
Fast Mesh-Sorting in Multi-objective
Optimization ?

Narendra Patel ∗ Nitin Padhiyar ∗∗

∗ Chemical Engineering Department, Vishwakarma Government
Engineering College, Chandkheda, Ahmedabad-382424, Gujarat, India.

(e-mail: narendra@iitgn.ac.in)
∗∗Department of Chemical Engineering, Indian Institute of Technology

Gandhinagar, Ahmedabad-382424, Gujarat, India. (e-mail:
nitin@iitgn.ac.in)

Abstract: A single parameter based fast mesh-sorting is proposed in this work. The single
parameter algorithm as compared to non-dominated sorting eliminates the classification of
the population into non-dominated fronts and calculating crowding distance. The proposed
one parameter approach also provides flexibility of choosing any probability based selection
operator. On the other hand, non-dominated sorting approach can only use tournament selection
directly. We have considered Zitzler-Deb-Thieles (ZDT) test functions to test computational and
convergence capabilities of proposed algorithm. The performance of the proposed algorithm
is compared with conventional Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and
NSGA-II with a recent fast corner-sort algorithm. We have also considered optimal control of
fed-batch reactor as Multi-objective optimization application.

Keywords: Multi-objective Optimization, Genetic Algorithm, NSGA, mesh-sort

1. INTRODUCTION

Multi-objective optimization (MOO) is a class of optimiza-
tion, which deals with multiple and conflicting objectives
simultaneously. Some examples of sets of conflicting objec-
tives are: capital cost and operating cost, selectivity and
conversion, quality and conversion, profit and environmen-
tal impact, and profit and safety cost. MOO problems with
conflicting objectives will have a set of solutions, which are
called pareto optimal solutions (Steuer, 1989). Biologically
inspired evolutionary algorithms have gained significant
attention for past two decades for solving MOO problems.

The pioneering work on the evolutionary approach to
solve MOO was carried out in mid-1990s (Schaffer, 1985).
Though, his Evolutionary Algorithm (EA) was biased
towards few points on the pareto front, which was taken
care by Goldberg et al. (1989) and Deb (1995). Since
then, Non-dominated Sorting Genetic Algorithm (NSGA)
proposed by Srinivas and Deb (1995) has been widely used.
NSGA was criticized for its large computational time, non-
elitism approach, and not having a sharing parameter.
Deb et al. (2002) addressed these issues and presented the
modified NSGA, which they called NSGA-II. Since then,
NSGA-II has been widely accepted and applied Genetic
Algorithm (GA) for MOO in its original and modified
version in various fields.

Non-dominated sorting is an important component of
pareto based multi-objective optimization. In non-dominated
sorting, all the population members are classified into
different ranks of pareto fronts, with 1st rank pareto front
closest to the true pareto front. All the members of the
? IIT Gandhinagar, Ahmedabad, Gujarat, India

first p ranks of the pareto fronts are selected for the next
generation, if the sum total number of members of the
p pareto fronts are less than or equal to the population
size. Thus, these members have the equal fitness values for
survival selection. The remaining population members are
selected from the next higher rank pareto front depending
upon the crowding distance criteria.

The dominance based ranking of populations requires mul-
tiple comparisons of members for sorting and hence are
computational expensive. Wagner et al. (2007) demon-
strated why the performance of well-established Evolution-
ary Multi-objective Optimization Algorithms (EMOA),
NSGA-II and SPEA2 rapidly degrades with increasing
dimensions. They also analysed that newer EMOA like
ε-MOEA, MSOPS, IBEA and SMS-EMOA cope very well
with high-dimensional objective spaces. Wang and Yao
(2014) present computationally more efficient corner-sort
algorithm for non-dominated sorting. A sorting approach
based on summation of normalized objective values and
diversified selection is proposed by Qu and Suganthan
(2010). They observed this sorting to be faster and giv-
ing better convergence for both multi-objective evolution-
ary programming (MOEP) and multi-objective differen-
tial evolution (MODE). Lu and Yen (2003) proposed a
rank-density-based genetic algorithm (RDGA)with rank-
ing method with automatic accumulated ranking strat-
egy, and a ”forbidden region” concept. They used a re-
vised adaptive cell density evaluation scheme and a rank-
density-based fitness assignment technique.

We in this work follow a different sorting mechanism
approach than the above mentioned sorting mechanisms
for better computational efficiency. Instead of classifying

Preprints of the
9th International Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control
June 7-10, 2015, Whistler, British Columbia, Canada

TuPoster2.27

Copyright © 2015 IFAC 937

the population members in various ranked pareto fronts,
we divide the entire population into a multidimensional
mesh in objective space. Here, the location of each popu-
lation member in the mesh determines the quality of the
population member. A fitness value for each population
member is assigned depending upon the location of it in
the m-dimensional mesh. Further, various fitness criteria
such as large pareto front uniformity and the total span
of the m objective functions, are also accounted for in
the fitness value of the population member. Later, this
fitness value of each member having m objectives is used
in both, the fitness selection and survival selection steps
in the algorithm.

Note that this sorting mechanism for selection purpose can
be used under any population based multi objective ap-
proach. In this work, the proposed sorting mechanism has
been compared with popular non-dominated sorting (Deb
et al., 2002)and recently proposed sorting method, namely
corner-sort (Wang and Yao, 2014) under GA framework.
Zitzler-Deb-Thieles (ZDT) test problems (Zitzler et al.,
2000) covering different complexities of pareto fronts have
been used as test problems in this work. The evaluation of
the proposed algorithm is carried out using a convergence
metric, namely generational distance; the distance of the
pareto front from the true pareto front. Finally, the pro-
posed mesh-sort based GA has been applied for an optimal
control of a fed-batch reactor producing glucanase (Shene
et al., 1999).

The proposed algorithm is presented in Section 2 along
with illustration. MOO mathematical functions and the
performance measure, namely generational distance are
discussed in Section 3. Results for test functions are
discussed in Section 4. Industrial application along with
results have been discussed in Section 5 and conclusions
of this work in Section 6.

2. PROPOSED MESH-SORT BASED GA FOR MOO

A stepwise implementation of the proposed mesh-sort
based GA for minimization of all objectives has been
summarized as follows,

(1) Initialize population of size Np.
(2) Calculate the objective function value for each mem-

ber of population.
(3) Classify the parents based on their total weight as per

the mesh-sort algorithm discussed in section 2.1.
(4) Use any selection operator for selecting the population

members for crossover.
(5) Carry out crossover and mutation of selected mem-

bers to produce Np children.
(6) Calculate the objective function value for each mem-

ber of the child population.
(7) Elitism selection: Sort the 2Np members (Np parents

and Np children) using mesh-sort and select the best
Np members.

(8) This completes one generation. Stop if appropriate
convergence criteria has been met. Else go to 3.

The proposed algorithm uses mesh-weight assignment to
sort the population for the selection. A fitness value for
each population member is assigned depending upon the
location of it in the Npm-dimensional mesh. Note that

the member located in the bottom left corner will be the
most preferred one while that at top right corner will be
the least preferred. An additional weightage is assigned to
a member to account for the uniformity and distribution.
Also, an additional weight is provided to a member having
the best value along each dimension in the objective space.
The stepwise algorithm for mesh weight assignment to the
population members for mesh-sorting is discussed in the
next sub-section.

2.1 Mesh-weight assignment

• Step 1: Construct an equi-distance mesh of the dimen-
sion Npm in objective space. Thus, for two objectives,
the mesh will contain Np strips along each of the two
objectives.

• Step 2: Assign rank in descending order from Np
(best) to 1 (worst) to all the grids along each objective
dimension. Note that each population member carries
rank along each of the m dimensions.

• Step 3: The mesh weight (mw) for a member located
in the Npm in objective space is the sum total of all
the ranks.

• Step 4: Best weight (bw): Assign a weight of Np to
the best member along each objective.

• Step 5: Strip weight (sw): Select an objective dimen-
sion (from j=1 to m) and select one best member for
each of the Np rank-strips. The best member for a
given strip is computed based on the j + 1th objective
function for j=1 to m-1. On the other hand for the last
objective dimension, the best member is chosen de-
pending upon the 1st objective function. Assign strip
weight (sw) equal to Np to the best member if it is
improving in next dimension.

• Step 6: Neighbour weight (nw): Every member getting
strip weight is also assigned a weight proportional to
dimensionless distance in terms of number of strips.
The dimensionless distance is multiplied by a factor.
This multiplying factor is Np for first Np generations
and the factor is generation number (nGen) after Np
generations.

• Step 7: The total weight for each population mem-
ber is the sum total of all the individual weights,
namely mesh weight (mw), best weight (bw), strip
weight (sw), and neighbour weight (nw). Note that
the member having the maximum total weight will be
the most preferred one.

2.2 Illustration of mesh-weight assignment

Assignment of the fitness value to each population member
is explained as follows using a fictitious example with two
dimensional space. The two objective function values of
each of the ten population members (Np) are shown in
table (1) and marked by letters A to J in Fig. 1. The
weight assignment is as follows:

• The minimum and maximum values of f1 are 20 and
30, respectively, while that of f2 are 10 and 40.
• Divide the f1 space of [20, 30] in 10 (Np) equal sized

compartments, each of span one.
• Divide the f2 space of [10, 40] in 10 (Np) equal sized

compartments, each of span three.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 938

20 21 22 23 24 25 26 27 28 29 30

10

13

16

19

22

25

28

31

34

37

40

f
1

f 2

1

1

A

2

2

B

3

3

C

4

4

D

5

5

E

6

6

F
7

7

G

8

8

H

9

9

I
10

10

J

Fig. 1. Population in two dimensional space for Illustration
of mesh weight assignment

• Number the rows in increasing order starting from 1
at the top and 10 at the bottom.
• Number the columns in increasing order starting from

1 at the right 10 at the left.
• Mesh weight (mw): Column number represents the

mesh weight along f1 and row number represents
mesh weight along f2. These entries are shown in
columns 4 and 5 in table (1).
• Best weight (bw): Best member along f1, point A

is assigned a weight of 10 equivalent to population
size, and similarly best member along f2, point I is
assigned a weight of 10. The corresponding entries are
shown in the last column in table (1).
• In case where multiple members belong to one row

or column a strip weight (sw) is assigned to the
maximum of one of them. Members A, C and I are
assigned sw = 10 (Np) along f1 and I,F and A are
assigned sw = 10 (Np) along f2. The corresponding
entries are shown in the second and third columns of
table (2).
• For getting uniformity in distribution another neigh-

bour weight(nw) is assigned along each dimension.
Normalized distance (distance divided by mesh span)
between A to C is multiplied with 10 (Np) and as-
signed to C as neighbour weight. The corresponding
entries are shown in the fourth and fifth columns of
table (2).
• All the weights are summed as total weigh and shown

in last column in table (2). Population is sorted based
on the total weight. Here, C is the best member and
J is the worst member.

3. MOO TEST FUNCTIONS AND PERFORMANCE
EVALUATION METRIC

We have used five Zitzler-Deb-Thieles (ZDT) test prob-
lems [ZDT 1, ZDT2, ZDT3, ZDT4, and ZDT6] suggested
by Zitzler et al. (2000) as test functions for evaluating the
proposed sorting algorithm. Since they are well known test
functions we skip the detail of the selected MOO test func-
tions here. All the problems have two objective functions,
which are to be minimized. Each test function presents
certain difficulties for multi-objective optimisation.

Performance metrics are important performance assess-
ment measure, which also allow us to compare algorithms.
Deb (2001) classifies them in three categories, metrics
evaluating closeness to the pareto optimal front, metrics
evaluating diversity amongst non-dominated solutions and
metrics evaluating closeness and diversity. We in this work
choose Generational Distance (GD) metric (γ) to represent
convergence to true pareto front defined as follows,

γ =

(∑|Q|
i=1 d

p
i

)1/p
|Q|

(1)

where Q represents solution set having |Q| members. we
use p=2 and di is minimum distance between the member
in solution set and nearest member is true pareto set,
which is defined as.

di = min

√√√√ M∑
m=1

(f
(i)
m − f∗(k)m)

2
(2)

where M represents number of objectives, i and k rep-
resent member index in solution set and true pareto set
respectively.

4. RESULTS AND DISCUSSION FOR TEST
FUNCTIONS

Real coded GA program for MOO developed in MATLAB
2011 is used in this work. It uses the proposed mesh-sort
for fitness calculation, tournament selection, simulated
binary crossover (SBX) and non-uniform mutation with
elitism survival selection operators. The NSGA-II code
uses same simulated binary crossover, SBX (with ηc = 20,

Table 1. Mesh weight calculation for popula-
tion in two dimensional space

Label f1 f2 mw-f1 mw-f2 bw

1 2 3 4 5 6

A 20.0 26.5 10 5 10
B 21.2 40.0 9 1 0
C 23.1 21.5 7 7 0
D 23.4 20.2 7 7 0
E 23.4 32.5 7 3 0
F 23.9 19.4 7 7 0
G 25.2 36.2 5 2 0
H 25.6 26.0 5 5 0
I 29.5 10.0 1 10 10
J 30.0 25.5 1 5 0

Table 2. Strip weight and neighbour weight
calculation for population in two dimensional

space

Label sw-f1 sw-f2 nw-f1 nw-f2 total wt

1 2 3 4 5 6

A 10 0 0.00 35.20 70.20
B 0 0 0.00 0.00 10.00
C 10 0 74.60 0.00 98.60
D 0 0 0.00 0.00 14.00
E 0 0 0.00 0.00 10.00
F 0 10 0.00 45.62 69.62
G 0 0 0.00 0.00 7.00
H 0 0 0.00 0.00 10.00
I 0 10 64.17 0.00 95.17
J 0 0 0.00 0.00 6.00

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 939

crossover probability 0.90),non-uniform mutation (with b
= 4, mutation probability 0.2) and elitism survival selec-
tion operators along with non-dominated sorting, crowd-
ing distance calculation and binary tournament selection
operators as recommended in the NSGA-II (Deb et al.,
2002). Corner-sort MOGA uses all same operators replac-
ing non-dominated sorting with corner-sort (Wang and
Yao, 2014). Population size is kept 100 for all runs. As GA
is a stochastic optimization technique, it does not converge
to the same solution every time even with the same initial
population. Hence, we carry out ten simulation runs for
every combination of the test application with different
initial population. The results reported are average of ten
simulation runs.

4.1 Performance comparisons based on computational
time

Since the selected test problems have known true pareto
fronts, it is possible to evaluate convergence as the perfor-
mance metric, γ. Convergence metric γ for ZDT1 function
is presented in Fig. 2. The generation wise convergence for
all three algorithms are observed very close to each other
with a marginal improvement by the mesh-sort GA after
50 generations. Though, the major contribution of the pro-
posed mesh-sort algorithm is visible when the convergence
plot is made as a function of CPU time. While corner-
sort algorithm provides faster convergence, the proposed
mesh-sort is the fastest in convergence. The convergence
(γ=0.01) achieved using NSGA-II at 5 s has been achived
at 4 s using the corner sort (20% faster) while it is 2 s
(60% faster) using the proposed mesh-sort algorithm.

Similar convergence results for ZDT2 test function are
presented in Fig 3. Approximately 50% saving in computa-
tional time has been achieved using corner-sort compared
to NSGA-II, while it is 75% using the mesh-sort approach.
CPU time for all test cases at the end of 100 generations
are summarised in table (3) along with % CPU time saving
with corner-sort and mesh-sort algorithms as compared
to NSGA-II. It clearly reflects that the mesh-sort MOGA
needs less time for 100 generations consistently. To analyse
this results in more details we present effect of population
size on computational efforts for proposed algorithm and
compare it with corner-sort and NSGA-II.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

Generation No

m
ea

n
γ

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

CPU time

m
ea

n
γ

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

Fig. 2. Generation wise convergence(left) and convergence
as a function of CPU time(right) for ZDT1

4.2 Effect of population size on computational time

The population size is very important parameter which
plays role on computations required for sorting. Popu-
lation size effect on average CPU time required for one

0 50 100 150
0

1

2

3

4

5

Generation No

m
ea

n
γ

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

0 1 2 3 4 5 6
0

1

2

3

4

5

CPU time

m
ea

n
γ

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

Fig. 3. Generation wise convergence (left) and convergence
as a function of CPU time (right) for ZDT2 function

generation for mesh-sort MOGA, NSGA-II and corner-
sort MOGA algorithms are presented for ZDT1 and ZDT2
functions in Fig. 4. As can be observed from left figure
for ZDT1 function, the difference in computational effort
becomes more prominent with larger population size. For a
population size of 500 while NSGA-II takes 0.69 s, corner-
sort takes 0.39 s and mesh-sort takes only 0.07 s. Similar
observations can be made for right side plot of ZDT2
function. It should be noted that the difference is expected
to increase even more drastically beyond 500 population
size.

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Population size

C
P

U
 ti

m
e

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Population size

C
P

U
 ti

m
e

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

Fig. 4. Effect of population size on one generation CPU
time for ZDT1 (Left)and ZDT2 (right) functions

4.3 Convergence to true pareto front

The pareto front obtained for one of the run for ZDT1
function at the end of 100 and 250 generations are pre-
sented along with true pareto fronts in Fig. 5. Similar
pareto front plots for ZDT2 function are presented in Fig.
6. Visually it is very difficult to observe convergence from
those pareto front plots and hence we use generational
distance(GD) metric (γ) to compare convergence. The γ
metric average values at the end of 100 generations for all
test cases are summarised at table (4). Except function
ZDT4 all others show better convergence metric values
for mesh-short MOGA. The ZDT4 function is having
closely located (closer than the mesh size) multiple pareto
fronts which makes it difficult to show better or equivalent
converge for mesh-sort as compared to NSGA-II at same
number of generations. While we compare performance of

Table 3. Average CPU time for 100 generations
using different sorting algorithms

function NSGA-II corner- % mesh- %
sort saving sort saving

ZDT1 3.85 2.67 30.84 1.39 64.02
ZDT2 5.25 2.37 54.86 1.27 75.88
ZDT3 3.93 2.75 29.92 1.42 63.97
ZDT4 6.89 1.66 75.88 0.80 88.41
ZDT6 4.88 2.31 52.72 1.00 79.62

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 940

algorithm based on CPU time, mesh-sort gives the best
result compared to other two algorithms for all functions.
Performance of the proposed algorithm is tested for a fed-
batch reactor control application in next section.

Table 4. Average convergence at the end of 100
generation as Generational Distance (GD)

function NSGA-II Mesh Sort

ZDT1 0.0303 0.0248
ZDT2 0.0398 0.0370
ZDT3 0.0152 0.0147
ZDT4 9.0985 12.7532
ZDT6 0.0726 0.0265

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA
True Pareto front

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA
True Pareto front

Fig. 5. Pareto front for ZDT1 function at the end of 100
generation (left) and 250 generation(right)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA
True Pareto front

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA
True Pareto front

Fig. 6. Pareto front for ZDT2 function at the end of 100
generation (left) and 250 generation(right)

5. OPTIMAL CONTROL OF FEB-BATCH REACTOR

Shene et al. (1999) studied the kinetics for Bacillussubtilis
for the synthesis of a recombinant β-1,3-glucanase enzyme
synthesis. They studied effect of different nutrient feeding
strategies on the synthesis of β-1,3-glucanase and protease
enzymes. We skip the detailed mathematical model de-
scription here for the sake of brevity. The multi-objective
optimal control problem in the fed-batch reactor has been
formulated in section 5.1 and the results are presented in
section 5.2.

5.1 MOO for fed-batch reactor

We here are considering multi objective optimal control
problem for fed-batch fermenter, where productivity and
yield are to be maximised simultaneously for recombinant
β-1,3-glucanase enzyme synthesis. The productivity is
defined as the amount of product formed per unit time
while the yield is defined as the product per unit amount
of substrate fed. The mathematical definitions of the
productivity and the yield are shown in (3) and (4),

respectively. The time history of substrate feed and fed-
batch time are considered to be manipulated variables for
maximizing the two control objectives.

JP =
P (tf)

tf
(3)

JY =
P (tf)∫ tf

0
F (t)SF dt

(4)

Constrains imposed on the fermenter volume and feed rate
are V (t) ≤ 2.5 L and 0 ≤ F (t) ≤ 0.5 L/h, respectively.
The lower and upper bounds on the fed-batch time are
4 and 6 hours, respectively. The initial conditions are
X=0.16 g, G=0 g, P=0 g, S=5 g, V=0.85 L. X, G, P
and S are amount of biomass, β-1,3-glucanase, protease
and substrate, respectively. V is fermenter volume; F is
substrate volumetric feed rate of concentration SF .

5.2 Result and Discussion for fed-batch reactors

Since the selected problems does not have known true
pareto front, an expected pareto front is generated by
running GA for large number of generations. Mesh-sort
MOGA and NSGA-II are run for 1000 generations with
each 500 population size. The final populations of both the
runs are mixed and the resultant pareto of the combined
population is considered as the expected pareto front
for this optimal control problem. The generation wise
convergence profile and the pareto fronts by all the three
MOGAs at the end of 100 generations are shown in
Fig. 7. The pareto front shown is for one of the ten
runs and convergence is average of ten simulation runs.
The overlapping generation wise convergence plot reflects
generation wise closeness of convergence.

0 5 10 15 20 25 30
0

2

4

6

8

Generation No

m
ea

n
γ

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

6.1 6.15 6.2 6.25 6.3 6.35 6.4
6.9

7

7.1

7.2

7.3

7.4

Productivity (g/h)

Y
ie

ld

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA
True Pareto front

Fig. 7. Generation wise convergence(left) and pareto front
at 100 generation(right) for Glucanese application

There is no significant distinction among the three MO-
GAs in the generation wise convergence graphs shown in
Fig. 7. Though the convergence profile as a function of
CPU time shown in Fig. 8 reflects that there is faster
convergence rate using mesh-sorting approach compared
to the other two. Note that the corner-sort MOGA con-
vergence faster till 30 s and merges with the NSGA-
II afterwards. The figure also shows approximately 20%
reduction in computational effort for mesh-sort compared
to NSGA-II and corner-sort. When function evaluation
for application uses dynamic simulation, such reduction
in computational time is remarkable. The time spent on
function evaluation is much more higher than the time for
sorting and hence for similar convergence, the 20% com-
putational time saving is appreciable. Mesh-sort MOGA,
corner-sort MOGA and NSGA-II converge to identical

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 941

0 10 20 30 40 50
0

2

4

6

8

CPU time

m
ea

n
γ

Mesh Sorting MOGA
NSGA−II
Corner Sort MOGA

Fig. 8. Average convergence metirc GD (γ) as a function
of CPU time for Glucanase application

values of metric γ=0.0004 at the end of 100 generations.
The application with large computational requirement for
objective function evaluation also gives faster convergence
is a clear contribution by mesh-sort algorithm.

6. CONCLUSION

Mesh-sort algorithm has been proposed for population
based multi-objective optimization problems. This algo-
rithm eliminates the requirement of classifying the whole
population into non-dominated fronts with different ranks.
In non dominated sorting approach every population mem-
ber’s fitness is identified in terms of the two parameters,
namely front number and crowding distance. In the pro-
posed mesh-sort approach each population member ob-
tains mesh weight contribution by the relative position
of the member in the mesh. Additional strip weight and
neighbour weight account for convergence rate and uni-
form spread of the members in pareto front. Thus the
single fitness value can be used for the survival and fitness
selection steps in MOGA. Though, this sorting can be
applied for any population based MOGA, we show the
results under GA framework in this study. Selection based
on total mesh-weight indirectly selects better members
which are non-dominated.

The proposed mesh sorting based selection has been com-
pared with the widely popular NSGA-II and recently pro-
posed corner-sort based MOGA (Wang and Yao, 2014).
While the generation wise convergence rate by the mesh-
sort approach has been observed to be very close to the
other two sorting approaches, there is significant gain in
the computational time for sorting the population. As a
result, the convergence rate in terms of CPU time has
been found to be considerably higher with the mesh-
sort approach. Further, the single parameter based selec-
tion provides flexibility in using any selection operator
as against tournament selection for NSGA-II. Proposed
mesh-sort MOGA is tested with ZDT test problems and
observed to be computationally more efficient. Finally the
proposed MOGA has been applied to an optimal control
of a fed-batch reactor, where productivity and yield are
optimized by optimizing the substrate feed recipe.

ACKNOWLEDGEMENTS

We acknowledge the Directorate of Technical Education,
Gujarat State and IIT Gandhinagar for supporting this
research work.

REFERENCES

Deb, K. (1995). Optimization methods for engineering
design. Prentice-Hall, New Delhi, India.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.
(2002). A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. Evolutionary Computation, IEEE Trans-
actions on, 6(2), 182–197.

Deb, K. (2001). Multi-objective optimization using evolu-
tionary algorithms, volume 16. Wiley.

Goldberg, D.E., Korb, B., and Deb, K. (1989). Messy ge-
netic algorithms: Motivation, analysis, and first results.
Complex systems, 3(5), 493–530.

Lu, H. and Yen, G. (2003). Rank-density-based multiob-
jective genetic algorithm and benchmark test function
study. Evolutionary Computation, IEEE Transactions
on, 7(4), 325–343.

Qu, B. and Suganthan, P. (2010). Multi-objective evolu-
tionary algorithms based on the summation of normal-
ized objectives and diversified selection. Information
Sciences, 180(17), 3170 – 3181. Including Special Section
on Virtual Agent and Organization Modeling: Theory
and Applications.

Schaffer, J.D. (1985). Multiple objective optimization with
vector evaluated genetic algorithms. In Proceedings of
the 1st International Conference on Genetic Algorithms,
93–100. L. Erlbaum Associates Inc.

Shene, C., Andrews, B., and Asenjo, J. (1999). Fedbatch
fermentations of bacillus subtilis toc46 (ppff1) for the
synthesis of a recombinant -1,3-glucanase: experimental
study and modelling. Enzyme and Microbial Technology,
24(56), 247 – 254.

Srinivas, N. and Deb, K. (1995). Muiltiobjective optimiza-
tion using nondominated sorting in genetic algorithms.
Evol. Comput., 2(3), 221–248.

Steuer, R.E. (1989). Multiple Criteria Optimization: The-
ory, Computation, and Application. Krieger Publishing
Company.

Wagner, T., Beume, N., and Naujoks, B. (2007). Pareto-
, aggregation-, and indicator-based methods in many-
objective optimization. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata (eds.), Evolu-
tionary Multi-Criterion Optimization, volume 4403 of
Lecture Notes in Computer Science, 742–756. Springer
Berlin Heidelberg.

Wang, H. and Yao, X. (2014). Corner sort for pareto-
based many-objective optimization. Cybernetics, IEEE
Transactions on, 44(1), 92–102.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison
of multiobjective evolutionary algorithms: Empirical
results. Evolutionary computation, 8(2), 173–195.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 942

