on these 

studies, this system can be divided into 3 sub-processes:  

adsorption, desorption, and surface reaction to produce N2 

and H2. The rate constants for these 3 types of reaction are 

given in Table 1. Microkinetic models based on a detailed 

reaction mechanism including all relevant elementary 

reactions are used to model the ammonia decomposition as 

shown in Table 2.  

Table 1. Rate constants of elementary reactions (Lee et al., 

2011, Prasad et al., 2009). k: rate constant, s: sticking factor, 

θ: fractional surface coverage, Ea: activation energy, σ: site 

density 

Reaction 

Type 

 
Rate Constant 

Adsorption 

 

𝑘 =  
𝑠

𝜎𝑛
√

𝑅𝑇

2𝜋𝑀
(

𝑇

𝑇0

)
𝛽

𝑒− 
𝐸𝑎(𝜃,𝑇)

𝑅𝑇  

Desorption 
 

𝑘 =  
𝐴

𝜎𝑛−1
(

𝑇

𝑇0

)
𝛽

𝑒− 
𝐸𝑎(𝜃,𝑇)

𝑅𝑇  

Surface 

Reaction 

 
𝑘 =  

𝐴

𝜎𝑛−1
(

𝑇

𝑇0

)
𝛽

𝑒− 
𝐸𝑎(𝜃,𝑇)

𝑅𝑇  

Table 2: Elementary reactions representing the 

decomposition of ammonia on a Ru surface (Lee et al., 2011) 

No. Reaction 
1 𝐻2 + 2 ∗ ⇌ 2𝐻 ∗ 
2 𝑁2 + 2 ∗ ⇌  2𝑁 ∗ 
3 𝑁𝐻 ∗ + ∗ ⇌ 𝑁 ∗ +𝐻 ∗ 
4 𝑁𝐻2 ∗ + ∗ ⇌  𝑁𝐻 ∗  +𝐻 ∗ 
5 𝑁𝐻3 ∗ + ∗ ⇌  𝑁𝐻2 ∗  +𝐻 ∗ 

6 𝑁𝐻3 + ∗ ⇌  𝑁𝐻3 ∗ 

 

The model was developed considering the reversible 

elementary reactions shown in Table 2 (* indicates a vacant 

site or, in conjunction with a chemical species, an adsorbate). 

The nominal values for the sticking coefficients and pre-

exponentials to be used for the D-optimal design, and the 

coverage and temperature dependencies of the activation 

energies are taken from the work of Lee et al., 2011. A plug 

flow reactor (PFR) is used to model the reactor packed with 

catalyst with reactor specifications mentioned in Table 3.  

Table 3: Reactor specifications 

Characteristic Value 

Length(L, cm) 1.7 

Diameter(D,cm) 0.41 

Site density (sa,mol/cm
2
) 1.66 X 10

-9
 

 

 

The reactor model is represented as (Kumar, 2011): 

 
dyk,gas

dx
=  

avMwσgas

ρu
                                         (5) 

 

where y is the mass fraction of the species in the gas phase, av 

is the surface area to volume ratio of the catalyst, Mw the 

molecular weight of the species, u is the superficial gas-phase 

velocity, σk is the surface reaction rate, and ρ is the fluid 

density. The microkinetic model of Prasad et al. (2008) has 

two sets of parameters for each elementary reaction, the 

activation energy and the pre-exponential factor. 

 

In this study, it is assumed that the activation energies 

calculated using the unity bond index quadratic exponential 

potential method (UBIQEP) are accurate and do not need to 

be estimated and the only parameters to be estimated are the 

pre-exponentials (Prasad and Vlachos, 2008). 

 

Thermodynamic consistency at both enthalpic and entropic 

levels is often neglected in mechanism development and 

parameter estimation for these models (Mhadeshwar et al. 

2003). Enthalpic inconsistency gives incorrect predictions of 

conversion/selectivity, and entropic inconsistency translates 

to incorrect predictions in the pre-exponential factors. Hence, 

both these inconsistencies distort the underlying equilibrium 

constant, which affects the prediction of equilibrium states. In 

the mechanism outlined in Table 2, there are 6 reversible 

reactions. In general, for the i
th

 reversible reaction in the 

mechanism, the following equations form the basis of the 

enthalpic and entropic constraints: 

𝐸𝑖
𝑓

− 𝐸𝑖
𝑏 = ∆𝐻𝑖  ,     𝑖 = 1, … , 6               (6) 

𝐴𝑖
𝑓

𝐴𝑖
𝑏 = 𝑒∆𝑆𝑖 𝑅⁄  ,      𝑖 = 1, … , 6                    (7) 

where 𝑓 and 𝑏 stand for the forward and backward steps, 𝐴 is 

the pre-exponential factor, 𝐸 is the activation energy, 𝑅 is the 

universal gas constant and ∆𝐻 and ∆𝑆 are the enthalpy 

change and entropy change of the reversible reaction 

respectively. However, only the constraint on the pre-

exponentials should be implemented as the UBIQEP method 

ensures that the activation energies are in agreement with 

their constraints. These thermodynamic constraints leave just 

6 parameters for consideration in the uncertainty analysis. 

3. EXPERIMENTAL DESIGN AND OPTIMIZATION 

METHODOLOGY 

A reasonable estimate of the nominal values of model 

parameters is required for D-optimal design. The need for 

stochastic modeling arises because the actual value of the 

parameters might be different from this nominal value, and 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 107



 

 

 

 

hence the D-optimal design and parameters estimated by the 

actual experiment data may end up being far from optimal. 

Thus, the design method should incorporate the uncertainty in 

the nominal values of the parameters and the solution 

proposed in the literature is to solve a stochastic optimization 

problem for the system (Lee et al., 2011).  

 

3.1. Optimization Problem 

The decision variables for the optimization problem (i.e., the 

design variables to be optimized) are temperature (𝑇), 

pressure (𝑃), ratio of catalyst surface area to the volume (𝑎𝑣), 

residence time (𝜏) and inlet mole fractions of hydrogen (𝑥1), 

nitrogen (𝑥2), ammonia (𝑥3) and argon (𝑥4). Additionally, the 

sum of mole fractions is constrained to equal one. Each of the 

variables is restricted between an upper (UB) and lower 

bound (LB) in the form of inequality constraints. The 

optimization problem is formulated as:  

𝑋 = [ 𝑇 𝑃 𝑎𝑣     𝜏 𝑥1 𝑥2     𝑥3 𝑥4]             (8) 

𝐽 = log(det(𝐹𝐼𝑀))                                                    (9) 

max
𝑋

      𝔼𝜀[𝐽] −  𝛽( 𝔼𝜀[𝐽2]   (𝔼𝜀[𝐽])2)                   (10) 

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜             

𝐿𝐵 ≤ 𝑋 ≤ 𝑈𝐵
 

𝐴𝑒𝑞𝑋 =  𝐵𝑒𝑞

                          (11) 

where FIM is the Fisher information matrix, 𝔼𝜀 is the 

expectation operator and 𝛽 is a weight applied to the variance 

of the expectation operator (Kall and Wallace, 1994), and  

𝐴𝑒𝑞  and 𝐵𝑒𝑞  are matrices required to formulate the constraint 

equation for the set of decision variables such that sum of the 

mole fractions of gaseous species is equal to one.  

 

Table 4: Bounds of decision variables for the optimization 

 
Decision 

Variable 

Symbol Lower 

Bound 

(𝐿𝐵) 

Upper 

Bound 

(𝑈𝐵) 

Scaling 

Temperature 𝑇(𝐾) 500 1000 Linear 

Pressure 𝑃(𝑎𝑡𝑚) 0.1 10 Logarithmic 

Residence Time 𝜏(𝑠) 0.05 5.0 Logarithmic 

Ratio of catalyst surface 

area to volume  
𝑎𝑣(1 𝑐𝑚⁄ ) 150 15000 Logarithmic 

Mole fraction of (𝑁𝐻3)          𝑥 1    0 1 Linear 

Mole fraction of (𝐻2) 𝑥2 0 1 Linear 

Mole fraction of (𝑁2) 𝑥3 0 1 Linear 

Mole fraction of 𝐴𝑟 𝑥4 0 1 Linear 

 

Since the optimization problem is stochastic, the expectation 

of the logarithm of the determinant of the FIM has to be 

evaluated and the logarithm of the FIM is used for scaling to 

cover a large range of values of the determinant of the FIM. 

However, for the case of deterministic optimization, the 

logarithm of the determinant of the Fisher information matrix 

calculated by using nominal values of the parameters is used 

as the objective function. Upper bounds (𝑈𝐵) and lower 

bounds (𝐿𝐵) along with scaling used for each variable are 

shown in Table 4.  

 

Parametric sensitivity is calculated by perturbing each 

parameter one at a time, followed by numerical integration of 

the reactor model that includes individual rate expressions for 

each species for the given values of decision variables and 

uncertain parameters. 

Along with the highly nonlinear nature of the objective 

function and difficulties in calculation of sensitivities for 

FIM, the equality constraint of the sum of mole fraction is 

difficult to incorporate because it leads to a constrained 

nonlinear optimization problem.   

 

3.2. Uncertainties and sampling 

The uncertainties associated with parameters are modeled as 

exogenous random inputs following uniform distributions 

added to the corresponding nominal values (Lee et al., 2011). 

 

log10 𝐴𝑖 = log10 𝐴𝑖0
+  𝜀𝐴𝑖

                          (12) 

 

where 𝜀𝐴𝑖
 follows 𝑈(−1,1) and 𝐴𝑖 is the pre-exponential of 

the i
th

 reaction and the 𝐴𝑖+1 pre-exponential is calculated 

using equation 6. This is followed by picking a small number 

of random values (2 in this case, chosen to reduce the 

computational burden) from this distribution. This procedure 

is repeated for all the 6 pre-exponentials to be modeled 

stochastically and all possible combinations of these 6 

vectors containing two values each were generated.  

The ratio of catalyst surface area to reactor volume 

is one of the decision variables for the optimization problem. 

It is not possible experimentally to synthesize a catalyst with 

exactly this specification, and the uncertainty in this variable 

must be taken into account. This shows that in addition to the 

parameters, decision variables may also have uncertainties. 

The uncertainties associated with calculation of the random 

variables in this case are modeled as exogenous random 

inputs following a Gaussian distribution added to the nominal 

value of the decision variable. 

                 𝑎𝑣 = 𝑎𝑣0
+ 𝜀𝑎𝑣

                                 (13) 

where 𝜀𝑎𝑣
 follows 𝒩(0, (0.15𝑎𝑣0

)2), 𝑎𝑣 is the ratio of 

catalyst surface area to reactor volume and 𝑎𝑣0
 is its  

nominal value, given by the optimization algorithm as a 

decision variable. The six parameters and one decision 

variable result in 7 random variables and 2
7
 (128) possible 

combinations. In order to reduce the possible combinations, 

only the reactions 1, 2, 3 (Table 2) are considered to have 

uncertainty in their pre-exponentials, reducing the number of 

random variables to four (three reaction pre-exponentials and 

one decision variable, the ratio of catalyst surface area to 

reactor volume) (Lee et al., 2011). 

 

 Function evaluation is initiated by evaluating the sensitivity 

matrix for each sample and for this evaluation, each element 

of the parameter set (θ) is perturbed one at a time and the 

model is solved to quantify the change in output with respect 

to the perturbed parameter. As suggested by Wei et al. 

(2004), sample average approximation (SAA) is used to 

evaluate the expected objective function value. It 

approximates a value by taking the mean of the samples 

generated by the methodology explained above. For 2
4
 = 16 

combinations (four random variables and two sampling 

areas): 

𝑓 (X) = E (J(X)) =  
1

16
 ∑ 𝐽(

16

𝑘=1

X, ε𝑘)                       (14)      
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where 𝑓 denotes the estimate of f(X), J is log(det(FIM)) and 

X represents the decision variables.  

 

3.3. Optimization scheme and constraints handling  

 

Particle swarm optimization (PSO) is preferred for implicit 

problems to avoid gradient calculations. PSO can be likened 

to the social behaviour of bird flocks or schools of fish and is 

accepted as a relatively robust technique (Jia et al., 2011). 

PSO has two phases:  initialization and evolution. During 

initialization, the population (known as a swarm) is initialized 

with uniformly distributed random particles within their 

search space. In the evolution phase, particles search for the 

optima by updating themselves based on their current and 

past information. After random selection of particles, the 

update is based on velocity vectors.  

 

Table 5: Parameters used in the particle swarm optimization 

(PSO) algorithm 

 

The velocity vector changes its direction and magnitude 

based on the difference between the current and best particle 

position globally as well as locally in the swarm.  New 

positions are found by adding velocities to the old positions 

as given in eqns. (15) and (16) 

 

𝑥(𝑗 + 1) = 𝑥(𝑗) + 𝑣(𝑗 + 1)                                    (15) 

 

𝑣𝑝,𝑑,𝑗
𝑗+1

= 𝑊𝑖𝑛𝑡𝑣𝑝,𝑑,𝑗
𝑗

+ 𝐶1𝑟1(𝑥𝑝,𝑗
𝑖𝑛𝑑 − 𝑥𝑝,𝑑,𝑗

𝑗
)                                      

                              +𝐶2𝑟2(𝑥𝑗
𝑔𝑙𝑜

− 𝑥𝑝,𝑑,𝑗
𝑗

)                 (16)          

 

where Wint, C1, C2, r1 and r2 are defined in Table 5 along with 

other parameters.  𝑥𝑝,𝑗
𝑖𝑛𝑑 and 𝑥𝑗

𝑔𝑙𝑜
 are individual and global 

best positions respectively.  

 

Apart from these parameters required for the PSO, the 

parameter 𝛽 𝑖s chosen from 0 to 100 to explore a wide range 

of weights for the variance. In this study, iterations are 

terminated when relatively small or no improvement is 

observed in the objective function over 100 iterations 

(Zielinski and Laur, 2006). 

 

There are two types of constraints considered; i) inequality 

constraints for restricting all the variables in the desired 

range, and ii) an equality constraint forcing the sum of the 

mole fractions to be unity. (Chu and Hahn, 2009) proposed 

the following methods to handle constraints: random, 

absorbing and reflecting.  The random method assigns a 

random value to a particle to bring it back to the boundary. 

The absorbing method, as the name suggests, absorbs the 

particle at the closest boundary and the reflecting method 

involves reflection of point back to the range as a mirror 

image. The linear equality constraints are difficult to handle 

because they have to be combined with the PSO algorithm to 

allow the natural flow of the swarm of particles.  In this 

study, inequality constraints are solved by absorbing particles 

that lie outside the bounds in the unconstrained PSO to the 

boundary after each iteration and a velocity adaption method 

is proposed for the equality constraint.  

 

Initial values (j=1) are chosen such that the sum of the mole 

fractions is unity. In order that the sum of mole fractions 

remains unity in further iterations, the sum of velocities 

applied in the direction of mole fractions is restricted to zero.  

for 𝑗 = 1;      ∑ 𝑥𝑖 = 1                                       (17) 

for 𝑗 ≠ 1;    

∑ 𝑥𝑖(𝑗 + 1) = ∑ 𝑥𝑖(𝑗) + ∑ 𝑣𝑖(𝑗 + 1)        (18) 

However, the constraint that needs to be followed all the 

times is: 

∑ 𝑥𝑖(𝑗) = 1                                                            (19) 

∑ 𝑥𝑖(𝑗 + 1) = 1                                                     (20) 

 

This further means that 

∑ 𝑣𝑖(𝑗 + 1) = 0                                                        (21)         
 

The mole fractions are selected in the order of hydrogen (𝑣1), 

nitrogen (𝑣2), ammonia (𝑣3) and argon (𝑣4). In order to keep 

the sum of the velocities equal to zero after each iteration, the 

fourth one is calculated using the first three.  The fourth one 

was chosen such that it corresponds to the inert gas mole 

fraction particle velocity. However, the absorption technique 

cannot be combined with velocity adaption as absorbing after 

velocity adaption will alter the velocity settings. Hence, to 

constrain mole fractions within their individual maximum 

and minimum limits, new velocities were calculated using a 

scaling factor. Their directions remain the same (i.e., towards 

the best global solution) but only the magnitude of velocities 

is re-calculated by: 

𝑣𝑖𝑛𝑒𝑤
= 𝑟𝑣𝑖  ,   𝑖 = 1, … , 4                                  (22)    

where r, the scaling factor, is chosen by the method explained 

below. 

 

In Figure 1, the indices 1,2,3,4 refer to the mole fraction of 

the species in the order illustrated above. As an example, it is 

shown that at iteration j +1, the mole fraction of species 1 and 

4 move out of the boundary but in the opposite directions. 

The following quantities are defined for particles outside the 

boundary: 

Deviation distance: The distance of a particle from an initial 

position (at x = j) to the closest boundary (0 or 1). 

Deviating ratio: The ratio of deviation distance and velocity 

at x = j.  

 

Parameter Value 

Npt : Number of particles 20 

Nd : Number of search dimensions 1 

Np : Number of parameters to be estimated 8 

C1 : Weight parameter 2(0.99)i 

C2 : Weight parameter 2(0.99)i 
Wint: Weight parameter (0.99)i(2r − 1) 

r denotes a random variable in the range [0, 1]. 
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In order to make sure that all the particles outside the 

boundaries are contracted inside by using a single scaling 

factor, the minimum deviating ratio is taken to be the 

rescaling factor for that particular iteration. This ensures that 

individual mole fractions remain within the range (0, 1), the 

sum of mole fractions is equal to one and the velocity 

direction is not changed. 

 

4.  RESULTS AND DISCUSSION 

The decision variables considered in this optimization 

problem are outlined in eqn. (8).  Uncertainties in the 

variables are accounted for in stochastic optimization and 

hence, the solutions obtained using the optimization can be 

implemented in spite of the presence of uncertainties. Using 

the stopping criteria mentioned above (Zielinski and Laur, 

2006), iterations were performed until no change was 

observed in the last 100 iterations as shown in Figure 3 for β 

= 0, 0.01, 0.1,1,10 and 100.  It is seen that the value of the 

objective function is maximum for β = 0. This represented 

the case with minimum weight to variance in J. It is also clear 

that the maximum value of the objective function decreases 

with an increase in β, which provides an increase in 

robustness to uncertainty. Also, variations in the objective 

function with pressure and temperature for β =0 are shown in 

Figure 4. Optimal design variables are summarized in Table 6 

for stochastic and deterministic optimization. The term 

‘unconstrained’ refers to stochastic optimization with β = 0 

and the sum of mole fractions not being constrained to unity. 

It is clearly observed that the sum of the mole fractions is not 

unity in that case, i.e., the constraint is not maintained. All 

the mole fractions can be normalized to make their sum 

unity; however, that will not be an optimal solution.  

 

Figure 2: Change in value of the objective function with iterations 

 

 

Figure 3: Variation of objective function with temperature 

(K) and pressure for stochastic optimization with β =0. 

In our method, the robustness of the optimal design is 

achieved by the inclusion of the variance along with the 

expectation in the objective function (eqn. 10). Also, the 

optimal experimental conditions identified in Table 6 

represent nominal values in the region where experiments 

need to be conducted to obtain accurate parameter estimates. 

Multiple experiments will need to be conducted in this region 

to generate data to obtain the parameter estimates. 

5.  CONCLUSIONS 

Experiments are designed for parameter (pre-exponential 

factors) estimation for a model of the catalytic decomposition 

of ammonia. In this study, stochastic optimization techniques 

are applied to maximize the determinant of the FIM in order 

to find the optimal input conditions for the experiments. The 

two main reasons for pursuing stochastic optimization are: 

(1) the knowledge of nominal values of parameters may not 

be accurate enough for the best D-optimal experimental 

design, and (2) it may not be always possible to dial in the 

exact values of variables determined by the optimizer while 

performing the experiment and errors may occur while doing 

so; hence, uncertainty in the decision variables should be 

taken into account. Sample average approximation was used 

for approximation of the expectation operator in the 

evaluation of the objective function, based on the log of the 

determinant of the Fisher information matrix.  Nonlinear 

constrained particle swarm optimization was also 

incorporated and a method based on rescaling velocities was 

proposed for the same that can be extended to other 

optimization problems.  

 

Figure 4: Variation of objective function with temperature 

(K) and pressure for deterministic optimization 
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Figure 1: Description of out of boundary particle 
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Result 

 

β =0 β = 0.01 β =0.1 β =1 β =10 β =100 Deterministic Unconstrained 

(β = 0) 

𝑇(𝐾) 1000 839 
 

1000 
 

1000 
 

840.548 
 

1000 
 

631.54 
  

1000.00 
 

𝑃(𝑎𝑡𝑚) -1 1 
 

-1 
 

1 
 

-1 
 

-1 
 

-1.00 
 

-1.00 
 

𝜏(𝑠) 2.17 4.176 
 

4.176 
 

4.176 
 

4.176 
 

2.176 
 

2.18 
 

4.18 
 

𝑎𝑣(1 𝑐𝑚⁄ ) -1.301 0.699 
 

0.699 
 

0.699 
 

-1.301 
 

-1.301 
 

-1.30 
 

0.70 
 

𝑥1(𝑁𝐻3) 0.369 0.79 
 

0.810 
 

0.873 
 

0.411 
 

0.063 
 

0.08 
 

0.76 
 

𝑥2(𝐻2) 0.001 0.001 
 

0.012 
 

0.001 
 

0.007 
 

0.218 
 

0.00 
 

0.01 
 

𝑥3(𝑁2) 0.236 0.045 
 

0.170 
 

0.008 
 

0.001 
 

0.105 
 

0.00 
 

0.99 
 

𝑥4(𝐴𝑟) 0.393 0.163 0.008 0.118 
 

0.580 0.615         0.92    0.28 
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