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Abstract: Critically ill patients commonly suffer from stress hyperglycemia, or elevated glucose
levels, following injury or disease. Hypoglycemia, or low glucose level, is a frequent and
serious complication of treating hyperglycemia. In order to reduce the incidence of hyper- and
hypoglycemia, a linear zone model-predictive controller with moving horizon state estimation
and output regulation is developed. Critical care patient data from an observational study
was used to construct virtual patients. Closed-loop control in these virtual patients, versus
clinical standard of practice, results in a substantial increase in time spent in the target glucose
zone and significant reductions in both hyperglycemia and hypoglycemia. Overall, the proposed
controller significantly enhances targeted glucose control in critically ill patients in silico, which
may translate to improved clinical decision making and patient outcomes in the clinic.
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1. INTRODUCTION

Patients admitted to critical care units commonly present
with stress hyperglycemia, or elevated blood glucose lev-
els, resulting from hormonal and inflammatory responses
to stress of injury or disease (Van den Berghe et al.
(2001); Thorell et al. (2004)).This response upregulates
endogenous glucose production (EGP) and a strong pro-
inflammatory immune response, both of which contribute
to an effective decrease in insulin sensitivity (SI) (Van den
Berghe et al. (2001)). The resulting insulin resistance
drives hyperglycemia in critically ill patients.

A seminal study by Van den Berghe et al. (2001) indicated
that a reduction in hyperglycemia through the use of
tight glucose control (80-100 mg/dL) had the potential
to drastically reduce morbidity and mortality in the post-
surgical ICU, yet these results have not borne out in
subsequent studies. Notably, the NICE-SUGAR study
(Finfer et al. (2009)), which randomized patients into
conventional and targeted glucose control groups, reported
no significant difference in measured outcomes between the
two groups. Retrospective analysis by The NICE-SUGAR
Study Investigators (2012) suggests that an increased
incidence of hypoglycemia in the targeted glucose control
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Fig. 1. Increased mortality is associated with hyper- and
hypoglycemia in critical care patients (solid). Dashed:
frequency of average blood glucose during hospitaliza-
tion. (Yegneswaran et al. (2013))

group contributed to increased mortality in that group.
This conclusion is supported by the outcomes of the
VISEP (Brunkhorst et al. (2008)) and Glucontrol studies
(Preiser et al. (2009)).

An analysis of patients included in the High-Density In-
tensive Care (HIDENIC) database at the University of
Pittsburgh Medical Center (UPMC) identified a blood
glucose concentration range between 110 and 130 mg/dL
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as being associated with lowest patient mortality (Fig 1).
Pre-clinical studies suggesting a causal link between hyper-
glycemia, hypoglycemia and poorer outcomes, targeting
glucose levels within this range appears to be a desir-
able, data-driven, clinical objective. Yet, this requires close
monitoring of blood glucose levels and more frequent inter-
vention than is practical by critical care staff. Furthermore,
current care protocols do not explicitly address inter- and
intra- patient variability in glucose-insulin dynamics stem-
ming from differing insulin sensitivities. High-frequency
sampling of blood glucose levels through continuous glu-
cose monitors, coupled with model-based control, has the
capacity to enable zone-targeted glucose control thereby
decreasing hyperglycemia while avoiding hypoglycemia ul-
timately leading to improved patient outcomes (Boyd and
Bruns (2014)).

The work described herein details the development and
virtual testing of a linear automated model predictive
controller with state estimation for the delivery of both
insulin and glucose to maintain patient blood glucose levels
within a target zone (110-130 mg/dL).

2. METHODS

2.1 Glucose-Insulin Model in Critical Care

The Intensive Control Insulin-Nutrition-Glucose (ICING)
model by Lin et al. (2011), originally developed for, and
validated in, critical care patients, was used to capture
patient dynamics from our study. Many of the patients en-
rolled in the current study at the University of Pittsburgh
received normal and fast-acting insulin via subcutaneous
injection and/or continuous infusion; to capture these dy-
namics, a control-relevant model of subcutaneous insulin
dynamics developed by our group (Vilkhovoy et al. (2014))
was incorporated into the ICING model (ICING+SQ).

2.2 Fitting Virtual Patients

The ICING+SQ model was fit to patient data col-
lected through continuous subcutaneous glucose monitor-

ing (CGM) by Dexcom R© Platinum
TM

G4 sensors. Each
patient (n=24) enrolled in the study at UPMC had two
CGM sensors inserted subcutaneously in the abdominal
region. Data records of glucose and insulin infusions and
injections (both intravenous and subcutaneous) prior to,
and during CGM monitoring were obtained from UPMC
medical records for each patient.

Individual virtual patients were developed by estimating
endogenous glucose production (EGP) and insulin sensi-
tivity (SI) to CGM data “fused” into a single composite
measurement using a Kalman filter. Model inputs included
all recorded infusions and injections. An insulin sensitivity
(SI) profile was then fit, allowing for SI changes at each
5 minute sampling interval such that model predicted
blood glucose closely matched the filtered and fused CGM
data. Smooth SI profiles with relatively slow dynamics,
representative of the physiological changes during recovery
from trauma, were desired. This was ensured by penalizing
point to point changes in SI during the estimation process.
Patient-tailored profiles of SI were established for each

patient. while this is different from a typical identify-and-
validate modeling approach, our goal was not to establish
the validity of a model but rather to have a population of
patients with different dynamics on whom we could test
our control system in silico.

Numerical Methods Models were constructed as ordi-
nary differential equations in the Coopr/Pyomo environ-
ment (Hart et al. (2012)). Parameter estimation was per-
formed using nonlinear least squares and solved using
IPOPT (Wächter and Biegler (2006)) by discretizing the
ICING+SQ model into finite elements (5-minute duration
elements), with each finite element having three Radau
collocation points (Ascher and Petzold (1998)).

2.3 Sensor Noise and Sensor Reconciliation

Sensor error was computed as BGSensor − BGFingerstick

using all 461 fingerstick blood glucose measurements from
patients enrolled in the study. From these computed errors,
joint probability distributions for both sensor error vs.
fingerstick measurement (true value, Fig. 2(a)) and sensor
error vs. sensor reading (measured value, Fig. 2(b)) can be
computed. The joint probabilty distributions in Fig. 2 can
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Fig. 2. Joint probability distributions for fingerstick (a)
and sensor output (b) vs. sensor error.

be conditioned on virtual patient blood glucose outputs
(Fig. 2(a)) or CGM sensor reading (Fig. 2(b)) to generate
errors for use in testing the control algorithm, and to assess
agreement between the two CGMs for a given patient.

For each given sensor measurement, the joint probability
distribution in Fig. 2(b) was conditioned on the measure-
ment to provide a corresponding error distribution around
the reported sensor value. Integrating the overlapping area
of these distributions for both sensors and normalizing by
the total area under both distributions results in a value
between 0 and 0.5, which represents the confidence in the
joint sensor data streams at a given time. These overlap
values are used to weight the fused data points when fitting
the virtual patients.

2.4 Model-Predictive Control (MPC)

Given that an optimal range of blood glucose concentra-
tions has been documented in observational studies (Yeg-
neswaran et al. (2013)), an MPC formulation for control to
zone (zMPC), rather than a single set-point is employed.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1004



Let the discrete state-space model be given by:

xk+1 = Axk +Buuk−1 +Bu∆uk +Bddk
yk = Cxk

(1)

Here, xk+1 is the predicted state vector at the next time
step, xk is the state vector at the current time, uk−1 is a
vector of previous manipulated inputs, ∆uk is the change
in manipulated inputs at the current time, dk is a vector
of disturbance inputs at the current time, and yk is the
observed output at the current time.

A linear, constrained model predictive controller is for-
mulated as shown in the following quadratic program
(adapted from Muske and Rawlings (1993)):

minimize
z(k)

P∑
i=1

Γ(‖yk+i − δ‖22) +

M∑
i=1

‖S∆uk+i−1‖22 (2a)

subject to:

xk+1 = Axk +Buuk−1 +Bu∆uk +Bddk (2b)

yk+1 = Cxk+1 (2c)

I∆u ≥ ∆umin (2d)

I∆u ≤ ∆umax (2e)

uk, . . . , uk+P−1 ≥ 0 (2f)

Zonelower ≤ δ ≤ Zoneupper (2g)

where z = ∆uk, . . . ,∆uk+N−1 (2h)

Matrix Γ penalizes model predictions of blood glucose
outside the target zone over the control horizon, and S
is a matrix penalizing control moves. Γ and S, along with
the prediction horizon, P , and the control horizon, M ,
are controller tuning parameters. The relative values of
Γ and S are used to normalize the objective function
contributions of out-of-zone error for blood glucose and
the cost of control actions such that the first and second
terms of equation (2a) are appropriately scaled.

This formulation results in targeted zone control by al-
lowing δ to move between the its lower and upper bounds
(Zonelower and Zoneupper, respectively) as given by con-
straint (2g) to minimize the difference between the mea-
sured output and predicted output. While zone control has
been previously employed for glucose control (Grosman
et al. (2010); Gondhalekar et al. (2013); Harvey et al.
(2014)), these studies are primarily in diabetic, not critical
care, patients. Furthermore, the control algorithm pro-
posed here uses a more physiologically motivated model
and clinically-motivated constraints that differ from those
employed in ambulatory diabetic populations.

The ∆umin and ∆ umax in constraints (2d) and (2e)
are the lower and upper bounds, respectively, on the
allowed change in the manipulated input at any given
time step. The vector of non-manipulated variables is
assumed to remain constant at dk over the prediction
horizon. Solution of this quadratic program results in a
vector of optimal input changes over the control horizon
of length M , however only the first suggested input change
is implemented by the controller.

2.5 State Estimation

To account for intra- and inter-patient variability, insulin
sensitivity is reformulated as a model state and estimated
at each five minute interval over the past moving horizon,

H. For linear systems, a Kalman filter is an optimal
state estimator, however it does not allow for inequality
constraints. For this work, a moving horizon estimation
(MHE) scheme was chosen as it allows model states to
be upper and lower bounded by physiological constraints
(Rao et al. (2001)). In the unconstrained case, MHE
reduces to a Kalman filter (Rao et al. (2003))

The MHE for automated glucose and insulin adminis-
tration system is formulated similar to Robertson et al.
(1996). Assuming that model-patient mismatch is due to
process noise on both the states (ωk) and inputs (σk), as
well as measurement noise on the output (νk), the state-
space model can be written as:

xk+1 = Axk +Buk +Bσk + ωk

yk = Cxk + νk
(3)

For the state-space model in equation (3), the MHE is
defined by the following quadratic program:

minimize
z(k)

k∑
i=k−H+1

νTi R
−1νi +

k−1∑
i=k−H+1

ωT
i Q
−1ωi (4a)

+ (xek−H+1)TP−1k−H+1|k−Hx
e
k−H+1

subject to:

νi = yi − (Cxi) (4b)

xk+1 = Axk +Buk +Bσk + ωk (4c)

αωk = 0 (4d)

βσk = 0 (4e)

where:

xek−H+1 , xk−H+1 − xk−H+1|k−m (4f)

z =
[
xek−H+1, ωk−H+1, ... ωk−1, σk−H+1, ..., σk−1] (4g)

Constraints (4d) and (4e) in the MHE formulation (4)
force the process noise on manipulated inputs and states
that are not estimated to be zero (through suitable se-
lection of vectors α and β). R and Q are matrices that
penalize deviations of the model from measurements and
added state noise, respectively, and are used to tune the
estimator in conjunction with the estimation horizon, H.
P is weighting matrix that represents the confidence in
the state estimation. The calculation and update of P is
carried out as in Robertson et al. (1996).

2.6 Virtual Patient Blood Glucose Control

The controller was tested on a bank of virtual patients,
as developed in Section 2.2. The control algorithm ad-
ministered insulin and glucose to the virtual patient and
controller performance was evaluated by comparison to the
clinical results.

The ICING+SQ model was linearized around the point
corresponding to zero input, the patient’s initial glucose
value, as measured by the subcutaneous sensor, and with
all other states taking on steady-state values. Blood glu-
cose is the primary output, with the target zone set at
110-130 mg/dL, however glucose and insulin infusion rate
were added as secondary outputs with target rates of zero
mg
min and zero mU

min , respectively. The addition of the output
regulator serves to mitigate undesirable high frequency
control action and ensures that glucose and insulin are not
infused unnecessarily. This formulation also: (i) prevents a
situation where the controller infuses glucose constantly

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1005



100

120

140

160

180

200

220

240

260

B
lo
od

G
lu
co
se

(m
g

d
L
)

Filtered Sensor Value

Fitted Model Value

S1 Raw Data

S2 Raw Data

0 500 1000 1500 2000 2500 3000
Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
su
lin

S
en
si
ti
vi
ty

x1
03

Fig. 3. Representative Virtual Patient. Top: model simu-
lation fit to CGM data; Bottom: insulin sensitivity.

while simultaneously infusing insulin at a constant (el-
evated) rate; and (ii) reduces control effort by minimiz-
ing exogenous insulin usage, which is important because
continuous insulin infusion suppresses endogenous insulin
production, which would thereby increase the control effort
required to maintain blood glucose concentrations within
the desired zone and, in real world application, increase
the probability of hypoglycemia.

The moving horizon estimator computes insulin sensi-
tivity, SI , at every 5 minute interval in the estimation
horizon. SI is assumed to be stepwise constant across
the prediction horizon for control purposes. Additional
estimated states were insulin concentrations in the blood
and interstitium. All estimated quantities were constrained
with a lower bound of 0 and an upper bound corresponding
to physiologic values.

3. RESULTS AND DISCUSSION

3.1 Fitting Virtual Patients

By fitting SI to CGM data using dynamic optimization
tools, with a penalty on point-to-point SI changes, virtual
patients with smooth, slowly varying insulin sensitivity
profiles were characterized. We believe the smooth nature
and relatively slow dynamics of these SI profiles are more
consistent with expected critical care physiology than
previously reported results showing significant changes
in SI over short intervals (e.g., (Lin et al. (2011)). The
model parameterization captures inter- and within-patient
variablity, and a representative patient fit to CGM data,
with their corresponding SI profile, is shown Fig. 3.

Overall 24 patients were enrolled in the study, however,
only 18 patients had blood glucose data sets over a window
of at least 24 hours, which was sufficient to develop virtual
patients. Over these 18 patients, the virtual patients
exhibited a mean absolute error per point of 1.7893 mg

dL .

3.2 Controller Performance

Utilizing the zMPC/MHE control algorithm to automate
the delivery of insulin and glucose to the virtual patients
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Fig. 4. Controller performance on representative patient.
Top: virtual patient blood glucose under zMPC/MHE
(solid) vs. clinical practice (dashed); Middle: insulin
infusion administered by zMPC/MHE vs. clinic; Bot-
tom: glucose administered by zMPC/MHE clinic ad-
ministered no glucose for this patient).

resulted in a much higher fraction of time spent within the
target glucose zone, a significant decrease in the incidence
of hyperglycemia, and dramatic decrease in hypoglycemic
events. The results from control on the representative
patient are displayed in Fig. 4.

The zMPC/MHE with output regulation algorithm sig-
nificantly outperforms the clinical protocol in controlling
blood glucose levels while completely avoiding any hypo-
glycemic events. The controller tunings were selected for
aggressive (rapidly-adjusted) insulin delivery, thereby al-
lowing the controller to rapidly turn off insulin in the case
of predicted hypoglycemia. Mathematically, the lengths of
the estimation, prediction and control horizons, as well
as the weighting matrices Q, R, S and Γ were adjusted
across the virtual patient population such that time within
the zone was maximized without excessive controller ef-
fort. The administration of glucose in pulses, lagging in-
sulin pulses, allows the controller to recover from overly-
aggressive administration of insulin (e.g. around t=1200-
1400 min in Fig. 3) – a key feature that prevents hypo-
glycemia in our formulation.

3.3 Controller Performance with Sensor Noise

To further test the performance and robustness of the
controller, noise sampled from the joint probability distri-
bution in Fig. 2(b) was added in duplicate to the blood glu-
cose concentration of virtual patients under control. This
creates two noisy data streams (representative of two CGM
sensors) that were fused using a Kalman filter and filtered
with a discrete-time exponentially weighted moving aver-
age (EWMA) filter before the composite signal is fed to
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Fig. 5. Controller performance on representative patient
with sensor noise. Top: virtual patient blood glu-
cose under zMPC/MHE (solid) vs. clinical practice
(dashed); Middle: insulin infusion administered by
zMPC/MHE vs. clinic; Bottom: glucose administered
by zMPC/MHE (no glucose administration in clinic).

the controller. If the addition of this randomly-sampled
error to the blood glucose concentration of the virtual
patient results in a negative blood glucose concentration
(a clearly non-physiological condition), the noise sample
is discarded and another random error is generated. The
effects of the addition of this noise on the control are shown
on a representative patient in Fig. 5, and the mean control
results over all 18 patients are tabulated in Table 1. An
EWMA averaging over the previous three readings with
a filter coefficient of 0.75 was found to have the smallest
window that did not degrade controller performance.

3.4 Population Performance

Controller performance on the patient population (n=18)
reported as the percentage of time spent within the zone,
above the zone, and below the zone, for blood glucose
signals both with and without additional noise is detailed
in Table 1. Across the cohort of critically ill patients
in the noise-free case, the control algorithm outperforms
clinical practice, resulting in a >50% increase in time
spent in the target zone, a >35% decrease in time above
the target zone, and perhaps most importantly, an ≈18%
reduction in time below the target zone. Furthermore, it
is important to note that the clinical protocol induced
moderate hypoglyemia (BG ≤ 70 mg

dL ) 0.5% of the time,
which under control with the zMPC/MHE algorithm was
reduced to 0.32%. Neither the clinical protocol nor the
zMPC/MHE algorithm resulted in any incidences of severe
hypoglycemia (BG ≤ 40 mg

dL (Finfer et al. (2009))).

The presence of sensor noise in our virtual patient co-
hort degrades controller performance, as expected. The

Table 1. Summary of zMPC/MHE controller performance
on our patient population (Pop.) and our patient popu-
lation with additional noise (Pop.+N) as defined as per-
centage of time in the target zone (% Z), percentage of
time above the target zone (% A), percentage of time
below the target zone (% B), and percentage of the time

hypoglycemia as defined by BG≤70mg
dL (%H)

Sample Control % Z % A % B % H

Pop. Clinic 19.72 55.59 24.69 0.50

Pop. zMPC/MHE 75.21 19.05 5.75 0.32

Pop.+N zMPC/MHE 37.63 26.65 16.21 0.42

zMPC/MHE algorithm does still outperform the clinical
protocol, resulting, on average, in almost double the time
spent within the target zone as well as a significant reduc-
tion in hypergylcemia with no increase in hypoglycemia
incidence. Although the addition of this noise results in
degraded performance, it is important to note that this is
a worst case noise scenario. The distributions depicted in
Fig. 2 are computed from hourly or 6-hourly blood draws;
samples compared to blood draws at 5-minute intervals
would display a much higher degree of correlation and
smaller distribution width in glucose error. Hence, the
addition of noise randomly sampled from the Fig. 2 error
distributions results in much larger noise magnitudes even
after fusion and filtering. This makes it harder for the
MHE to generate an accurate estimate of a patient’s state
and, correspondingly, for the zMPC to make accurate pre-
dictions and corresponding control actions. Higher time-
density blood glucose samples with paired CGM measure-
ments in critical care patients are needed to more carefully
characterize the distributions of Fig. 2, a topic of future
work. Such data would provide a better characterization
of critical care sensor noise and improved in silico testing
of the control algorithm.

Although the present CGM noise distribution does intro-
duce significant uncertainty into the blood glucose mea-
surements, a recent editorial (Boyd and Bruns (2014)) has
suggested that less accurate, but more frequent, measures
of glucose levels, such as those provided by CGM systems,
result in improved outcomes when targeted glucose control
is employed. An analysis of a trial of the CLINICIP system
also found that the control system was “advantageously”
influenced by a higher sampling frequency versus the con-
trol group. The authors go on to state that the 60 minute
sampling rate used for control in the standard clinical
setting placed an undue strain on nurses, but anything less
would result in a marked decrease in control performan-
cePlank et al. (2006). These studies and our results both
indicate that despite the shortcomings and relatively high
error rates of CGM, it is necessary for use in closed-loop
targeted glucose control of critically ill patients.

4. SUMMARY

A zone model predictive controller with moving hori-
zon estimation and output regulation was developed to
control critical care patient blood glucose concentrations
within a target range while minimizing the occurrence
of hypoglycemia. Virtual patients were constructed by
fitting insulin sensitivity in the ICING+SQ model to high-
frequency measured blood glucose values from critical care
patients. The virtual patients’ glucose dynamics closely
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matched measured glucose concentrations over periods of
up to 48 hours. The virtual patients were used to test
the zMPC/MHE control algorithm, and the controller
performed substantially better than the clinical protocol,
significantly increasing the time patient glucose concen-
tration spent within the target zone while significantly
decreasing hyper- and hypoglycemia. The addition of noise
randomly sampled from error probability distributions
derived from data collected at UPMC was added to the
virtual patient blood glucose signal, and controller perfor-
mance was still found to out-perform the clinical protocol,
though the margin of improvement was less than the noise-
free case. The addition of noise in this manner represents
a worst case scenario, with higher-frequency paired CGM
and blood glucose measurements potentially demonstrat-
ing a lower-magnitude error distribution, and correspond-
ingly better closed-loop control. The zMPC/MHE control
algorithm therefore provides a means to control patient
glucose concentrations to a target range and without sig-
nificant hypoglycemia - an advance in critical care practice
that has the potential to outperform current clinical glu-
cose control protocols.
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