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Abstract: Dual model predictive control (dmpc) optimally combines plant excitation and
control based on current and predicted parameter estimation errors. Exact solution of dual
control problems with constraints is in general computationally prohibitive. Our deterministic
equivalent of the stochastic optimal control problem enables convergence toward optimality for
a specific class of finite-horizon problems. The cost function shows that the optimal controls
are functions of the current and future parameter-estimate error covariances. Our proposed
objective-function reformulation provides the optimal combination of caution, probing, and
nominal control. We show that the nonconvex optimization problem can be solved as a quadratic
program with bilinear constraints. This type of problem can be efficiently solved with existing
algorithms based on branch and bound with McCormick-type estimators. We demonstrate the
application of dmpc to a singe-input single-output (siso) finite impulse response (fir) system.
In the simulation example the parameter estimates converge quickly, and accurate and precise
estimates are obtained even though the excitation vanishes.
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1. INTRODUCTION

Optimal control of plants under parametric uncertainty
is a challenging task for which a number of approaches
are available. Robust control for systems under worst-
case uncertainties was long a major focus in literature
on uncertainty in control, with a high degree of maturity
reached in the 1990s (Doyle et al., 1990). Adaptive control
(Åström and Wittenmark, 1995) also achieved a state of
considerable maturity by the early 1990s, and the field
includes many well-studied control approaches for systems
with unknown and possibly changing dynamics. Plant
uncertainty and disturbances are in general accounted for
through adjustable control parameters and a mechanism
for adjusting those parameters. Optimal control of systems
with probabilistic uncertainties has received less attention,
and as a result there are fewer strong results in the field.
Minimizing the expected value of some function of the
output error is a challenging problem when the process is
uncertain, and the optimal control must direct the output
toward the reference while also exploring the plant to
generate information on system characteristics.

This dual nature of an optimal control signal for an un-
known plant was first recognized by Feldbaum (1961), who
described the twofold effect of a dual control signal as
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investigating as well as directing. Feldbaum also identi-
fied stochastic dynamic programming as an appropriate
solution method in his series of papers analyzing the dual
control problem. This initial work on dual control was
pioneering in its integration of active learning with mul-
tistage decision making under uncertainty, and provided
a foundation for much of the later work in stochastic
adaptive control.

Dual control is an intuitive and appealing concept to the
control designer, but the development of practical algo-
rithms in the 1960s and 1970s was limited by the avail-
able computational power and the lack of efficient algo-
rithms for nonlinear programming. Åström and Helmers-
son (1986) were among the first to numerically solve a dual
control problem using dynamic programming. They con-
sidered a scalar integrator with one unknown parameter
and spent 180 cpu hours to obtain the solution using a
time horizon of 30 samples (Åström, 1983). The “curse of
dimensionality” renders dynamic programming impracti-
cal for solving even moderately large problems, despite the
superior computers available today. The computational
complexity associated with obtaining dual control laws has
led to a very limited number of industrial implementations.
One of the first applications of suboptimal dual control
in process control was reported by Allison et al. (1995).
They used several heuristics to simplify the control design
and their dual controller improved performance by better
identifying gain changes and preventing turn-off.
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Several strategies to break the curse of dimensionality in
dual control design have been studied in the literature. A
recent approach by Lee and Lee (2009) relies on approx-
imate dynamic programming. Their design uses Monte
Carlo simulations with multiple known suboptimal con-
trollers to define a limited region of the hyper-state space
and then obtains approximate solutions with dynamic
programming within that region. Bayard and Schumitzky
(2010) used forward dynamic programming with particle
filtering and sampling to develop a related method. Both
of these studies demonstrate that even fairly simple dual
control problems require advanced solution approaches.

In this article we consider finite impulse response (fir)
systems with probabilistic parametric uncertainty sub-
jected to white noise. One advantage of this model class is
that it allows for a compact, exact, and computationally
attractive problem reformulation that corresponds to a
well-known bilinear formulation in the field of nonconvex
optimization. The covariance predictions are explicit func-
tions of the decision variables. In our proposed determin-
istic reformulation of the stochastic control problem, the
current covariance matrix provides a rationale for caution,
whereas the future covariance matrices induce probing.

The algorithm we present here is related to our earlier
work (Heirung et al., 2013, 2015) in that we previously de-
veloped algorithms that improve performance by exciting
the plant when parameter uncertainty is large. However,
those approaches are based on (partly) heuristic terms in
the objective function that reward uncertainty reduction,
and not on an exact reformulation of the objective function
like the one we present here. Furthermore, the proposed
reformulations presented in this paper lead to an optimal
control problem with a specific structure, as opposed to a
general nonlinear programming (nlp) problem.

The fir control formulation we present in this paper
ensures that the system is sufficiently excited for accurate
and precise parameter estimation but does not require a
persistently exciting input. Our deterministic equivalent is
formulated such that the excitation term in the objective
function corresponds to a time-varying L-optimal experi-
ment design criterion (see Gevers et al. (2011)).

This article is organized as follows: we formulate the
stochastic control problem in Section 2. In Section 3 we
state and prove a theorem and a corollary that we use
to formulate the equivalent deterministic control problem.
Section 4 contains the dual control algorithm, followed by
a simulation example in Section 5. We provide a brief
discussion of the results in Section 6. In Section 7 we
conclude the paper along with some thoughts for future
work.

2. PROBLEM STATEMENT

We consider the single input single output (siso) output
tracking problem for fir systems of the form

y(t) =

nb∑
j=1

bju(t− j) + v(t) + d(t− 1) (1)

where y(t) is the plant output, u(t) the control input,
v(t) an additive process disturbance, and d(t) can be a
constant or time-varying bias term, all at the discrete time

t. The difference between v(t) and d(t) is that d(t) is Y(t)
measurable (defined below), where Y(t) is the available
information at time t. Often, d(t− 1) = y(t− 1) in a more
general system formulation. For simplicity of exposition
we let d(t) ≡ 0 in the following. The unknown parameters
{bj}nb

j=1 with b1 6= 0 can be independently drawn from

Gaussian distributions; that is, bj ∼ N (b̂j , Pjj) with Pij =
0 for i 6= j. The independent and identically distributed
random variables v(t) are Gaussian with zero mean and
variance r. We collect the parameters in the vector

θ = [b1 b2 · · · bnb ]
>

(2)

and the inputs in a regressor vector such that

ϕ(t− 1) = [u(t− 1) u(t− 2) · · · u(t− nb)]> (3)

and write the plant (1) as

y(t+ 1) = θ>ϕ(t) + v(t+ 1) (4)

A standard definition of information recorded up to and
including time t is the set of all past decisions and
measurements:

Y(t) =
{
u(t), u(t− 1), . . . , y(t), y(t− 1), . . .

}
(5)

In this article we find it convenient to extend this defini-
tion to include future predicted measurements and future
decisions and define

Y(k | t) ={
u(k), . . . , u(t+ 1), ŷ(k | t), . . . , ŷ(t+ 1 | t),︸ ︷︷ ︸

anticipated information, k≥t+1

u(t), u(t− 1), . . . , y(t), y(t− 1), . . .︸ ︷︷ ︸
past information

}
(6)

Note that the future inputs are decisions and not subject to
uncertainty, whereas the future outputs are defined based
on Y(t) in (7). Thus, Y(k | t) does not include information
from the plant beyond time t. However, it can be used to
characterize anticipated information using the future deci-
sions, the current model, and the uncertainty description.

With the mean θ̂(t) = E[θ | Y(t)] =
[
b̂1(t) · · · b̂nb

(t)
]>

we
define the output predictor

ŷ(k + 1 | t) = E
[
y(k + 1)

∣∣Y(t)
]
, k ≥ t

= θ̂>(t)ϕ(k) (7)

Accordingly, P (t) := E[(θ− θ̂(t))(θ− θ̂(t))>] is the covari-
ance matrix for the estimates at time t.

We define the moving-horizon control cost

JN (t) =

t+N−1∑
k=t

{
E
[
(y(k + 1)− y∗(k + 1))2

∣∣Y(k | t)
]

+ w2u
2(k) + w3(∆u(k))2

}
(8)

for mpc (see Mayne et al. (2000)), where 1 ≤ N ≤ ∞
is the length of the prediction horizon, y∗(k + 1) is the
output reference, w2 ≥ 0, w3 ≥ 0 are tuning weights, and
∆u(k) := u(k)− u(k − 1) is the control input change.

The moving-horizon stochastic optimal control problem we
want to solve at each time t is then

min JN (t) (9a)

subject to
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ŷ(k + 1 | t) = θ̂>(t)ϕ(k) (9b)

ymin ≤ ŷ(k + 1 | t) ≤ ymax (9c)

umin ≤ u(k) ≤ umax (9d)

∆umin ≤ ∆u(k) ≤ ∆umax (9e)

k ∈ [t, t+N − 1] (9f)

θ̂(t), {u(k)}t−nb+1
k=t−1 , P (t) given (9g)

Note that we take the expected value of the squared
output error with respect to Y(k | t) in JN (t), which has
interesting consequences; we discuss these in Section 3. If
we instead use the expectation of the output values with
respect to the current information Y(t) we get the classic
mpc output cost

t+N−1∑
k=t

(
E
[
y(k + 1)

∣∣Y(t)
]
− y∗(k + 1)

)2
=

t+N−1∑
k=t

(ŷ(k + 1 | t)− y∗(k + 1))2 (10)

which results in a standard certainty-equivalence type mpc
where predictions are based on the most recent parameter

estimate θ̂(t) as defined by (7). This objective rewards
neither caution nor probing (see Bar-Shalom (1981)),
which means the resulting controller is not risk averse in
the face of large uncertainty and does not excite the system
to reduce uncertainty. Combining this idea with system
identification then gives the indirect adaptive predictive
controller.

We write y(k + 1 | t) in (9) since the parameter estimate

θ̂(t) appears directly in the definition of this variable; it
would be consistent to also note the dependence on t
explicitly in the other predicted optimization variables.
However, since it is clear from context whether a variable
is an optimization variable on the prediction horizon in a
problem constructed at time t or a physical realization
of that variable in the process, we omit the explicit
dependence on t to simplify the notation.

We now describe the method for updating the parameter-
estimate statistics, and then discuss a how we evaluate
JN (t) to transform (9) into a tractable problem for N <
∞.

2.1 Parameter estimation with past information

We estimate the parameters in (7) online by minimizing
a least-squares criterion (Ljung, 1999). Let R(t) be the
information matrix

R(t) =

t∑
k=t0

r−1λt−kϕ(k − 1)ϕ>(k − 1) (11)

with the forgetting factor λ ∈ (0, 1]. R(t) can alternatively
be expressed recursively,

R(t) = λR(t− 1) + r−1ϕ(t− 1)ϕ>(t− 1), t > t0 (12)

with R(t0) = P−1(t0) given. Instead of calculating the
inverse P (t) = R−1(t) at every time t we update the least
squares parameter estimate recursively using

θ̂(t) = θ̂(t− 1) +K(t)
(
y(t)− θ̂>(t− 1)ϕ(t− 1)

)
(13a)

K(t) = P (t− 1)ϕ(t− 1)

×
(
rλ+ ϕ>(t− 1)P (t− 1)ϕ(t− 1)

)−1
(13b)

P (t) =
(
I −K(t)ϕ>(t− 1)

)
P (t− 1)(1/λ) (13c)

This algorithm can be derived with the matrix-inversion
lemma (see Ljung (1999)). When λ = 1 the conditional
distribution of θ given the information Y(t) is Gaussian

with mean θ̂(t) and covariance P (t) as described by the
equation set (13) (Åström and Wittenmark, 1995). Note
that r = 1 in (13) when there is no process noise in (4).

3. PROPOSED REFORMULATION

fir processes belong to a class of systems where the output
is dependent on only past inputs and not past outputs.
Since we have the freedom to choose the future decisions,
we effectively decide Y(k | t) for any k ≥ t. This means
that the future covariances P (t) can be predicted exactly
and are determined by our choice of future process inputs
u(t). The following theorem, which we use to reformulate
the optimal control problem (9), is a consequence of this.

Theorem 1. For a stochastic fir process (4),

E[y2(k + 1) | Y(k | t)] = ŷ2(k + 1 | t)
+ ϕ>(k)P (k)ϕ(k) + r (14)

for all k ≥ t.

Proof. For any k ≥ t we take E[y2(k + 1) | Y(k | t)] and

add and subtract the model ŷ(k+ 1 | k) = θ̂>(k)ϕ(k) such
that

E[y2(k + 1) | Y(k | t)] = E
[(
ŷ(k + 1 | k)

+ y(k + 1)− ŷ(k + 1 | k)
)2 | Y(k | t)

]
(15)

since Y(k | t) is known. We let θ̃(k) := θ − θ̂(k) and then
have

E[y2(k + 1) | Y(k | t)] = E
[(
ŷ(k + 1 | k)

+ θ̃>(k)ϕ(k) + v(k + 1)
)2 | Y(k | t)

]
(16)

Expanding the square gives

E[y2(k + 1) | Y(k | t)] = E
[
ŷ2(k + 1 | k)

+ ϕ>(k)θ̃(k)θ̃>(k)ϕ(k) + v2(k + 1)

+ 2ŷ(k + 1 | k)ϕ>(k)θ̃(k) + 2ŷ(k + 1 | k)v(k + 1)

+ 2ϕ>(k)θ̃(k)v(k + 1) | Y(k | t)
]

(17)

The three last terms are all zero because E[θ̃(k) | Y(k | t)] =

0, E[v(k)] = 0, and θ̃(k) and v(k + 1) are independent.
Using

E[θ | Y(k | t)] = E[θ | Y(t)] = θ̂(t), k ≥ t (18)

and the definition of P (t) leaves

E[y2(k + 1) | Y(k | t)] = ŷ2(k + 1 | t)
+ ϕ>(k)P (k)ϕ(k) + r (19)

which completes the proof. �

The following corollary extends the above result to the case
where we want to track a time-varying output reference
y∗(t).
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Corollary 2. For a stochastic fir process (4),

E[(y(k + 1)− y∗(k + 1))2 | Y(k | t)] =

(ŷ(k + 1 | t)− y∗(k + 1))2 + ϕ>(k)P (t)ϕ(k) + r (20)

for all k ≥ t.

Proof. We have that

E[(y(k + 1)− y∗(k + 1))2 | Y(k | t)]
= E[y2(k + 1)− 2y(k + 1)y∗(k + 1)

+ (y∗(k + 1))2 | Y(k | t)]
= E[y2(k + 1) | Y(k | t)]
− 2 E[y(k + 1) | Y(k | t)]y∗(k + 1) + (y∗(k + 1))2

Using Theorem 1, we can write

E[(y(k + 1)− y∗(k + 1))2 | Y(k | t)]
= ŷ2(k + 1 | t) + ϕ>(k)P (k)ϕ(k) + r

− 2ŷ(k + 1 | t)y∗(k + 1) + (y∗(k + 1))2

= (ŷ(k + 1 | t)− y∗(k + 1))2 + ϕ>(k)P (k)ϕ(k) + r

which is the desired result. �

Corollary 2 allows the stochastic objective (8) to be
reformulated into the equivalent deterministic function

JN (t) =

t+N−1∑
k=t

{
(ŷ(k+1 | t)−y∗(k+1))2 +ϕ>(k)P (k)ϕ(k)

+ r + w2u
2(k) + w3(∆u(k))2

}
(21)

which can be minimized by augmenting the constraint set
of (9) to arrive at a deterministic optimal control problem
that is equivalent to (9). This problem is

min JN (t) (22a)

subject to

ŷ(k + 1 | t) = θ̂>(t)ϕ(k) (22b)

K(k + 1) = P (k)ϕ(k)
(
r + ϕ>(k)P (k)ϕ(k)

)−1
(22c)

P (k + 1) =
(
I −K(k + 1)ϕ>(k)

)
P (k) (22d)

ymin ≤ ŷ(k + 1 | t) ≤ ymax (22e)

umin ≤ u(k) ≤ umax (22f)

∆umin ≤ ∆u(k) ≤ ∆umax (22g)

k ∈ [t, t+N − 1] (22h)

θ̂(t), {u(k)}t−nb+1
k=t−1 , P (t) given (22i)

The solution to this nonlinear programming problem in-
cludes an optimal sequence of predicted control inputs
{uo(k | t)}N−1k=t , the first element of which is applied to the
plant: u(t) = uo(t | t).
Note that the formulation of the objective JN (t) in (21)
converges to the certainty-equivalence objective (10) as
the uncertainty represented by P (t) goes to zero. This
implies that the excitation induced by the parameter
uncertainty vanishes as the uncertainty is resolved. This
property highlights the main idea of certainty equivalence
control, which is that we assume that the parameter
estimates actually give the correct representation of the
plant dynamics.

Although the solution to (22) exactly minimizes

JN (t) =

t+N−1∑
k=t

{
E
[
(y(k + 1)− y∗(k + 1))2

∣∣Y(k | t)
]

+ w2u
2(k) + w3(∆u(k))2

}
(8)

over the finite horizon k ∈ [t, t + N − 1], the constraint
set is nonconvex because of the inclusion of the nonlin-
ear covariance-prediction equality constraints (22c)–(22d).
This motivates investigation of reformulation approaches
that facilitate solving the optimal control problem. We
consider this reformulation the main contribution of the
paper.

3.1 Reformulation

In order to simplify the formulation (22) we define the
vector z(k) := P (k)ϕ(k) for k ∈ [t, t + N − 1], or
equivalently

R(k)z(k) = ϕ(k), k ∈ [t, t+N − 1] (23)

The objective function (22) is then equivalent to

JN (t) =

t+N−1∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1))2 + ϕ>(k)z(k)

+ r + w2u
2(k) + w3(∆u(k))2

}
(24)

Accordingly, the optimal control problem (22) is equivalent
to

min JN (t) (25a)

subject to

ŷ(k + 1 | t) = θ̂>(t)ϕ(k) (25b)

R(k + 1) = R(k) + r−1ϕ(k)ϕ>(k) (25c)

R(k + 1)z(k + 1) = ϕ(k + 1) (25d)

ymin ≤ ŷ(k + 1 | t) ≤ ymax (25e)

umin ≤ u(k) ≤ umax (25f)

∆umin ≤ ∆u(k) ≤ ∆umax (25g)

k ∈ [t, t+N − 1] (25h)

θ̂(t), {u(k)}t−nb+1
k=t−1 , R(t), z(t) given (25i)

Note that r can be removed from JN (t) without changing
the solution of the optimization problems. This formu-
lation is still nonlinear, but all nonlinearities are now
either bilinear or quadratic. In fact, (25) is a quadratically-
constrained quadratic programming (qcqp) problem and
can be written in the modified standard form (cf. Misener
and Floudas (2012))

min
x
x>Q0(t)x+ α>0 (t)x (26a)

subject to

0 ≤ x>Qix+ α>i x ≤ 0, i = 1, . . . , nq (26b)

βmin,i ≤ α>i (t)x ≤ βmax,i, i = nq + 1, . . . , nq + n` (26c)

some elements of x given (26d)

where the quadratic and the linear constraints are sep-
arated for clarity. Here, nq is the number of quadratic
constraints and n` is the number of linear constraints, x
is a vector containing all variables, linear equality con-
straints are formulated by letting βmin,i = βmax,i, and
the constant terms in the objective (24) have been left
out. The structures of the matrices Qi (i = 0, . . . , nq)
and the vectors αi (i = 0, . . . , nq + n`), βmin,i, and βmax,i
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(i = nq + 1, . . . , nq + n`), depend on how the variables are
organized in the vector x.

There are several algorithms that solve qcqp problems
to ε-global optimality (Tawarmalani and Sahinidis, 2002).
See Misener and Floudas (2012) for a presentation of one
such algorithm and a good overview of the qcqp problem
class.

4. DUAL CONTROL

We now propose the following algorithm for dmpc with a
receding finite prediction horizon.

Algorithm for dual control

0) Initialize at t0: specify θ̂(t0), {u(k)}t0−1−nb

k=t0−1 , P (t0).

1) Collect plant data: measure y(t) and u(t− 1).

2) Estimate parameters: update θ̂(t) and P (t) using
(13).

3) Solve (25) to obtain the solution {uo(k | t)}N−1k=t .
4) Implement u(t) = uo(t | t).
5) Set t← t+ 1 and go to step 1.

Note that we also measure u(t − 1) since the actual
control sometimes deviates from the one calculated in the
algorithm.

This algorithm is based on a standard mpc formula-
tion, where an optimal control problem is solved at
each sampling instant using the current system state as
the initial state. The solution to the control problem
is the control sequence {uo(k | t)}N−1k=t , the first element
of which, uo(t | t), is implemented as the control input
(Mayne et al., 2000). Our algorithm differs from standard
mpc in that the system state is given by the hyper-

state
(
θ̂(t), {u(k)}t−nb+1

k=t−1 , R(t)
)
. Furthermore, (25) is not

a true open-loop problem since the uncertainty predictions
implicitly anticipate a closed loop, which we discuss in
Section 6. Our algorithm is also similar to a certainty-
equivalence controller in that the true parameter values
are not used, but rather their expected values; however,
the expected values are not used with the assumption that
they equal the true parameter values.

5. EXAMPLE

We now demonstrate our algorithm on a small example.
The simulations go from t0 = 0 to tf = 10 with y∗ = 2,

θ = [1.00, 0.20]
>

, θ̂(0) = [1.50, 0.50]
>

, P (0) = 102I,
λ = 1, y(0) = −1.0, u(−1) = −1, N = 4, w2 = 0,
w3 = 0.1, −ymin = ymax = 10, −umin = umax = 5 ,
−∆umin = ∆umax =∞.

The system was simulated using matlab and the qcqp
was solved using the local nlp solver ipopt (Wächter and
Biegler, 2005) under gams (GAMS Development Corpora-
tion), which provides gradients obtained using automatic
differentiation. The example is run on a standard laptop
computer and the average solution time for the optimal
control problems is 0.43 s with a standard deviation of
0.49 s. Figure 1 shows the results.

The first plot in Figure 1 shows the output y(t) for the
two values of r and the reference value y∗. The two

Fig. 1. Simulation example demonstrating the algorithm
for both the noiseless (noise variance r = 0) and noise-
corrupted (noise variance r = 1) case.

corresponding input sequences are plotted directly below,
together with the optimal steady-state input u∗ = y∗/(b1+
b2). The true values and the estimates of the system
parameters b1 and b2 are shown in the third and fourth
plots, respectively.

Both parameters are correctly identified after two time
steps when r = 0. With the low signal-to-noise ratio
(r = 1) it takes the parameters longer to approach their
true values, but both are close after three time steps.

In both cases the first control u(0) is small but nonzero,
due to the large values in P (0) which rewards caution in
the control. From t = 1 there is some initial excitation (or
probing) motivated by the future reduction of uncertainty.
The probing is followed by the inputs quickly approaching
u∗. The vanishing excitation coincides with the uncer-
tainty going to zero (all elements of P (2) are very close
to zero for both cases), which illustrates how the objective
JN (t) converges to the certainty-equivalence objective (10)
as P (t)→ 0.

The output approaches the reference value after four time
steps in both cases, which is consistent with the system
parameters converging after two or three time steps and
the output depending on the two previous inputs.

6. DISCUSSION

The dual control formulation we present here includes
no notion of a trade-off or balance between the control
and excitation parts of the objective. One can construct
controllers that balances a control effort, a certainty-
equivalence output objective like (10), and excitation, but
this approach is heuristic and leads to suboptimal control.
We here analyze the expected value with respect to future
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decisions; our reformulation anticipates future information
and predicts future uncertainty and as a result provides
the optimal combination with no notion of a trade-off or
freedom to trade one for the other.

One consequence of the suggested approach is that the
learning is endogenized in the controller, meaning there
is no separation of control and excitation. The controller
is not only able to actively excite the system, it is also
aware of the mechanisms for learning through the con-
straints that describe the uncertainty propagation. The
uncertainty awareness also affects the cautiousness of the
controls.

Since our dmpc anticipates future decisions in the pre-
diction of uncertainty it is in some sense aware of the
closed control loop. The dmpc is therefore a type of closed-
loop feedback controller, in contrast to a standard mpc
formulation that makes open loop predictions without any
built-in knowledge of the control loop being closed.

The complexity of the optimal control problem (25) in-
creases moderately with the number of unknown model
parameters np and the length of the prediction horizon N .
The objective function (24) contains npN bilinear terms of
the form ϕj(k)zj(k) (j denotes vector element), whereas
the uncertainty-propagation constraints (25c) and (25d)
contain n2pN bilinear terms each. The symmetric nature
of the quadratic equality constraints can be exploited
in implementation to reduce this number. The quadratic
growth cannot be avoided, however.

It is important to note that the algorithm shares with all
finite-horizon MPC controllers that endpoint constraints
or cost are needed to prove stability. These issues are under
current investigation.

7. CONCLUSIONS AND FUTURE WORK

The exact reformulation of the stochastic optimal-control
problem for fir systems that we derive in this article
provides a clear illustration of caution, probing, certainty-
equivalence, and the dual effect in stochastic control. For-
mulating the control problem in terms of an information
matrix that is the inverse of the covariance allows us to cast
the problem as a qcqp. This problem formulation enables
the use of standard algorithms for solving dual control
problems for fir systems with a receding horizon and
reduces the complexity of the optimal control problem so
that ε-global optimal solutions can be obtained efficiently.
The performance of the dmpc is illustrated with an exam-
ple that demonstrates caution, probing, the convergence
to certainty equivalence, and the dual effect.

Future work includes studying the effect of running the
dmpc algorithm with global solutions to the qcqps instead
of the local solutions we use here, as well as deriving a
quadratic formulation for probabilistic output constraints.
The practicality of solving nonconvex optimal control
problems to global optimality online will be investigated.
Deriving tight variable bounds greatly facilitates faster
convergence to global optimality and will be the topic of
a future paper.
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