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Abstract: This work presents a methodology for the integrated identification, estimation
and accommodation of control actuator faults in particulate processes with discretely-sampled
measurements and plant-model mismatch. Initially, a stabilizing state feedback controller
is designed on the basis of a reduced-order model of the infinite-dimensional system, and
the closed-loop stability region is characterized in terms of the model uncertainty, the fault
magnitude, the sampling period and the control design parameters. When state measurements
are unavailable, the reduced-order inter-sample model predictor generates state estimates which
are updated at each sampling time. A moving-horizon optimization problem is then formulated
and solved for on-line actuator fault detection, isolation and estimation using past state and
input data. The resulting estimates are used to locate the operating point with respect to the
closed-loop stability region, which in turn is used to carry out the fault accommodation logic via
updating the pot-fault control model and/or adjusting the controller design parameters. The
developed methodology is illustrated using a non-isothermal continuous crystallizer example.

Keywords: Fault identification, fault accommodation, sampled-data systems, reduced-order
model, model-based control, particulate processes.

1. INTRODUCTION

Valuable products from the agricultural, chemical, food,
mineral, and pharmaceutical industries are derived from
particulate processes whose qualities are determined by
the characteristics of the particle size distribution. Fault-
tolerant control of particulate processes is an important
problem since control malfunctions have potentially neg-
ative effects on the particle size distribution which can
lead to poor end product quality. This topic has received
limited attention despite the significant body of research
work on feedback control of particulate processes (e.g., see
Semino and Ray (1995); Christofides (2002); Doyle et al.
(2003); Hu et al. (2005); Larsen et al. (2006); Nagy (2009),
for some results and references in this area).

The complex and uncertain dynamics, coupled with the
infinite-dimensional nature of particulate process models,
are some of the key challenges that complicate the design
of model-based fault-tolerant control systems. While the
literature on fault detection, isolation and accommoda-
tion is quite extensive (e.g., see Frank and Ding (1997);
Blanke et al. (2003); Mhaskar et al. (2013); Raimondo
et al. (2013); Paulson et al. (2014) for some results and
references); results for particulate processes are limited at
present (e.g., Giridhar and El-Farra (2009)).

Discrete measurement sampling is another important im-
plementation issue that arises in the design of model-
based fault-tolerant control systems. In Napasindayao and
El-Farra (2013), a stability-based fault detection scheme
utilizing a time-varying residual alarm threshold was pro-

posed for detecting destabilizing faults in sampled-data
particulate processes, and in Napasindayao and El-Farra
(2014), a data-based fault identification scheme that allows
the on-line detection of sudden and incipient faults while
determining their location and magnitude was introduced.
An advantage of this scheme is the fact that it can be
used even after control system reconfiguration, which is
an advantage over the detection strategy in Napasindayao
and El-Farra (2013) where a new alarm threshold had to
be calculated following every fault accommodation event
which could cause delays in fault detection. The timely
identification of faults location and magnitude allows for
systematic scheduling of plant maintenance and equipment
repair or replacement; however, this identification strategy
was developed based on an accurate plant model. This
assumption needs to be re-examined since model uncer-
tainties are always present and can lead to inaccurate
diagnosis of the fault or health status, and even closed-
loop instability, if not properly accounted for. In addition,
the process was controlled using a sample-and-hold scheme
because of the measurement sampling. This approach is
simplistic and may lead to limited control capabilities
especially for large sampling periods.

Motivated by these considerations, we develop in this
work a model-based framework for fault-tolerant control
of sampled-data particulate processes with model uncer-
tainty and actuator faults. Model reduction techniques
are initially applied to obtain an approximate reduced-
order model which is used in designing a state feedback
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controller. The controller makes use of an inter-sample
state estimator between the sampling times. The inter-
sample state estimator is updated when sensor readings
are received. Through stability analysis, an explicit char-
acterization of the stability region is obtained as a function
of the controller design parameters, the sampling period,
the model uncertainty, and the actuator health status.
This characterization is used for fault accommodation.
Fault identification is carried out by solving a data-based
moving horizon optimization problem in which the fault
magnitude is estimated. The fault is then accommodated
by either modifying the post-fault model in the inter-
sample state estimator or the controller design parameter
based on the stability analysis for all values within the
estimation interval. Finally, the proposed fault-tolerant
control framework is applied to a simulated model of a
non-isothermal continuous crystallizer.

2. MOTIVATING EXAMPLE

In this section, we introduce a well-mixed non-isothermal
continuous crystallizer as a motivating example that will
be used throughout the paper to demonstrate the devel-
opment and implementation of the proposed fault-tolerant
control approach. The following reduced-order model of
the crystallizer is adapted from Christofides (2002) by
appropriately augmenting the population and component
mass balances for the isothermal continuous crystallizer
with the energy balance for the non-isothermal batch crys-
tallizer. The model has the form:
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where µv is the v-th moment of the crystal size distribu-
tion, c is the solute concentration in the crystallizer; T is
the crystallizer temperature; τr is the residence time; ρ is
the particle density; cs is the concentration of the solute
at saturation given by cs = −3T̄ 2 + 38T̄ + 964.9, T̄ =
T−273
333−273 , c0 is the concentration of solute entering the

crystallizer; k̄1, k̄2 and k̄3 are constants; Hc is the heat
of crystallization; ρs is the density of the contents of
the crystallizer; Cp is the heat capacity; U is the heat
transfer coefficient; Ac is the heat transfer area with the
cooling medium; and Tc is the temperature of the cooling
medium. For typical values of the process parameters, the
process dynamics is characterized by an unstable steady-
state surrounded by a stable periodic orbit. The open-loop
oscillatory behavior exhibited by the crystallizer is due to
the relative nonlinearity of the nucleation rate as compared
to the growth rate (see Randolph (1980) for an early review
of studies on crystal size distribution instabilities).

2.1 Control problem formulation

The control objective is to suppress this oscillatory behav-
ior and stabilize the crystallizer at the following open-loop
unstable steady-state: xs = [µs

0 µs
1 µs

2 µs
3 cs T s]T =

[0.0047 0.0020 0.0017 0.0022 992.95 298.31]T ,
which corresponds to the desired crystal size distribution,
by manipulating the solute feed concentration (c0) and/or
the residence time (τr) in the presence of actuator faults.
Sampled measurements of the moments of the crystal size
distribution (µv, v = 0, 1, 2, 3), solute concentration,
and temperature are collected discretely and sent to the
controller where the control action is calculated and finally
sent to the actuators.

2.2 Control actuator fault modeling

Linearizing the reduced-order system of 1 around the
desired steady state, the linearized system takes the form:

ẋ(t) = Ax(t) +Bkαkuk(t) (2)

where x(t) is the vector of state variables; uk(t) =
[uk

1(t) · · · uk
m(t)]T is the vector of manipulated inputs in

deviation variable form, m is the number of manipulated
inputs, k is a discrete variable denoting the active control
actuator configuration, and αk = diag{αk

1 , · · · , α
k
m} is

a diagonal fault parameter matrix that accounts for the
presence of actuator faults or malfunctions in the system.
Each diagonal element in the fault parameter matrix (αk)
characterizes the local health status of the individual ac-
tuators. The entries of the fault matrix (αk) take values
between 0 and 1, where 0 denotes total actuator failure,
and 1 denotes the fault-free state. In the absence of faults,
αk = I where I is the identity matrix. The state vector is
expressed as a deviation variable, x(t) = χ(t)− xs, where
χ(t) = [µ0(t) µ1(t) µ2(t) µ3(t) c(t) T (t)]T ; and A and
Bk are constant matrices.

3. MODEL-BASED CONTROL SYSTEM DESIGN
AND STABILITY ANALYSIS

3.1 Sampled-data controller design

To compensate for the unavailability of continuous mea-
surements, an explicit inter-sample state estimator is used
in the controller design. At each sampling time, the corre-
sponding values of the measured states are instantaneously
transmitted to the controller and are used to update the
corresponding model states. The model-based state feed-
back controller is then implemented as follows:

uk(t) = Kx̂(t), t ∈ [τj , τj+1)

˙̂x(t) = Âx̂(t) + B̂kα̂kuk(t), t ∈ [τj , τj+1)

x̂(τj) = x(τj), j ∈ {0, 1, · · · }

(3)

where K is the feedback gain, x̂ is the vector of estimated
state variables used in generating the inter-sample control
until the next state measurement is available, j is a
sampling instance, and τj are the update times when
values of the state are collected. α̂k = diag{α̂k

1 , · · · , α̂
k
m}

is a diagonal matrix whose diagonal elements represent
estimates of the actuator faults which are used by the
inter-sample model predictor to account for the effect of
the faults. These elements are decision variables to be
determined from the fault identification scheme which will
be discussed in later sections. The plant matrices, A and

Bk are approximated by the constant matrices Â and B̂k,

where Â = A+∆A and B̂k = Bk +∆Bk.

The controller gain (K) is chosen to ensure that the

eigenvalues of Â + B̂kα̂kK lie in the open left-half of the
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complex plane. This choice ensures exponential stability
of the origin of the closed-loop model, which implies that
the closed-loop model state satisfies:

‖ x̂(t) ‖ ≤ γ‖ x̂(τ0) ‖e
−ϕ(t−τ0) (4)

for some constants γ ≥ 1 and ϕ > 0.

3.2 Closed-loop stability analysis

To simplify the analysis, we consider the case when the
sampling period is constant and equal for all the sensors,
i.e., all the state measurements are available to the con-
troller every ∆ units of time, where ∆ is the sampling pe-
riod. Defining the model estimation error as e(t) = x̂(t)−
x(t), the overall closed-loop system can be formulated as
a discrete-continuous system of the form:

ẋ(t) = (Â−∆A)(t) + (B̂k −∆Bk)αkuk(t)
˙̂x(t) = Âx̂(t) + B̂kα̂kuk(t)
e(τj) = 0, j = 0, 1, 2, · · ·

(5)

By analyzing the above discrete-continuous system, a suf-
ficient condition for stability of the sampled-data closed-
loop system can be obtained in terms of the sampling pe-
riod, the model uncertainty, the faults, and the controller
design parameters. This condition is given in the following
theorem.
Theorem 1. Consider the closed-loop system of (2) subject
to the control and update law of (3). If ∆ is chosen such
that

Γk(∆) := γ

(
e−ϕ∆ +

LA

ϕ+ LBk

(eLA∆ − e−ϕ∆)

)
< 1 (6)

then the sampled closed-loop states satisfy:

‖ x(τ−j+1) ‖ < ‖ x(τj) ‖, ∀j = 0, 1, 2, · · · (7)

where LA = ‖ Â − A ‖ and LBk = [‖ B̂k ‖‖ α̂k − αk ‖ +
‖∆Bk ‖‖ α̂k ‖]‖K ‖. Furthermore, lim

j→∞

‖ x(t) ‖ = 0.

Remark 1. It can be seen from (6) and the definition of LA

and LBk that the closed-loop stability region defined by (6)
is dependent on the degree of plant-model mismatch, the
sampling period, the fault size and the controller design
parameters. The stability condition can therefore be used
to explicitly characterize the how these various factors
influence the stability region. This characterization will
be used as the basis for choosing an appropriate fault
accommodation strategy.

4. DATA-DRIVEN ESTIMATION AND
IDENTIFICATION OF ACTUATOR FAULTS

4.1 Discrete-time model formulation

To facilitate the fault identification step which relies on
discrete process data, the continuous-time plant and model
are first converted into discrete-time form to allow com-
paring the discrete state estimates to the historical state
and input data. The discrete-time plant and model take
the form:

x[j + 1] = Adx[j] +Bk
dα

kuk[j]

x̂[j + 1] = Âdx̂[j] + B̂k
d α̂

kuk[j]
(8)

subject to the update law:

x̂[j] = x[j], j ∈ {0, 1, · · · } (9)

where x[j] = x(τj) is the vector of discrete process states,
x̂[j] = x̂(τj) is the vector of discrete state estimates, and

uk[j] = uk(τj) the vector of discrete input data. The
update period ∆ = τj+1 − τj is the time interval be-
tween discrete consecutive measurements, j is the update

instance, and Ad, B
k
d , Âd and B̂k

d are discrete versions of

the constant matrices A, Bk, Â, and B̂k; respectively.

4.2 Moving horizon fault estimation

Fault identification involves estimating the value of the
fault parameter matrix αk using past state measurements
and inputs. This is done by solving the following moving-
horizon optimization problem (inspired by the formulation
in Samar et al. (2006)):

min
α∗

J(ζj , α
∗) (10)

s.t. 0 ≤ α∗

1,2,··· ,m ≤ 1

where the cost function is given by:

J(ζj , α
∗) =

j−NI+1∑

p=j

(∥∥∥x[p+ 1]− Âdx[p]− B̂k
dα

∗uk[p]
∥∥∥
2
)

(11)

and ζj = {(x[j−p], uk[j−p])|p = 1, 2, · · · , NI} denotes the
past NI historical data of the state measurements and the
manipulated inputs for each j-th sampling instance. The
idea is to compute the fault estimates t hat would minimize
the discrepancy between the actual and predicted state
values over a certain horizon of length N . Note that a
large value for NI may result in discontinuities in the
values of α∗, particularly right after a fault has occurred,
since the pool of data used in the calculations will involve
conflicting data taken both before and after the fault.
This may delay the accurate identification of the fault.
This parameter should therefore be carefully selected. Note
also that the fault identification scheme makes use of
the constant matrices, Âd and B̂k

d , from the inter-sample
model predictor since the plant dynamics are not fully
known by the system in actual applications.

Due to the discrepancy between the inter-sample predictor

model and the process (i.e., the fact that A 6= Â and

Bk 6= B̂k which leads to Ad 6= Âd and Bk
dα

k 6= B̂k
d α̂

k),
the optimal estimate of the fault, α∗, obtained from
the optimization problem of (10) will not be exactly
the same as the actual fault parameter αk. However,
given bounds on the size of the model uncertainty, an
estimation confidence interval for αk

l dependent on α∗

l may
be obtained. This interval is denoted by Ψl(α

∗

l ) and helps
provide an estimate of the size (or range) of the fault and
can thus be used for fault detection. Specifically, for a given
sampling period that satisfies the stability condition of (6),
a fault in the l-th actuator can be detected at Td when the
upper bound of Ψl(α

∗

l ) is less than 1, since we can easily
conclude that αk

l < 1 in that situation.

5. STRATEGIES FOR FAULT ACCOMMODATION

Following the detection of a fault in the operating control
configuration, we need to determine whether corrective
action (e.g., updating α̂k using α∗ or using a new feed-
back gain K∗) is required to preserve closed-loop stability.
When the partial fault is not significant enough to impair
the stability properties of the process, switching to a new
control configuration may be unnecessary. Considering
this, we develop in this section a stability-based fault
accommodation logic which is formulated in Algorithm
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1. The key idea is to maintain the current control con-
figuration if all the elements of the estimation interval
Ψl(α

∗

l ); l ∈ {1, · · · ,m}, satisfy the stability condition of
(6); otherwise, the system should switch to a new control
configuration which can guarantee the stability of the
closed-loop system.

Algorithm 1.

1. choose ∆ that satisfies (6) and set αk
l = α̂k

l = 1,
j = 0

2. solve (10)-(11) for α∗ and estimate Ψl(α
∗

l ) for each
α∗

l , l ∈ {1, · · · ,m}
3. if for any ϑl ∈ Ψl(α

∗

l ), (6) is violated with αk
l = ϑl

4. if for all ωl ∈ Ψl(α
∗

l ), α
∗

l satisfies (6) with αk
l = ωl

and α̂k
l = α∗

l

5. update α̂k
l using α∗

l at the next transmission time
and GOTO step 12

6. else if any K∗ satisfies (6)
7. update K using K∗ at the next transmission time

and GOTO step 12
8. else
9. replace l-th actuator with a new actuator that sat-

isfies (6), set αk
l = α̂k

l = 1 at the next transmission
time and GOTO step 12

10. end if
11. else
12. j = j + 1 and GOTO step 2
13. end if

Besides considering the stability requirement to compen-
sate for the destabilizing effect of an actuator fault, it
is possible to incorporate performance considerations in
the accommodation logic to determine the optimal solu-
tion among all stabilizing backup control configurations.
Also note that Algorithm 1 can be applied in the case
of multiple and simultaneous faults. In these cases, the
solution of the optimization problem of (10)-(11) also
determines which of the actuators is faulty. The faults may
be accommodated following an approach similar to the one
described in Algorithm 1, by updating all α̂∗

l associated
with the faulty actuators or using a new feedback gain.

6. SIMULATION STUDY

The non-isothermal continuous crystallizer example intro-
duced in Section 2 is used in this section to illustrate
the implementation of the proposed fault-tolerant control
scheme. The closed-loop stability regions are obtained
using the condition Γk(∆) < 1 which is derived from
the closed-loop stability analysis of the discrete-continuous
system in (6). These stability regions are obtained as
explicit functions of the controller gain (K), the sampling
period (∆), the fault parameter (αk), the plant-model mis-
match (∆A, ∆B), and the control configuration selection

(Bk, B̂k).

Each of the diagonal elements in the fault matrix (α)
characterizes the local health status of the individual
actuators. In the initial control configuration (k = 1), two
actuators are utilized for control: α1 represents the health
status of the actuator related to the first manipulated
variable (u1

1) used to vary the inlet concentration (c0),
and α2 is for the other actuator used to adjust the second
manipulated variable (u1

2), the residence time (τr). The

regions of stability are plotted as a function of the health
status of the first actuator (α1) against the fault model
parameter estimate (α̂1) as shown in Fig.1 for the case
when a perfect model is used (plot (a)) and the case
when model uncertainty is taken into account (plot (b)).
The uncertainty is considered to be in k̄3, which is an
experimentally determined constant that influences the
growth rate of particles in the crystallizer (see 1).

The blue area enclosed by the unit contour line in each
plot shows the region where the closed-loop process is
guaranteed to be stable. These two contour plots are useful
when there is a single fault in the actuator controlling the
inlet concentration since these were generated by setting
the fault parameters of other actuators equal to 1, thereby
signifying their fault-free status. Similar plots may be
generated for other conditions. Such plots are useful in
predicting the behavior of the process and in determining
the appropriate fault-tolerant response once a fault is iden-
tified. A partial malfunction in any of the actuators could
possibly occur such that the operating point is shifted
somewhere within the stability region. Such faults are not
detrimental to process stability and may not harm product
quality and; therefore, do not necessarily warrant immedi-
ate fault accommodation or control reconfiguration. Based
on this knowledge, the plant supervisor is then able to
strategically prioritize which specific control loop or plant
equipment requires maintenance or replacement through
this stability-based closed-loop analysis. In cases where
there are more variables to consider (e.g., a larger number
of manipulated variables), instead of a two-dimensional
contour plot, a look-up table with values of Γk(∆) for vary-
ing magnitudes of the process parameters can be generated
off-line and then used to judge if an identified fault requires
urgent attention.

The contour plot of the region of stability for different
systems with and without plant-model mismatch show
that uncertainties can significantly limit the range of
parameters under which the process is still stabilizable
(see Fig.1). When there is a perfect model, the system
is more tolerant to differences in values of α1 and α̂1 and
is still closed-loop stable under severe malfunctions. Both
regions of stability take the form of a diagonal figure that
is symmetric around the α1 = α̂1 axis. This is reasonable
since, in the best case scenario, the fault model parameter
α̂1 should be equal to the actual fault parameter α1.

For the two fault scenarios considered below, the controller
gain (K) is calculated by specifying the location of the

poles of Â+ B̂kα̂kK at [−1 − 2 − 3 − 4 − 5 − 6]. Fault
identification is carried out by solving for the fault esti-
mation matrix (α∗) in the optimization problem in (10)-
(11). This is done by comparing the past 20 data points
(NI = 20) of the state measurements and manipulated
input to values generated by the discrete-time model in
(8). Actuator faults in the manipulated variable responsi-
ble for controlling the inlet solute concentration (c0) are
investigated and the simulation is carried out under a
sampling period of ∆ = 0.1 h. All faults are introduced
after 1 h of operation. In both cases, the fault identification
scheme is shown to be effective in quantifying and almost
instantaneously locating faults—limited primarily by the
measurement sampling. However, jumps in the calculated
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Fig. 1. Plots (a)-(b): Region of stability is larger with a perfect
model (a) compared to one with model uncertainty (b) using
the feed concentration (c0) and residence time (τr) as manipu-
lated variables. Contour plots of Γk(∆) plotted against different
values of the fault parameter (α1

1
) and fault model parameter

(α̂1

1
).

values of the fault estimation parameters are occasionally
observed right after a fault. This is attributed to the
sudden disruptions in the data points used in the data-
based identification method which includes values of the
state and the manipulated variable before and after the
fault occurs. This is why the optimization horizon (NI) has
to be properly selected and the selection of the appropriate
fault accommodation strategy should be deferred until the
fault identification scheme settles to a final value for the
fault estimation parameter.

The first case involves a malfunction wherein the actuator
controlling the feed concentration (c0), the first manip-
ulated variable (u1

1), becomes 90% effective (α1 = 0.9),
while the other actuator used in varying the residence time
(τr) remains fault-free (α2 = 1) (see Fig.2(a)). Prior to
the fault, the fault parameters (α1, α2) and fault model
parameters (α̂1, α̂2) for all the actuators are equal to 1.
The fault is almost immediately identified and is reflected
by changes in the calculated values of the fault estimation
parameter (α∗

1) which eventually settles to a final value of
0.82. The offset between the fault magnitude (α1) and the
optimized fault estimate (α∗

1) is due to the model uncer-
tainty. Since there is plant-model mismatch, the estimated
value of the fault is unreliable but yields some information
about the range of possible values of the fault parameter.
Based on the uncertainty bounds, the range of possible val-
ues for the fault is found to be Ψ1 = [0.95, 1] (see Fig.2(b)).
An examination of the stability region plot shows that
this range of values for α1 is completely within the region
of stability if the fault model parameter estimate α̂1 is
maintained at its initial value of α̂1 = 1. Hence, the fault
will not result in system instability, and plant operations
may resume without having to modify the fault model
parameter α̂1. This is verified by the dynamics of the
total particle size (µ1) and inlet solute concentration (c0)
which reveal that the fault does not significantly disrupt
process performance and the states eventually settle to
their steady state values (see Figs.2(c)-(d)).

In the second scenario, a fault causes a 40% drop in the
effectiveness of u1

1, the actuator modifying the feed con-
centration (c0); this time leading to instability. The fault
parameter matrix then shifts from α = diag{α1, α2} =
diag{1, 1} to α = diag{0.4, 1} (see Fig.3(a)). The fault
identification scheme is able to estimate the fault at α∗

1 =
0.3675, and the range of possible fault parameter values in
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Fig. 2. Plots (a)-(d): Fault identification after a partial fault (α1 =
0.9) at t = 1 h. Plot (a): Dynamics of fault parameter (α1) and
fault estimation parameter (α∗

1
). Plot (b): Region of stability

with the estimation interval Ψ1 = [0.95, 1] for α̂1 = 1 (red
line). Plots (c)-(d): Dynamics of the state (µ1) (c) and the
faulty actuator controlling the manipulated variable u1

1
, the

feed concentration (c0) (d).

this case is found to be α1 ∈ Ψ(α∗

1) = [0.4, 0.475] which
lies completely outside the stability region (see Fig.3(b)).

From the contour plot, one can observe that no matter
how α̂1 is adjusted to try to accommodate the fault, a
part of the possible fault range will always lie outside
the stability region (i.e., there are values of α1 that fall
outside the stability region for all values of α̂1). There
is, therefore, no guarantee of closed-loop stability for this
fault accommodation option.
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Fig. 3. Plots (a)-(b): Fault identification after a partial fault (α1 =
0.4) at t = 1h. Plot (a): Dynamics of fault parameter (α1) and
fault estimation parameter (α∗

1
). Plot (b): Region of stability

with the estimation interval Ψ1 = [0.4, 0.475] for α̂1 = 1 (red
vertical line).

Since there is no stabilizing α̂1 value for α1 = 0.4, the
next alternative is to search for a stabilizing feedback gain
K∗ value when α1 = 0.4 and α̂1 = 1 (see Fig.4(a)). The
stability region is then plotted as a function of the fault
parameter (α1) and the control design parameter. Recall
that the feedback gain K is selected using pole placement

such that the poles of the closed-loop model Â + B̂kα̂K
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are at p = [λ p2 p3 p4 p5] = [−1 −2 −3 −4 −5 −6].
The first pole value (λ) is chosen as the control design
parameter and used to adjust K for fault accommodation.
The stability region generated reveals that there is no
stabilizing feedback gain (K∗) when α1 = 0.4 and α̂1 = 1
(the dark green zone is the stability region). The next
option is reverting to a different control configuration that
does not use the faulty actuator responsible for controlling
u1
1, the feed concentration (c0). The residence time (τr),

the second manipulated variable in the original control
configuration (u1

2), becomes the sole manipulated variable
(u2

1) in the second control configuration. This causes a
change in the stability properties of the closed-loop system
as reflected in the new stability region shown in Fig.4(b).
Through this reconfiguration-based fault accommodation,
the controller is able to maintain closed-loop stability after
a potentially destabilizing fault (see Fig.5).

It should be noted that the regions of stability are not
only useful in determining the appropriate control action
once a fault has occurred, but may also provide insight
in selecting the best control design parameters for fault-
tolerance. The stability region plotted against values of the
fault parameter (α1) and the controller design parameter
(λ) reveal that the stability region is less robust to faults
for large values of (λ) when the fault model parameter
(α̂1) is equal to 1. Thus, K was initialized using λ = −1
(see Fig.4(a)) which leads to the largest range of tolerable
faults. If the pole is pushed further to the left in the
complex plane, the range of tolerable faults shrinks and
even small faults can become destabilizing.
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Fig. 4. Plots (a)-(b): Regions of stability used in selecting the best
fault accommodation strategy after a partial fault (α1 = 0.4)
at t = 1h. Plot (a): Stability region for different values of
the fault parameter (α1

1
) and the controller design parameter

(p1) using the feed concentration (c0) and residence time (τr)
as the manipulated variables (α̂1

1
= 1). Plot (b): Stability

region plotted against the fault parameter (α2

1
) and the fault

model parameter (α̂2

1
) using the residence time (τr) as the only

manipulated variable (u2

1
).
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