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Abstract: We propose an approximate model in form of a system of ordinary differential
equations (ODEs) for a class of first-order multivariate linear partial differential equations
(PDEs) of the hyperbolic type. The resulting scheme utilizes the method of moments and least-
square approximations over orthogonal polynomial bases for the factors of PDE depending on
the spatial coordinate of the PDE. The class of examined PDEs appears typically in population
balance systems with fines removal. The proposed modeling approach is generally of interest for
control and optimization of multivariate systems with distributed parameters.
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1. INTRODUCTION

The present paper is devoted to design of an approximate
ODE modeling scheme for multi-variate first-order hyper-
bolic partial differential equations (PDEs) of the form:

∂tf(x, t)+∂TxG(x, t)f(x, t)+h(x)f(x, t)=B(t)δ(x), (1a)

with given initial condition f(x, 0) = f0(x), and nota-
tional conventions: x = (x1 . . . xn)T , ∂t = ∂/∂t, ∂i =
∂/∂xi, ∂

T
x = (∂1, · · · , ∂n), G(x, t) = (G1, · · · , Gn)T and

δ(x) =
∏n
i=1δ(xi). Furthermore, we assume separability

conditions for the decaying and growth rate terms:

h(x) =
∏n
i=1hi(xi), (1b)

Gi(x, t) = γi(xi)G0,i(t). (1c)

A variety of corresponding numerical schemes exist in
the engineering and applied mathematics literature, in-
cluding the finite difference schemes, the high-resolution
finite volume methods (Koren, 1993), quadrature method
of moments (Qamar et al., 2006), and many other. A
main impetus of the majority of these contributions has
been enhancement of efficiency, accuracy and robustness of
integration schemes. Our approach, in a series of previous
articles, has however consisted in the design of approximat-
ing models in form of various structures of systems of ordi-
nary differential equations (ODEs) based on the standard
method of moments. In particular, in the previous work
(Bajcinca et al., 2014), we proposed such solutions based
on polynomial approximations of the terms γi(xi) > 0, x >
0, for the sub-class of systems (1a) with hi(xi) ≡ 0. The
present work is an extension thereof, where the functions
hi(xi) are assumed to be arbitrary continuous functions
accepting an expansion over a polynomial space.

The PDE (1) appears frequently in population balance
systems. In the source term on the right-hand side of
Eq. (1a), B(t) stands for the birthrate function, and δ(x)

is the Dirac function, suggesting that new population in-
gredients are born at a negligible size. The function f(x, t)
represents the population density function defined as the
number of particles per unit volume in the property space,
i.e., the net number of particles is given by

∫
Rn f(x, t)dx,

and f0(x) stands for the given initial density function. The
PDE (1a) is furthermore usually coupled to conservation
laws and additional algebraic kinetic equations, providing
a dynamic feedback via integral terms (i.e., the moments
of f(x, t)) into the birthrate B(t) and growth factors G0,i.
For gaining an insight into the role of the filtering term
h(x) in the equation (1a), let e.g. n = 1, G0,1 = 0 and
B = 0, this leading to: df(x, t)/dt + h(x)f(x, t) = 0. For
x > 0 and h(x) > 0, the function f(x, t) will then decay
in time due to the presence of the factor h(x), which we,
hence, denote as decaying or filtering term.

A prominent application of population balance systems
(Ramkrishna, 2000), where our scheme appears to be
particularly useful is found in the context of multivariate
batch crystallization. Crystallization processes are widely
used in chemical production systems for separation and
purification purposes. To overcome issues related to un-
wanted nucleation and the difficulties resulting thereof in
further downstream processes, such as filtration or dry-
ing, an external fines removal loop is frequently applied.
This technique ensures a significant reduction of the fines
and the problems associated with the nucleation. As such
operations in batch crystallization are commonly modeled
by a decaying term h(x, t) > 0 within a certain range of
size x ≤ xmax in the property space as in (1a), our model
is, additionally, of main interest in control of multivariate
crystallization processes, and, more generally, of the PDEs
of the form (1a). Results related to the case h(x) ≡ 0 can
be found, e.g., in (Bajcinca, 2013), while their extension
to the underlying class (1a) is a matter of future work.
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2. GENERALIZED METHOD OF MOMENTS

We begin with an often used transformation of property
space x→ λ to drop the γi-terms from the PDE (1a), and
a proper scaling of the distribution function f(x, t), (see,
e.g., Bajcinca et al., 2014):

dλi
dxi

=
1

γi(xi)
, i.e., λi(xi) =

∫ xi

0

dζ

γi(ζ)
, (2a)

f̃(λ, t) := f(x(λ), t)
∏n
i=1γi(xi(λi)). (2b)

The functions λi(xi) are monotonous with well-defined
inverses xi(λi). With xi(0) = 0 and dxi

dλi
= γi(xi), we have:

δ(x(λ)) =
δ(λ)∏n
i=1 γi(0)

, γi(0) 6= 0.

With these substitutions, and the identity γi(xi)δ(xi) =
γi(0)δ(xi), the PDE (1a) simplifies in that it gets free of
the size-dependent growth rate terms:

∂tf̃(λ, t) + ∂TλG0(t)f̃(λ, t) + h(λ)f̃(λ, t) = B(t)δ(λ), (3a)

where, with a slight abuse of notation, we adopt: γi(λi) :=
γ(xi(λi)) and hi(λi) := hi(xi(λi)). Then:

f̃(λ, 0) = f0(x(λ))
∏n
i=1γi(λi), (3b)

h(λ) =
∏n
i=1hi(λi), (3c)

G0(t) = (G0,1, · · · , G0,n)
T
, (3d)

and, additionally, it holds: f̃(λ, t) = f̃(λ1, . . . , λn, t), λ =
(λ1, . . . , λn)T , ∂i = ∂/∂λi, ∂

T
λ = (∂1, · · · , ∂n), etc.

Referring to the method of moments, we introduce the
moments of the original distribution function f(x, t) as

µi1...in(t)=

∫
Rn

xi11 . . . x
in
n f(x, t) dx, (4)

were i1, . . . , in = 0, 1, 2, etc. With regard to the mass-
balance law and the kinetics of the particulate process, in
particulate systems, the moments µi1...in invoke frequently
an intrinsic feedback action into the PDE (3a) via integral
terms such as the volume VC that can be expressed in form
of a linear combination thereof. Its definition reads:

VC(t)=

∫
Rn

η(x)f(x, t) dx =

∫
Rn

η(λ)f̃(λ, t) dλ, (5a)

where η(x) denotes the volume of a single particle, and, we
adopt the notational convention: η(λ) = η(x(λ)). Regular
particles exhibit multivariate polynomial expression of the
volume η(x) = η(x1, . . . , xn). For instance, in case of
bivariate particles, we have:

η(λ1, λ2) =
∑

i+j=3
αijx

i
1(λ1)xj2(λ2). (5b)

In particulate systems, the time dependence of the term
B(t) and G0,i(t) in the PDE (3a) is rather implicit and
is determined by the evolution of the volume term VC , as
well as some external input variable u in form of nonlinear
algebraic equations:

B = B(u, VC) and G0,i = G0,i(u, VC). (6)

Following the approach of Bajcinca et al. (2014), in this
section, we introduce the ODE approximate structure for
the PDE (3a). To this end, we invoke polynomial ap-
proximations over a given sequence of polynomials φk(λ),
k = 0, 1, 2, etc, for the factors xi(λ) (appearing in the
integrand of (4)):

xi(λ) ≈
p∑
k=0

bkiφk(λ), (7a)

as well as for the products h(λ)φi(λ):

h(λ)φi(λ) ≈
p∑
k=0

dkiφk(λ), i = 0 . . . p (7b)

where, for simplicity, we drop the coordinate indices
i1, . . . , in, and we let the corresponding p’s be sufficiently
large. The parameters bki and dki in (7) depend on the
chosen polynomial basis. The simplest basis is given by
the monomials φi(λ) = λi, which lead to the so-called
eigenmoments, that have been studied in earlier works of
the authors, (see Bajcinca et al., 2014, for details). For any
basis, appropriate constants cki satisfying

d

dλ
φi(λ) =

i−1∑
k=0

ckiφk(λ), i = 0, 1, 2, etc (7c)

are uniquely defined and can be easily computed. Next,
introduce the generalized moments corresponding to the
scaled density function f̃(λ, τ):

νj1...jn(t) =

∫
Rn

φj1(λ1) . . . φjn(λn)f̃(λ, t) dλ, (8)

where ji = 0, 1, . . . , pi and i = 1, . . . , n. To avoid complex
expressions, the forthcomming deliberations are confined
to the bivariate case, i.e. to n = 2. Then, by applying the
rule of integration by parts and Eqs. (7), we have:

d

dt
νij =

∫ ∞
0

∫ ∞
0

φi(λ1)φj(λ2)∂tf̃(λ1, λ2, t)dλ1λ2

−G0,2

∫ ∞
0

φi(λ1)dλ1

∫ ∞
0

φj(λ2)∂2f̃dλ2

−
∫ ∞
0

h1(λ1)φi(λ1)dλ1

∫ ∞
0

h2(λ2)φj(λ2)f̃dλ2

= φi(0)φj(0)B(t) +G0,1

∫ ∞
0

∫ ∞
0

f̃
dφi
dλ1

φj(λ2)dλ1dλ2

+G0,2

∫ ∞
0

∫ ∞
0

f̃φi(λ1)
dφj
dλ2

dλ1dλ2

−
∫ ∞
0

h1(λ1)φi(λ1)dλ1

∫ ∞
0

h2(λ2)φj(λ2)f̃dλ2

≈ φi(0)φj(0)B(t) +G0,1

i−1∑
k=0

c
(1)
ki

∫ ∞
0

∫ ∞
0

f̃φkφjdλ1dλ2

+G0,2

j−1∑
l=0

c
(2)
lj

∫ ∞
0

∫ ∞
0

f̃φiφldλ1dλ2

−
∫ ∞
0

i−1∑
k=0

d
(1)
ki φk(λ1)dλ1

∫ ∞
0

j−1∑
l=0

d
(2)
lj φl(λ2)f̃dλ2.

Hence, we obtain the following ODE computational
scheme for the generalized eigenmoments νij , i, j ≥ 0:

ν̇ij = φi(0)φj(0)B(t)

+G0,1(t)
∑i−1

k=0
c
(1)
ki νkj(t) +G0,2(t)

∑j−1

l=0
c
(2)
lj νil(t)

−
∑p1

k=0

∑p2

l=0
d
(1)
ki d

(2)
lj νkl(t), (9)

where c
(1)
ki , c

(2)
lj , d

(1)
ki , d

(2)
lj correspond in an obvious manner

to the approximation parameters in the expansion equa-
tions (7). The relationship of the generalized moments νkl
to the monomial ones µij follows now directly from (7a):

µij(t) ≈
∑p1,p2

k=0,l=0
b
(1)
ki b

(2)
lj νkl(t), (10)
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where p1 and p2 are assumed to be sufficiently large. With
reference to Eq. (5b), we finally have:

VC(t) =
∑

i=0,j=0,i+j≤3
αijµij(t). (11)

Next, introduce the system states ν and µ:

ν =


ν00 ν01 · · · ν0p2
ν10 ν11 · · · ν1p2
... · · · . . . · · ·

νp10 νp11 · · · νp1p2

 , µ =


µ00 µ01 · · · µ0w

µ10 µ11 · · · µ1w

... · · · . . . · · ·
µv0 µv1 · · · µvw


and let the constant coefficients in the model (9) for
k = 1, 2 referring to the coordinates λ1 and λ2, be collected
in the corresponding matrices Bk, Ck, Dk, and φ0,k as

Bk =


b
(k)
00 b

(k)
10 b

(k)
20 b

(k)
30

b
(k)
01 b

(k)
11 b

(k)
21 b

(k)
31

...
...

...
...

b
(k)
0,pk

b
(k)
1,pk

b
(k)
2,pk

b
(k)
3,pk

,Ck=


0 c

(k)
10 · · · c

(k)
pk,0

0 0 · · · c
(k)
pk,1

...
...

. . .
...

0 0 · · · c(k)pk,pk−1
0 0 · · · 0

,

Dk =


d
(k)
00 d

(k)
10 · · · d

(k)
pk,0

d
(k)
01 d

(k)
11 · · · d

(k)
pk,1

...
...

. . .
...

d
(k)
0,pk

d
(k)
1,pk
· · · d(k)pk,pk

 , φ0,k =


φ0,k(0)
φ1,k(0)

...
φ(pk,k)


T

.

Then, the ODEs regarding the evolution of the states can
be stated in the following compact form:

ν̇ = C1νG0,1

(
u,µ

)
+ νCT

2G0,2

(
u,µ

)
+B

(
u,µ

)
φ0,1φ

T
0,2 −D1νDT

2 , (13a)

with the output equation given by

µ = B1νBT
2 . (13b)

An important special case with

B
(
u,µ

)
= B0

(
u
)
VC
(
µ
)
, (13c)

arises from modeling the secondary nucleation in crystal-
lization, where existing particles promote the nucleation
of the nuclei. From (11) it follows that with appropriate
matrices V1C,i, V2C,i, the total volume VC of the particle
population may be written using the general expression

VC(µ) =
∑
i

VT
1C,i µV2C,i, n (13d)

It is important to observe that embedding the factor
φi(λ) in (7) is essential for the closure of the above ODE-
systems. Indeed, had one considered the approximation
h(λ) ≈∑p

k=0 dk,0φk(λ) instead, then it would necessarily
lead to an open ODE structure of unbounded order.

We emphasize also that due to the linearity of the
underlying PDE (1), the distribution function f̃ can be

decomposed as f̃ = f̃ (n) + f̃ (s), where the former summand
represents the particular solution resulting from the birth-
rate term B (and zero initial conditions, i.e., f̃0 ≡ 0),
and the latter one as the homogenous solution (invoked

by the initial distribution f̃0 and with B ≡ 0). In other

words, f̃n describes the density of the nuclei and f̃s
describes the evolution of the initial particle density f̃0. As
a consequence, one can associate to each the generalized
moments ν (n)

kl and ν (s)

kl, as well as the monomial moments
µ(n)

ij and µ(s)

ij .

3. LEAST SQUARE APPROXIMATION

Motivated by the deliberations in the previous section,
here we resort briefly to computation of the approxima-
tions of terms xi (λ) and h(λ)φi(λ) in (7) in the least-
square sense over a sequence of real orthogonal polynomi-
als φ0, φ1, φ2, etc, where

φk (λ) =

k∑
l=0

aklλ
l, akk 6= 0 (k = 0, 1, 2, etc). (14)

In other words, we consider numerical solutions to the cor-
responding least-square fitting in discretized formulation:

minimize
bi

m∑
`=0

w`

(
xi (λ`)−

p∑
k=0

bkiφk (λ`)

)2

(15a)

and

minimize
di

m∑
`=0

w`

(
h(λ`)φi(λ`)−

p∑
k=0

dkiφk (λ`)

)2

, (15b)

where w` > 0 stands for the weights, and bi := [b0i . . . bpi]
and di := [d0i . . . dpi] collect the parameters which need
to be estimated, and p and λm = λmax are fixed. A
numerically stable approach to solving the above least-
square approximation problem exploits the orthogonality
property of the polynomial sequence {φk}pk=0. It is a well-
known fact that the best approximating polynomial x̂i (λ)
of degree p for the given function xi(λ) is given by:

x̂i (λ) =

p∑
k=0

bkiφk (λ) ; bki =
〈
xi(λ), φk

〉
, (16)

and, similarly, for h(λ)φi(λ),

h(λ)φi(λ) =

p∑
k=0

dkiφk (λ) ; dki = 〈h(λ)φi, φk〉 . (17)

According to the three-term recurrence formula (Björck,
1996), every sequence of triangular orthogonal polynomials
{φk}pk=0 can be associated with sequences of coefficients
αk, βk and γk, k = 0 . . . p fulfilling

αk+1φk+1 = (λ− βk)φk − γkφk−1, (18)

where αk+1 are non-zero reals, and, by convention, γ0 :=
1, φ−1(λ) ≡ 0, φ0(λ) ≡ 1. For sequences of monical
polynomials {φk}pk=0 it holds:

αk+1 ≡ 1, βk =
〈λφk, φk〉
〈φk, φk〉

, γk =
〈φk, φk〉

〈φk−1, φk−1〉
. (19)

The scheme (18) provides a recursive algorithm for con-
struction of the orthogonal polynomials, where we consider
the discrete inner product:

〈φk, φl〉 =

m∑
`=0

w`φk (λ`)φl (λ`) (20)

over a fixed grid of points. For simplicity, in computa-
tions we typically apply equidistant abscissas. Although in
practice uniform weights are also often utilized (implying
Gram polynomials), other weights may be more suitable
for the specific application at hand. Indeed, our numerical
examinations with the bivariate crystals in the next section
indicate that the weights as defined in Table 2 outperform
the uniform ones in terms of accuracy and stability.
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4. A MOVING GRID DISCRETIZATION BASED
NUMERICAL SCHEME

In this section, we describe an integration scheme used for
comparison of results in the next section. It is based on
the method of characteristics and a moving grid and is
adapted from (Kumar and Ramkrishna, 1997) for the case
of bivariate particles. Thereby, it is beneficial to consider
the basic underlying model (1) in the transformed λ-
coordinates (2). In the following, to improve readability,
the coordinates λ1 and λ2 are relabeled to x and y, i.e.:

x
∧
= λ1, and y

∧
= λ2.

The property space is discretized by means of rectangular
bins, which are utilized in the region where f̃(x, y, t) is
non-zero. At any time, this region can be qualitatively
separated into one part referring to the nuclei and denoted
by the superscript (n), and another one, referring to the
growing seed partciles, denoted by (s). It is then useful to
define m bins referring to nucleation and another r bins
referring to growing seeds.

The rectangular bins are constituted by their left and
right, lower and upper boundaries. In the case of nucle-
ation, the boundaries of the kth bin, k ∈ {1, . . . ,m}, are
denoted, respectively, as x′(n)

k , x′′(n)

k , y′(n)

k , and y′′(n)

k , and we
allow these boundaries to lie outside of the physical domain
(i.e., negative x and/or y). In the case of the growing seeds,
the boundaries of the lth bin, l ∈ {1, . . . , r}, are denoted
as x′(s)

l , x′′(s)

l , y′(s)

l , and y′′(s)

l . The goal is to keep track of the
particle numbers F (n)

k and F (s)

l inside the bins, whereby it
obviously holds:

F (n)

k (t) =
∫ y′′(n)

k

y′(n)

k

∫ x′′(n)

k

x′(n)

k

f̃(x, y, t) dxdy, (21a)

F (s)

l (t) =
∫ y′′(s)

l

y′(s)

l

∫ x′′(s)

l

x′(s)

l

f̃(x, y, t) dxdy. (21b)

Let the bin boundaries move with speeds G0,1(t) and
G0,2(t) in x and y direction, respectively, i.e.:

ẋ′(n)

k = G0,1, x′(n)

k ≥ 0, ẏ′(n)

k = G0,2, y′(n)

k ≥ 0, (22a)

ẋ′′(n)

k = G0,1, x′′(n)

k ≥ 0, ẏ′′(n)

k = G0,2, y′′(n)

k ≥ 0, (22b)

ẋ′(s)

l = G0,1, x′(s)

l ≥ 0, ẏ′(s)

l = G0,2, y′(s)

l ≥ 0, (22c)

ẋ′′(s)

l = G0,1, x′′(s)

l ≥ 0, ẏ′′(s)

l = G0,2, y′′(s)

l ≥ 0, (22d)

and let

∆(n)

k (t) :=
∫ y′′(n)

k

y′(n)

k

∫ x′′(n)

k

x′(n)

k

δ(x)δ(y) dxdy,

i.e.,

∆(n)

k (t) =

{
1, 0 ∈

(
x′(n)

k , x′′(n)

k

]
, 0 ∈

(
y′(n)

k , y′′(n)

k

]
,

0, otherwise.
(23)

Then, it can be shown that the particle numbers evolve as

Ḟ (n)

k =−
∫ y′′(n)

k

y′(n)

k

∫ x′′(n)

k

x′(n)

k

h1(x)h2(y)f̃(x, y, t)dxdy +B(t)∆(n)

k (t),

Ḟ (s)

l =−
∫ y′′(n)

l

y′(n)

l

∫ x′′(n)

l

x′(n)

l

h1(x)h2(y)f̃(x, y, t)dxdy. (24)

To integrate (24), we make the approximation that all
particles within bins are concentrated at certain (moving)
interior points with coordinates x(n)

k (t), y(n)

k (t), (nuclei)
and x(s)

l (t), y(s)

l (t) (for seeds) lying somewhere inside the
corresponding bins, i.e.,

f̃(x, y, t) ≈∑m
k=1 F

(n)

k (t)δ(x(n)

k (t))δ(y(n)

k (t))

+
∑r
l=1 F

(s)

l (t)δ(x(s)

l (t))δ(y(s)

l (t)). (25)

Note that the setting:

ẋ(n)

k = G0,1, x(n)

k ≥ 0, ẏ(n)

k = G0,2, y(n)

k ≥ 0, (26a)

ẋ(s)

l = G0,1, x(s)

l ≥ 0, ẏ(s)

l = G0,2, y(s)

l ≥ 0, (26b)

ensures that the interior particles never leave the bin in
which they appear at t = 0, this implying:

Ḟ (n)

k ≈ −h1(x(n)

k )h2(y(n)

k )F (n)

k (t) + ∆(n)

k (t), (27a)

Ḟ (s)

l ≈ −h1(x(s)

l )h2(y(s)

l )F (s)

l (t). (27b)

If the bins are non-overlapping, approximations for inte-
gral properties of the distribution function, like the mixed
moments or the net volumes VC,n and VC,s (which need to
be computed due to their intrinsic feedback on nucleation
and growth rates), can easily be obtained in a similar
manner, e.g., when η(x, y) is the volume of a single particle,
VC,n ≈

∑m
k=1 F

(n)

k (t)η(x(n)

k (t), y(n)

k (t)). Note that only r + 2
state variables are required to describe the evolution of
the bins referring to the seed part of the PSD: r particle

numbers plus two displacement variables τ1(t) =
∫ t
0
dξ and

τ2(t) =
∫ t
0
dξ; the positions of the bin interior points are

x(s)

l (t) = x(s)

l (0)+τ1(t), y(s)

l (t) = x(s)

l (0)+τ2(t), and analogous
expressions hold for the bin boundaries.

The variables are initialized as follows. A given initial
distribution f̃0 = γ1γ2f0 is covered by an a × b-grid of
bins, where r = ab, and the initial particle numbers are
approximated as

F (s)

l (0) = 1
4

(
x′′(s)

l − x′(s)

l

) (
y′′(s)

l − y′(s)

l

)
×
(
f̃0(x′(s)

l , y
′(s)

l )

+ f̃0(x′(s)

l , y
′′(s)

l )+f̃0(x′′(s)

l , y′(s)

l )+f̃0(x′′(s)

l , y′′(s)

l )
)
.

Furthermore, the m nucleation bins are initialized as

x′(n)

k (0) = y′(n)

k (0) = k−m−1
m

√
2
2 λmax,

x′′(n)

k (0) = y′′(n)

k (0) = k−m
m

√
2
2 λmax,

where λmax is an a priori assumed maximal possible
length in the transformed property space (c.f. Table 2)
of the nucleation locus on the basis of known maximum
displacement variables τ1,max, τ2,max. The bin interior
particles are also initially placed at the bin centers. Then,
moving the negative nucleation bin boundaries and bin
centers in accordance with

ẋ′(n)

k = ‖G0‖, x′(n)

k < 0, ẏ′(n)

k = ‖G0‖, y′(n)

k < 0,

ẋ′′(n)

k = ‖G0‖, x′′(n)

k < 0, ẏ′′(n)

k = ‖G0‖, y′′(n)

k < 0,

ẋ(n)

k = ‖G0‖, x(n)

k < 0, ẏ(n)

k = ‖G0‖, y(n)

k < 0,

where 1 ≤ k ≤ m, ensures that at any time exactly one bin
contains the origin and, therefore, absorbs the nucleation
term, and that the nucleation interior points have to pass
the origin and therefore lie on the nuclei locus. The size of
a bin can change as long as it contains the origin.

5. NUMERICAL EVALUATION

The proposed scheme shall now be numerically evaluated
on a case-study with a bivariate batch crystallization
process. In Section 2 we already emphasized that therefore
an auxiliary dynamics is required to couple to the proposed
ODE scheme (9), leading to algebraic feedback expressions
in the form (6). The fundamental force for crystallization
from the solution arises effectively from the relative level
of supersaturation σ, which is a measure of the difference

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 243



between the solution concentration (or mass fraction) c
and saturation concentration (csat):

σ = c/csat − 1 with c = mc/(mw +mc), (28a)

where mw is the solvent and mc the solute mass. The
saturation concentration csat is fixed by the temperature
T according to the empirical model csat = a0+a1T+a2T

2.
The nucleation rate B and the growth rates G0,1 and G0,2

are driven by the supersaturation level according to

B = kbσ
bVC , G01 = kg1σ

g1 , G02 = kg2σ
g2 , (28b)

where kg1 , g1, kg2 , g2, kb and b are empirical kinetic
parameters. The solute consumption is described by the
mass-balance law:

c(t) = c0 − ρ(VC(t)− VC,0), (28c)

where ρc is the mass density of crystal particles, and c0,
VC,0 refer to the initial conditions. Finally, the expressions
(6) result now directly by combining the latter equations,
whereby u refers to the temperature T .

The problem data collected in Table 1 correspond to
the crystallization of KDP (KH2PO4) dissolved in water.
Notice that the data are defined with respect to the solvent
mass. They are originally borrowed from (Ma et al., 2002)
and also utilized in our previous work, (e.g., Bajcinca et al.,
2014, and the references therein). Note that this model has
size-independent growth rates, i.e. γ1(x1) = γ2(x2) = 1, as
our primary focus here lies on the intricacies caused by the
filtering term h(x1, x2).

We examine four different simulations case-studies of a
batch process, which are designed to cover a wide range
of operation conditions regarding time-scale, relative ratio
of nucleation to seed mass, and control policies. The first
two, hosted in Fig. 1 and Fig. 2, refer to the case with
h(x1, x2) ≡ 0, while Fig. 3 and Fig. 4 include the simu-
lations with non-zero h(x1, x2) = h1(x1)h2(x2), where the
filtering factors hi(xi), i = 1, 2, are specified in Table 2.
Hereby we also list the weights w` and the least-square
parameters pi andmi, c.f. Eq. (15). The plots are organized
as follows. We show the total number of nucleated crystals
(µ(n)

00, top left diagrams) and the total volumes of the
nucleation (VC,n, top right) and the growing seeds (VC,s,
bottom right).

For comparison purposes, the simulation results corre-
sponding to our proposed method (indicated by pol see
Section 2) and those corresponding to the moving grid
discretized numerical scheme (moc ) are plotted in the
same diagrams. Note that, while in many cases the plotted
curves virtually coincide, their individual presence is indi-
cated by the respective (superimposed) marker symbols.
The bottom left diagrams reflect the process in the prop-
erty space. Note that target locations A and B are lying on
the same, dash-dotted, equivolume curve (see the explana-
tion below). The depicted path is traversed by the center
of the growing seeds distribution according to the pol and
moc simulations. Furthermore, the moc simulation yields
information on the nucleation PSD at final time. The latter
is illustrated by bars branching off the nucleation loci
and pointing upwards resp. downwards, effectively forming
shaded areas. The base points mark the positions xk of the
bin centers and the lengths indicate the net (estimated)
masses Mk = ρcη(xk)Fk, with η(x) = x21x2− 2

3x
3
1, of nuclei

in the respective bins (according to the provided scale).
For details on the evolution of the momentary nuclei locus
the reader is referred to Fig. 1 in (Bajcinca et al., 2014).

Level sets are depicted for the initial seed distribution,
and, in the cases with fines dissolution, also for the filtering
function h(x1, x2), i.e., h(x1)h(x2) = const.

We specify the desired shape in terms of the center of
the narrow growing seeds distribution, which is initially
located at xref,0. Two target locations xref,des, A and B, are
selected for this case study in the following way. For con-
stant temperature control (i.e., isothermal operation), the
process simulations exhibit near-equilibirum conditions af-
ter 120 minutes. The temperature T is chosen such that
in this equilibrium the volume of the grown seeds has con-
verged to a prescribed value VC,s = 6.1 [mm3/gsolv]. With-
out fines dissolution (h ≡ 0), this requires T = 27.447 [◦C]
and the seed distribution center converges to target A.
When the fines dissolution is in operation, the temperature
has to be adjusted to T = 30.78 [◦C], resulting in the
convergenve to target B. We also perform simulations
for the isothermal operation of the process without fines
dissolution at T = 30.78 [◦C], and operation with fines
dissolution at T = 27.447 [◦C]. In these “mismatched”
cases, the final seed volume misses the prescribed value
VC,s = 6.1 [mm3/gsolv] by undershooting (see Fig. 2) or
overshooting (see Fig. 3) it. Moreover, we perform sim-
ulations for the case of constant supersaturation control
(which can be shown to minimize the batch time) aiming
at target A or B. Several remarks are now of order.

(i) Apart from some small errors in simulations with
non-zero filtering h-factor (e.g. in µ00 in Fig. 3), the ac-
curacy of our scheme (pol) matches very tightly to that
of the discretized model scheme (moc) in all conditions
and simulation scenarios. Hereby, we apply least-square
fitting in Eq. (15) with p1 = p2 = 22 and for the dis-
cretization scheme about: 300 bins with λ1,max = 0.5mm
and λ2,max = 1mm. Consequently, the order of our ODE
scheme is 2 × 23 × 23 = 1058, while that of the moving
grid scheme is 2× 3× 300 = 1800.

(ii) It can be shown that the trajectories corresponding
to the scenario with constant supersaturation are generally
time-optimal. Now, a comparison of the bar plots of Figs. 1
and 3 with A as the final location, and Figs. 2 and 4 with
B as the final location, indicates a lower amount of the
resulting nuclei in cases with fines removal due to the non-
zero h-term. These outcomes are, of course, a consequence
of the dissolution and they are also visible in the top-right
plots corresponding to the nuclei volume VC,n.

(iii) It is interesting to observe that small deviations of
the destination point (i.e. A and B) in the property space
are associated with large changes in the corresponding
required optimal times; c.f. the plots of Figs. 1 and 2 (as
well as those in Figs. 3 and 4).

(iv) Comparison of the two figures involving fines re-
moval (i.e. h-term) reveals that in both control scenarios
(i.e. with constant temperature and supersaturation), the
location A is reached in a very short time at the cost
of large nuclei mass content, while reaching the loca-
tion B takes considerably longer, however at a negligible
amount of nuclei mass. This illustrates the trade-off be-
tween the process duration and nuclei content. In other
words, shorter processes imply larger impurity and vice-
versa. In fact, such situations are present in all batch crys-
tallization processes (see, e.g., the previous contributions
of the authors in the area, such as (Bajcinca, 2013) and
the references therein).
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Figure 1. No fines dissolution (h = 0). Constant temperature and supersaturation excitation. Isothermal excitation
tuned to reach the equilibirum location A.
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Figure 2. No fines dissolution (h = 0). Isothermal excitation tuned in Fig. 3 (to equilibrium location B) captured here
at an earlier equilibirum location on its way to the final destination B.
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Figure 3. Illustrating the fines dissolution. Equilibirum under the isothermal excitation (tuned in Fig. 1) lies beyond the
final destination A.
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Figure 4. Illustrating the action of fines dissolution due to the non-zero decaying h-term. Constant temperature and
supersaturation excitation. Isothermal excitation tuned to reach the equilibirum final destination B.
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Table 1.

Parameter description Symbols Value

growth rate constant kg1 12.1× 10−6 m/s
growth rate constant kg2 100.75× 10−6 m/s
nucleation rate constant kb 7.49× 1010 1/m3s gsolv
growth rate exponent g1 1.48
growth rate exponent g2 1.74
nucleation rate exponent b 0.51
density of crystals ρ 2340 kg/m3

1st solubility parameter a0 0.2087
2nd solubility parameter a1 −9.7629× 10−5 1/◦C
3rd solubility parameter a2 9.3027× 10−5 1/◦C2

Filtering term h(x) = h1(x1)× h2(x2)

hi(xi) = kh,i(1− (1+exp(−mh,i(xi−xh,i)))−1)

kh,1 = kh,2 =
√

0.01× 1/s, xh,1 = 0.06 mm, xh,2 = 0.3 mm

mh,1 = 100× 1/mm, mh,2 = 10× 1/mm

Initial conditions

initial seed volume VC,0 0.6879 mm3/gsolv
initial seed mass mseed 1.6 mg/gsolv
initial mass fraction c0 0.307
initial seed PSD x1,0 = 0.196 mm, x2,0 = 0.256 mm

a = −3.479×108 1/(gsolv mm4), b = 1.781×108 1/(gsolv mm2)

f0(x1, x2) = max
[
0, a

(
(x1 − x1,0)2 + (x2 − x2,0)2

)
+ b
]

(v) Finally, we focus on interpretation of some inter-
esting outcomes related to the isothermal control policies.
The essentially larger nucleation masses as depicted in the
pendant top-right plots of Figs. 1 and 3 result from the dif-
ferent levels of the isothermal excitation at T = 27.447◦C
(in Fig. 3) and T = 30.78◦C (in Fig. 4). This implies more
intensive nucleation and growth of the particles in the
beginning of the process excited by a lower temperature in
Fig. 3. As a result, a large amount of particles manages to
cross fast over the dissolving area occupied by the filtering
h-term in Fig. 3. This is clearly indicated in the bottom-
left plot of Fig. 3, whereby the seed particles considerably
miss the destination location A by landing at another
equilibirum location beyond, i.e. they grow at larger sizes
than those in the pendant top-left plot in Fig. 1. It is
interesting to observe that because of this condition, the
same order of the available nuclei particles at the end of
the batch (c.f. pendant top-left plots corresponding to µ00

of Figs. 3 and 4) produce quite different order levels of
the nuclei mass. We, finally, remark that the isothermal
scenario in Fig. 4 demonstrates the accurate operability
of our scheme under diverse conditions within a single
operational mode.

CONCLUSION

In this work we introduce an ODE modeling structure for
a special class of the PDE systems arising in particulate
systems. The proposed scheme represents an extension to
the theory of the approximate methods of moments, which
has been developed by authors in a series of previous
papers. The specifics of the presented scheme focus on the
impact of a filtering mechanism in a multivariate PDE,
which, for instance, may amount to external fines removal
in particulate systems. While in this article we focus on
derivation of the ODE scheme and its verification by means
of extensive numerical simulations, our results provide a
useful basis for solving control and optimization problems
for special classes of particulate processes with specific
filtering and size-dependent growth rate dependencies.

Table 2.

Parameter description Symbols and values

moc moving grid model (λ1 = x1, λ2 = x2)
Maximal x1,max = 0.5× 10−3 m

particle dims. x2,max = 1× 10−3 m
Boundaries of the (x(s)

1,min, x
(s)

1,max)=(0.15, 0.23)×10−3 m

init. seed grid (x(s)

2,min, x
(s)

2,max)=(0.21, 0.29)×10−3 m

Boundaries of the (x(n)

1,min, x
(n)

1,max) = (−
√

2/2, 0)× λmax

init. nucl. grid (x(n)

2,min, x
(n)

2,max)=(−
√

2/2, 0)× λmax

λmax=x1,max−x(s)

1,max+x2,max−x(s)

2,max

Number of bins m+ r = 100 + 15× 15

Polynomial moment model pol
Maximum order p1 = p2 = 22
No. of grid. pts. m1 = m2 = 1000
Max. particle dims. see moc settings
Bound. seed PSD see moc settings
Weights for polyn. x`,i=xi,max `/(mi −1), 0 ≤ ` ≤ mi−1
constr., i ∈ {1, 2} w`,i=(1/x31,i)

2, ` = 0

w`,i=(1/x3`,i)
2, 1 ≤ ` ≤ `h,i

w`,i=(1/x3`h,i,i
)2, `h,i+1 ≤ ` ≤ mi−1

where `h,i is defined as the maximum
` such that x`,i < xh,i

Simulations with pol model and moc model
ODE solver ode45 (Matlab R©),

Rel. and abs. tol. 1× 10−6

Max. step size 10 sec
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