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Abstract: Gas-metal arc welding is a widely used welding process. The testing of such welds
is done offline and in most cases after the welding operation is over. To monitor the progress of
the welding run, it is essential to develop multivariate data analysis techniques that can classify
the welds into good or bad runs and also be able to predict the quality variables. In this work,
popular multivariate data analysis methods such as hierarchical clustering analysis, principal
component analysis and partial least squares are used to develop classification and regression
models to predict the weld quality based on various parameters. The results indicate that models
obtained using these methods are effective in classification and prediction of weld quality and
can be further developed for online and industrial uses in weld run monitoring.

Keywords: welding; data analysis; batch process; clustering; classification; multi-way principal
component analysis; partial least squares; hierarchical clustering; soft sensors

1. INTRODUCTION

The gas-metal arc welding (GMAW) process is a com-
monly used welding process in industrial applications due
to ease of operations and its versatility. In the GMAW
process, an electric arc is formed between the consumable
wire electrode and the workpiece metal. The arc formation
causes the consumable wire and workpiece to melt and
join. The area where the joining occurs is called a weld.
To prevent contamination of the weld by the surrounding
air during the welding process, an inert gas is fed along
with the wire electrode to form a protective layer across
the weld area during the weld process.

Conventionally, testing of the weld quality is performed
off-line, with either destructive testing techniques (used
on as few samples as possible) and non-destructive testing
(NDT) techniques. The most common NDT is a visual
inspection of the GMAW runs, which involves obtaining
the penetration depth and the aspect ratio of the welds.
All these testing techniques can only be used at the end of
the welding runs and are mostly done on randomly selected
samples. Univariate statistical analysis methods (Adolfs-
son et al., 1999; Siewert et al., 2008) have been previously
used to monitor weld runs in various welding applications.
Artificial neural network models have been developed to
monitor the plasma radiation (Garćıa-Allende et al., 2009)
in arc welds. These methods are univariate in nature,
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whilst the welding operations are multivariable operations.
It is an established fact that univariate data analysis
methods cannot accurately capture the effect of process
variations in a multivariable process. This implies that
multivariate techniques of modelling and analysis need
to be used in order to ensure effective monitoring of the
welding processes.

Data-driven multivariate statistical analysis methods such
as hierarchical clustering analysis (HCA) (Jain et al.,
1999), principal component analysis (PCA) and partial
least squares (PLS) are widely used classification methods
and are popular in process monitoring applications (Kresta
et al., 1991). These methods are primarily used to analyse
data sets with a large number of highly correlated vari-
ables. The HCA algorithms create a hierarchy of opera-
tions, in which the clusters are either broken into smaller
parts in stages (divisive or top-down approach) or are
agglomerated in stages (agglomerative or bottom-up ap-
proach) based on a metric of similarity. The principal
assumption is that the process data conforms to a certain
hierarchy of classification. Hence, the interpretations of
the HCA results are more clear if a priori knowledge of
the number of clusters or classes of the data is available.
PCA is used when there is a single block of data, such
as input data (Kresta et al., 1991). The method involves
a linear coordinate transformation that spans the space
of maximum variance, thereby capturing the maximum
possible information in fewer dimensions. The PCA algo-
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rithm can be used only for continuous processes, where the
autocorrelation of process variables is low (or ideally non-
existent). Typical welding operations are batch processes,
where the completion of each weld describes a batch opera-
tion. In batch operations, the aim is to minimise the batch-
to-batch variations rather than the variation of process
variables with time. This implies that the PCA algorithm
cannot be used for classification and monitoring of batch
processes as it is unable to distinguish process data from
different batches. Nomikos and MacGregor (1994) devel-
oped the multiway PCA (MPCA) algorithm, which can
be used for monitoring and classification of batch data.
The MPCA algorithm unfolds the batch data along the
time axis and reduces the dimension of this data. The
conventional PCA is applied on the unfolded batch data.
The batch-to-batch variability can be monitored using this
approach. PLS is used to find the fundamental relations
between the dependent variables and independent vari-
ables; it is a latent variable approach to modelling the
covariance structures in these two spaces (Kresta et al.,
1991). A PLS model will try to find the multidimensional
direction in the space of independent variables that ex-
plains the maximum multidimensional variance direction
in the space of dependent variables. Both PCA and PLS
are dimension reduction methods that operate in such a
way that the reduced dimension space still explains the
majority of the variance in the data. The unsupervised
nature of all these algorithms makes them popular candi-
dates for separating available process data into different
classes.

In this work, the methods described above are applied
on GMAW data obtained from experiments done in the
welding laboratory. The key contributions of this work
are development of HCA and MPCA methods to classify
the welding runs into different categories. Further, a PLS
model is developed to predict the weld quality based on
visual inspection data, such as weld aspect ratio and weld
penetration depth. The results obtained indicate that the
data analysis methods are able to classify the welds and
predict weld quality variables better than the conventional
practices used in the welding industry.

The paper is organised as follows. Section 2 gives the
important details about the algorithms used in this work
to classify the welds. A brief explanation of the welding
experiments in given in Section 3, followed by a discus-
sion of the results obtained. Conclusions drawn from the
analysis of the results in presented in Section 4.

2. OVERVIEW OF HCA, MPCA AND MPLS

2.1 Hierarchical Clustering Analysis

Hierarchical clustering approaches classify the data into
various classes, which are separated by the degree of
similarity associated with them (Manning et al., 2008).
Thus, the degree of similarity results in a structure that
looks like an hierarchy. Such a structure is called a den-
drogram. The degree of similarity is achieved by using
an appropriate metric of distance between the different
samples. In this work, the Euclidean distance is used as a
metric of similarity. Once the similarity metric has been
obtained, the data is grouped together through a linkage,

which uses the distance metric generated to determine
the proximity of the objects to each other. This groups
the data into binary clusters, which are then linked to
other binary clusters to form bigger clusters until all the
data points have been linked with each other to form a
hierarchical tree (Jain et al., 1999). The popular linkage
functions include farthest distance, shortest distance and
mean distance. In this work, the shortest distance function
was used to created the linkages. Once all the data has
been linked through binary clusters, a dendrogram can be
obtained, which shows the clusters and their similarity.
The number of clusters can, then be decided based on
a cut-off of the similarity metric, which is drawn from
user/operator experience.

2.2 Multiway Principal Component Analysis

Similar to the conventional PCA algorithm (Kresta et al.,
1991), the MPCA algorithm is also a dimensionality re-
duction technique that can be applied to batch pro-
cesses (Nomikos and MacGregor, 1994). Consider a batch
process with j = 1, 2, . . . , J variables, available at time
intervals k = 1, 2, . . . ,K. For all batches i = 1, 2, . . . , I,
the data can be arranged as X ∈ R

I×J×K . The three-way
data array X is unfolded along the K dimension to result
in a two dimensional matrix X ∈ R

I×JK . This places the
variables measured at one particular time interval across
all batches one below the other, while all variables at
different time intervals are placed one next to the other.
Unfolding the data in this manner allows monitoring of
batch-to-batch variations. The standard PCA algorithm
is then applied on the matrix X. The PCA algorithm
transforms the data co-ordinates such that each successive
direction explains the maximum residual variance in X.
For example, the first direction, t1, is obtained as the
solution of the following optimization problem

max
p1

(

t1
T t1

)

= p1
TXTXp1

such that p1
Tp1 = 1

(1)

The solution of the above problem can be posed as an
eigenvalue–eigenvector problem

XTXp1 = λ1p1 (2)

Thus, the PCA decomposes the covariance of X into a
scores matrix T and an orthogonal loadings matrix P. In
order to minimise noise, loading vectors corresponding to
the first R largest eigenvalues are retained. This results in
a lower dimensional space that can still explain the largest
possible variance in the data. The original three-way data
array X can be reconstructed as follows

X =

R
∑

r=1

tr
⊗

P+E (3)

where E is the residual noise information that is not
captured in the first R directions.

The Hotelling’s T-squared distribution is used for online
implementation of the MPCA algorithm. For the ith
sample of process variables, the Hotelling’s T-squared
statistic is obtained as

T 2
i = tiΛ

−1ti (4)

where ti represents the scores of the ith sample and
Λ = diag [λ1 λ2 . . . λR]. An upper and lower threshold
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of Ti are used to determine the normal batch runs. If the
value of Ti crosses any of the thresholds, then the batch is
said to deviate from normal behaviour.

2.3 Partial least squares

The partial least squares or projection onto latent struc-
tures (PLS) algorithm attempts to simultaneously reduce
the dimensions of the spaces of independent variables (X)
and dependent variables (Y) to obtain the latent vectors
of the X and Y spaces that are highly correlated (Kresta
et al., 1991). Thus, the PLS algorithm obtains a regression
model between the transformed space of X and trans-
formed space of Y. A popular implementation of the PLS
algorithm is briefly described here. Consider the following
decomposition of the X and Y matrices

X = TPT + E1 (5)

Y = UQT + E2 (6)

where the matrices T and U are the scores matrices and P
and Q are the loadings matrices of X and Y respectively.
The regressor matrices are obtained as follows: Set u equal
to one column of Y. Obtain the corresponding scores as
follows

wT = uTX/uTu (7)

t = Xw/wTw (8)

Re-compute the scores of Y as follows

qT = tTY/tT t (9)

u = Yq/qTq (10)

Solve equations 7–10 until the values of t and u converge.
Obtain the loadings of X and regressor of Y as follows

p = XT t/tT t (11)

b = uT t/tT t (12)

Compute the residuals as

E1 = X− tpT (13)

E2 = Y − btqT (14)

To compute the next set of latent vectors, replaceX andY
with E1 and E2. Repeat the steps till the desired number
of latent vectors are obtained.

3. WELDING EXPERIMENTS

The welding experiments were performed using a GMAW
power supply in CV (constant voltage) mode and 0.045 in
solid steel wire. A mixture of 75% argon and 25% carbon
dioxide was used as a shielding gas. Typical voltage and
current changes in a batch run are shown in Fig. 1 and
Fig. 2. Experience of welding operations indicate that
the following parameters affect the weld quality– con-
tact tip to workpiece distance (CTWD), wire feed speed
(WFS) and voltage. These are usual “essential variables”
in codes, such as the ASME boiler and pressure vessel code
(BVPC) (ASME, 2010). The range of these parameters
that result in an acceptable weld are typically known
through experience. Seventeen experiments of GMAW
were run for different values of CTWD, WFS and voltage,
which are shown in Table 1. The order of the batch runs
was deliberately selected randomly, so as to minimize the
effect of contact tip wear on weld quality. For example,
batch runs in which voltage was manipulated were not

run in sequence. The determination of what constitutes
a “good” or “bad” weld depends on the application, and
can involve radically different metrics. In this work, the
metrics of weld quality used were the aspect ratio (AR)
and penetration depth (PD) of the weld in each batch run.
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Fig. 1. Voltage trajectory for a typical run
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Fig. 2. Current trajectory for a typical run

Table 1. Operating conditions of different
batch runs

S. No. CTWD (mm) WFS Voltage Travel speed
(mm) (m/min) (V) (m/min)

1 9 3.8 18 0.3
2 12 3.8 18 0.3
3 15 3.8 18 0.3
4 19 3.8 18 0.3
5 22 3.8 18 0.3
6 15 2.8 18 0.3
7 15 3.2 18 0.3
8 15 5.1 18 0.3
9 15 5.5 18 0.3
10 15 3.8 16 0.3
11 15 3.8 17 0.3
12 15 3.8 19 0.3
13 15 3.8 20 0.3
14 15 3.8 18 0.1
15 15 3.8 18 0.2
16 15 3.8 18 0.4
17 15 3.8 18 0.5

3.1 Results

The different input conditions result in batches that have
unequal run-time. In order to develop models using the
methods mentioned in Section 2, it is essential to have
batches of equal length. This was achieved by truncating
the batches with longer run-times. The resulting loss in
information is minimal since these parts involve winding
down and shutting the welding process, which has very
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little impact on the final weld quality. Initially, the stan-
dard deviations of the current and voltage values from an
arbitrarily selected “base run” were evaluated to see if they
could be used to classify the batch operations into groups
of similar runs. This is standard industrial practice and
also used as a univariate monitoring technique (Adolfsson
et al., 1999). From operators’ experience, it was deter-
mined that batch number 9 was a “good run” in terms
of its weld quality, and hence this was selected as the base
case. For the rest of the runs, the standard deviation of the
voltage and current was obtained around the mean value
of the voltage and current of run 9. The results of this
exercise are reported in Table 2. From the table, it can
be seen that there is not much difference in the standard
deviation values of all runs and hence it is difficult to
classify the runs into similar groups of welding operations
based on the standard deviation alone.

Table 2. Standard deviation of each batch from
batch 9

Batch No. Avg. V std. dev (V) Avg. I std. dev (I)

1 17.933 9.224 131.748 133.057
2 17.956 12.433 132.637 142.375
3 16.655 9.260 140.283 132.351
4 17.777 9.344 148.009 136.172
5 17.835 9.477 143.235 137.981
6 17.835 9.477 143.235 137.981
7 17.884 9.244 132.644 132.736
8 17.606 9.299 186.101 136.605
9 17.823 0 142.874 0

10 17.869 9.039 124.675 129.143
11 17.705 8.958 126.024 127.569
12 18.829 9.230 139.394 135.039
13 19.839 8.962 132.675 137.488
14 17.930 8.802 116.599 125.571
15 18.013 8.799 104.188 126.690
16 17.775 9.184 132.218 130.661
17 17.673 9.110 166.337 126.806

Since the standard deviations in voltage and current were
not able to classify the runs, other classification methods
were used to obtain the similar groups in the welding
experiments. HCA was performed on the two sets of data:
(a) input data of current (I) and voltage (V) and (b) visual
inspection data, AR and PD. The results of the HCA
performed on input data are shown in Fig. 3. From the
figure, it can be seen that similar runs can be clubbed as
follows– runs (4, 11 and 12), runs (1 and 9) and runs (2, 5,
6, 7, 15 and 17). Runs 3, 8, 10, 13 and 14 are different from
the other groups and do not fall into any group. However,
when the HCA analysis is performed using the visual
inspection data, the results are different. From Fig. 4, it
can be seen that the grouping of the runs is different from
that obtained through HCA on input data. This indicates
that the classification of the inputs is not sufficient to
predict the visual inspection data, and a correlation needs
to be developed between them.

The MPCA algorithm was applied on the input data of
the batch runs, I and V, to group batch runs that are
similar to each other. For the purpose of this analysis, the
size of all batches were maintained constant by truncating
the longer runs. From Fig. 5 it can be seen that four
principal components cumulatively explain more than 99%
variance in the data. Fig. 6 is a biplot of the scores of the
first two principal components. The runs that are similar
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Fig. 3. HCA results on input data of the runs
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Fig. 4. HCA results on visual inspection data of the runs

get grouped close to each other, while the dissimilar ones
are away from each other. The results indicate that runs
(7, 16, 2, 15, 6, 5 and 17 were similar), (2, 4, and 11
were similar), (9 and 1 were similar) whereas the runs 3,
8, 13, 10 and 14 were different from the rest. It should
be noted that the choice of the cut-off for clustering
similar samples is completely based on user experience.
The residuals between obtained data and predictions using
the MPCA model are obtained and the sum of squared
residuals (SSR) for each run is shown in Fig. 7. The results
indicate that runs 8, 10 and 14 are not normal runs due
to the higher scores, which is consistent with the analysis
obtained through HCA and MPCA. This, however, still
does not explain why runs 3 and 13 are different from the
rest.
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Fig. 5. MPCA: Variance explained by each principal com-
ponent and cumulative variance

While HCA and MPCA are able to classify the batches
according to their similarity, they are not able to predict
the quality variables of the weld. PLS overcomes this
shortcoming and helps in developing such models. Initially,
PLS models were developed using average current (Iavg)
and average voltage (Vavg) for each batch. The reason for
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Fig. 6. MPCA: Scores plot of the batches indicating groups
of similar runs
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Fig. 7. Sum of squared residuals of MPCA predictions for
all runs

using Iavg and Vavg is that operators use these values to
gauge the progress of the weld run. The intention is to
investigate if the PLS models using the average values
of I and V for each batch are sufficient to provide good
predictions of AR and PD. The following PLS models
were developed: a) between (Iavg), (Vavg) and AR and b)
between (Iavg), (Vavg) and PD. The model predictions vs.
observed results are shown in Fig. 8 and Fig. 9. For a good
prediction, the observations should lie along the diagonal.
The results, however, indicate that this is not the case and
the use of Iavg and Vavg is not a good indicator of the weld
quality.
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Fig. 8. PLS: model predictions using (Iavg), (Vavg) vs.
observations of AR

Since Iavg and Vavg cannot be used to predict the AR and
PD, the PLS models were obtained again by using the
entire data of all runs. From Fig. 10 and Fig. 11 it can be
seen that 4 components of the PLS model explain > 96% of
the variance in AR and PD respectively. Plots of the PLS
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Fig. 9. PLS: model predictions using (Iavg), (Vavg) vs.
observations of PD

model predictions vs obtained AR and PD measurements
are shown in Fig. 12 and Fig. 13. From the figures, it can
be seen that the PLS models are able to generate fairly
accurate predictions of AR and PD.
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Fig. 10. PLS components vs. cumulative percentage vari-
ance explained for AR
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4. CONCLUSIONS

In this work, data analysis methods such as MPCA and
HCA were used to classify the GMAW runs in order to
determine the “good quality” welds. PLS was used to
build models that can predict the variables related to
the quality of the welds. The use of such data analysis
techniques make it possible for early detection of welding
jobs that might not meet the expected quality parameters.
Also, the use of such techniques can help reduce the need
for performing metallography or using heuristic visual
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Fig. 12. PLS model for AR with 4 components: predictions
vs. observed data
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Fig. 13. PLS model for PD with 4 components: predictions
vs. observed data

analysis techniques, which consume time and resources
and can be done only at the end of the welding job.

The results indicate that the practice of using the stan-
dard deviation of the current and voltage values from a
designated “good” run is not able to clearly differentiate
between the welds. Further, the PLS models obtained
using the average voltage and current values, which is a
standard industrial practice to determine weld quality, do
not give an accurate prediction of the weld quality. This
implies that the trajectory of the inputs has an important
role in the final outcome of the welding operation. Hence,
HCA and MPCAmodels were built using the entire data of
the welding runs. The HCA models developed using input
data and visual inspection data do not result in the same
classification, thereby indicating that the visual inspection
data is not fully explained by the available input data.
Based on the available input data, MPCA was applied
to the welding batch runs in order to classify runs based
on their similarity. The classification of the weld runs ob-
tained fromMPCA was similar to that obtained from HCA
based on input data. The PLS models developed between
entire input data and visual inspection data demonstrate
that even with four PLS components, a reasonably good
prediction of the visual inspection data can be obtained.
This implies that the PLS models developed can be used
in monitoring the welding runs and to predict the final
outcome of the batch.

This work is an initial outcome of the data analysis
work undertaken to develop models that can be used for
monitoring and classification of welding runs on a solid
steel wire. Further investigations and more experiments
are also needed in determining the rest of the inputs

that have an impact on the visual inspection data and
improving the accuracy of the models, since the models
obtained from these methods are reliable only when a fairly
large amount of data is available. Models with greater
details can be developed if metallography analysis of the
welds is done in order to extract more parameters that are
relevant to estimating the quality of the weld. It should
also be noted that separate models need to be developed
for different wire materials and wire types; however, the
methodology developed here does not need to be modified.
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On-line quality monitoring in short-circuit gas metal arc
welding. Welding Journal, 78(2):59S–73S, 1999.

ASME. ASME boiler and pressure vessel code: an inter-
national code. I- Rules for construction of power boiler.
American Society of Mechanical Engineers, New York,
2010.
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line monitoring system - an application for monitoring
key welding parameters of different welding processes.
Tehnicki Vjesnik, 15(2):9–18, 2008.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 468


