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Abstract: Optimal operation of chemical plants is usually accomplished by finding the optimal
steady state using the nominal set of disturbances and model parameters. The optimization is
in most cases model based and therefore subject to uncertainties. This may lead to sub optimal
control actions with significant economical losses. One idea to tackle this problem is to use
the available measurements to adapt the inputs during operation in a feedback control scheme.
This can be achieved by a neighbouring extremal controller that updates the inputs based on
the deviation of the measured outputs from their nominal value. In this paper we generalize
the neighbouring extremal control design that has been presented in the literature to explicitly
handle measurement noise and implementation errors. The benefits of our method are illustrated
in a case study where we show that the sensitivity of the controller performance to measurement
noise is considerably reduced.
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1. INTRODUCTION

We consider the context of steady state process optimiza-
tion and robust implementation of optimal policies. Our
goal is to develop simple polices that guarantee near-
optimal operation under all conditions using feedback.
Here, ‘under all conditions’ means for the defined distur-
bances, plant changes and implementation errors.

One approach is the so called Neighbouring-Extremal
(NE) control proposed by Gros et al. (2009), where first-
order approximations of the optimal inputs are computed
based on the deviations of the measured outputs due
to disturbances or parametric uncertainties. This method
can be implemented in a simple static output feedback
control scheme, which results in near-optimal operation at
a negligible online computation costs. Figure 1 illustrates
the implementation approach. The main idea with the NE
controller is to update the nominal control inputs based on
the deviation of the measurements to their nominal value.

However, in practice the economic performance of the NE
controller can be severely impaired due to the presence
of measurement noise and implementation errors. In this
paper we generalize the NE design method to explicitly
handle noise and implementation errors. The new design
is based on a two-step approach. First, we compute a static
estimator which optimally estimates the disturbances us-
ing noisy measurements. Then, based on the linearized
necessary conditions of optimality the optimal input up-
dates are obtained. Finally, we show that the method
can be implemented as a simple static output feedback
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controller. The strength of the new NE controller for pro-
cess optimization is illustrated on a continuous chemical
reactor.
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Fig. 1. Schematic of the neigbouring extremal control
scheme. The nominal inputs and outputs are repre-
sented by un and yn, respectively.

The paper is organized as follows. Section 2 presents the
mathematical preliminaries and the problem formulation;
Section 3 shows how to extend the NE approach to
consider noisy measurements; Section 4 brings a simulation
example to illustrate the method; In Section 5 you will find
the discussion and conclusions of the paper.
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2. PROBLEM FORMULATION

2.1 Static optimization problem

We consider the following static optimization problem

min
u
J(x, u, d) (1)

s.t. F (x, u, d) = 0 (2)

where u ∈ Rnu are the degrees of freedom, x ∈ Rnx are the
states and d ∈ Rnd are the disturbances. Here the objective
is J : Rnx+nu+nd 7→ R, and F : Rnx+nu+nd 7→ Rnx denotes
the model equations. The output equations at steady-state
read

y = R(x, u, d) (3)
with the mapping R : Rnx+nu+nd 7→ Rny .

2.2 Optimality conditions

Let us define the Lagrangian function L(x, u, d, λ) =
J(x, u, d)+λTF (x, u, d) where λ are the multipliers. Under
a suitable second-order condition and constraint qualifica-
tion such as LICQ, the necessary conditions of optimality
of problem (1)-(2) are

Lu = Ju + λTFu = 0 (4)

Lx = Jx + λTFx = 0 (5)

Lλ = FT = 0 (6)

where the notation (·)X = ∂(·)
∂X .

We can combine (4)-(5) to have:

Lu = Ju − JxF−1x Fu =
dJ

du
= 0 (7)

where this total derivative is the (reduced) gradient of the
cost function with respect to u and will be denoted by the
nu dimensional vector g ≡ dJ

du . Here we assume that Fx is
invertible.

2.3 First-order variation of the NCO

We consider small variations in the disturbance ∆d =
d − dnom around the nominal value dnom. The linearized
optimality conditions can be written as (François et al.,
2014):

∆Lu ≈ Lux∆x+ Luu∆u+ FTu ∆λ+ Lud∆d = 0 (8)

∆Lx ≈ Lxx∆x+ Lxu∆u+ FTx ∆λ+ Lxd∆d = 0 (9)

∆Lλ ≈ FTx ∆x+ FTu ∆u+ FTd ∆d = 0 (10)

where the notation ∆ indicates the deviation of the vari-
able with respect to the nominal value.

We may use equations (8) and (9) to express the ∆x and
∆λ in terms of ∆u and ∆d

∆x = −F−1x Fu∆u− F−1x Fd∆d (11)

∆λ = −F−Tx Lxx∆x− F−Tx Lxu∆u− F−Tx Lxd∆d (12)

Here the notation (·)−T = (·)−1T . Combining (11) and
(12) with (8) we get

∆Lu = Juu∆u+ Jud∆d (13)

where

Juu ≡ Luu − LuxF−1x Fu − FTu F−Tx Lxu + FTu F
−T
x LxxF

−1
x Fu

(14)

Jud ≡ Lud − LuxF−1x Fd − FTu F−Tx Lxd + FTu F
−T
x LxxF

−1
x Fd
(15)

where Juu = d2J
du2 is the nu × nu reduced Hessian matrix

and Jud = d2J
du dd is a nu × nd matrix.

The term ∆Lu is the first order approximation of the
reduced gradient for the perturbed system, and we want
to enforce it to zero. Therefore, the variation ∆u that is
necessary to optimally offset the effect of ∆d is

∆uopt = −J−1uu Jud∆d (16)

If the variations ∆d are known, it is straightforward to
compute the input corrections to keep the gradient equal
to zero despite the disturbances. However, ∆d is generally
unknown and the challenge is to infer it from the noisy
measurements.

2.4 Linear model

The linearized output equations is given by

∆y = Rx∆x+Ru∆u+Rd∆d (17)

Upon linearising the model equation (2) and solving for
the state deviations we get

∆x = −F−1x Fu∆u− F−1x Fd∆d (18)

This results in

∆y = G∆u+Gd∆d (19)

where

G = Ru −RxF−1x Fu (20)

Gd = Rd −RxF−1x Fd (21)

2.5 Measurement noise and input disturbance

We assume that our measurements are corrupted with
noise (ym = y + ηy) and that the computed inputs (by
the optimization/controller) um differ from the actual
plant inputs u due to input disturbances ηu. In deviation
variables we have

∆ym = ∆y + ηy (22)

∆um = ∆u− ηu (23)

where ηy and ηu are zero-mean Gaussian measurement
noise. For simplicity, we will use the following notation

η =

[
ηy
−ηu

]
(24)

Process

ηy

d
ηu

ymyuum

Fig. 2. Plant setup with disturbances and noise
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3. DEALING WITH MEASUREMENT NOISE

3.1 Optimal static estimator open-loop

We would like to find an estimator in the form

∆d̂ = [H1 H2]︸ ︷︷ ︸
H

[
∆ym
∆um

]
(25)

that optimally approximate the disturbance ∆d in the case
of noisy measurements. By optimal it is meant here that
we want to minimize the prediction error

e = ∆d−∆d̂ (26)

Let us consider the augmented linear model

w =

[
∆y
∆u

]
=

[
G
I

]
︸︷︷︸
Gw

u

∆u+

[
Gd
0

]
︸ ︷︷ ︸
Gw

d

∆d (27)

It can be shown that the prediction error is given by

e(H) = [−HGwu (I−HGwd ) −H1 −H1G]

∆u
∆d
ηy
ηu

 (28)

Next, the magnitudes of the disturbances, measurement
errors and inputs are quantified by the scaling diagonal
matrices Wd, Wdu, Wn and Wu respectively so that we
can write

∆u = Wuu
′ (29)

∆d = Wdd
′ (30)

ηy = Wnη
′
y (31)

ηu = Wduη
′
u (32)

where the elements u′, d′, η′y and η′u are assumed to be
normally distributed with zero mean and unit standard
deviation. The diagonal scaling matrices contain the stan-
dard deviations of the elements in ∆u, ∆d, ηy and ηu. The
prediction error can be expressed by

e(H) =

M(H)︷ ︸︸ ︷
[−HGw

uWu (I −HGw
d )Wd −H1Wn −H1GWdu]

u′d′
η′y
η′u


(33)

It can be shown that the expected value of the 2-norm of
the prediction error is

E(‖e‖2) = ‖M(H)‖2F (34)

See Ghadrdan et al. (2013) for a similar proof. The matrix
M can be rewritten as

M = Y −HX (35)

where

Y =[0 Wd 0] (36)

X =[GwuWu GwdWd W̃n GwuWdu] (37)

and

W̃n =

[
Wn

0

]
(38)

Minimizing the estimation error variance (‖e‖2) is equiv-
alent to minimizing ‖M(H)‖2F . The optimization problem
can be written as

min
H
‖Y −HX‖F (39)

qB [l/min]

q

cBin [mol/l]

cA cB cC cD

cAin [mol/l]

qA [l/min]

Fig. 3. Schematic diagram of a CSTR

which we recognize as a least-squares problems with ex-
plicit solution

H = Y X† (40)

Note that this is not the same as simply finding the least
squares solution for d from measurement equation (19), as
it has been proposed by Gros et al. (2009).

3.2 Neighbouring-extremal considering measurement noise
and input disturbances

The next step is to combine the optimal disturbance
estimator (25) with the optimal input update (16) to
obtain the iterative control rule

∆uk+1 = Ku∆um.k +Ky∆ym,k (41)

where

Ky = −J−1uu JudH1 (42)

Ku = −J−1uu JudH2

Figure 1 depicts a simplified block diagram of the proposed
implementation approach. Note that the neighbouring
extremal controller updates the control input based on the
deviation of the measurements to their nominal value. In
the next section we will illustrate the application of the
method for the optimization of a chemical reactor.

4. SIMULATION EXAMPLE

Consider the steady state optimization of an isothermal
continuously stirred reactor (CSTR) in which the reactions
A + B → C and 2B → D are taking place, see Fig. 3.
The example is borrowed from (Gros et al., 2009). The
operational goal is to determine the feed rates qA and qB
of the components A and B into the reactor to maximize
the production of the component C at steady state. This
optimization problem can be formulated as

max
u

J(u) =
c2C(qA + qB)2

qA cAin
− 0.5(q2A + q2B) (43)
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Table 1. Nominal model parameters and oper-
ating conditions

Parameter Value Unit

k1 0.65 l/(mol h)
k2 0.014 l/(mol h)
cAin 2 mol/l
cBin 1.5 mol/l
V 500 l

subject to

0 = −k1cAcB +
qA
V
cAin −

qA + qB
V

cA

0 = −k1cAcB − 2k2c
2
B +

qB
V
cBin −

qA + qB
V

cB

0 = k1cAcB −
qA + qB

V
cC

(44)

Where u = [qA, qB ]T , cX describes the molar concentration
of component X, V is the volume of liquid in the reactor,
k1 and k2 are the rate constants of the chemical reactions,
cAin and cBin are the concentrations of the feed streams.
The nominal model parameters are given in table 1. The
main disturbances are the rate constants k1 and k2. Solv-
ing the optimization problem under nominal conditions
gives

un =

[
qA
qB

]
=

[
0.56
0.77

]
, yn =

[
cA
cB
cC

]
=

[
0.058
0.05
0.78

]
(45)

which are referred to as nominal optimal conditions.

4.1 Design of the new neighbouring extremal control

The task now is to design neighbouring extremal con-
trollers to update the nominal inputs to keep the pro-
cess operating near optimal conditions despite the uncer-
tainties. The main disturbance d are the rate constants
(d = [k1, k2]T ). Our measurement vector is defined as
y = [cA, cB , cC ]T . The second order derivatives at the
nominal point are

Juu =

[
18.17 −12.12
−12.12 9.71

]
, Jud =

[
−0.17 −28.6
−0.06 22.9

]
(46)

The only information missing for the computation of the
controller (42) is the matrix H = [H1, H2]. For this we
need to compute the matrices G and Gd of the linearized
model (27). Using symbolic differentiation and inserting
the nominal optimal inputs we get

G =

[
0.54 −0.36
−0.45 0.36
0.34 −0.28

]
, Gd =

[−0.06 0.71
−0.03 −0.73
0.06 −0.71

]
(47)

Next, we assume the parameters k1 and k2 may lie
in the range ±50% with 95% probability. This gives
the scaling matrices Wd = diag(0.1625, 0.0035) and
Wu = diag(0.0017, 0.0025). We also assume an expected
measurement noise of 10% standard deviation, result-
ing in Wn = diag(0.0003, 0.0003, 0.0039) and Wdu =
diag(0.0028, 0.0038). Gathering all these pieces we are now
able to solve (40) to obtain

H =

[
−11.69 −11.95 0.29 0.84 0.24

0.07 −0.71 −0.25 −0.27 0.21

]
(48)

which results in the following controller gains

Ky =

[
−1.34 −0.66 0.26
−1.76 −0.49 0.46

]
, Ku =

[
−0.35 0.17
−0.57 0.32

]
(49)

4.2 Neighbouring extremal controller design ignoring noise

For comparison we will follow the neighbouring extremal
approach of Gros et al. (2009) where the estimation of
the disturbance ∆d comes from the direct invention of the
linearized model (19). This results in the following gains

KGros
y =

[
−0.87 −0.42 0.86
−1.21 −0.07 1.21

]
, KGros

u =

[
−0.015 0.08

0.22 −0.06

]
(50)

4.3 Results

In this section we will compare the controllers for several
disturbances realizations and for different measurement
noise levels. For completeness, we also included the results
for a trivial open-loop policy, in which the control inputs
are kept constant at their nominal values.

Table 2 summarizes the different disturbance cases that
were tested. We compared the controllers using four levels
of measurement noise: 0%, 5%, 10% and 20% standard
deviation Gaussian noise. We ran every case 1000 times
and computed the average performance. Figure 5 shows
the results for cases 1 to 4. Both strategies are significantly
better than the open-loop policy in the noise-free case (top
left plot in Fig. 5).

Not surprisingly, the neighbouring extremal controller
(50), which was designed neglecting the noise, results in
better performance in the noise-free experiment. Nonethe-
less, the economic benefits of (50) decrease significantly as
the noise level increases. The proposed approach remain
consistently better than open-loop policy in all cases.

Figure 4 exemplifies the performance obtained for different
noise levels. In all cases we show cA and cB measure-
ments, the control inputs and the objective function to
be maximized. Measurement of cC was omitted from the
plot to ease the visualization. The red solid line is the NE
controller (50) designed assuming perfect measurements;
the green solid line is the proposed method; the dashed
black line represent the open-loop solutions using nominal
inputs; the blue lines represent the optimal solution. The
objective function was normalized with respect to the
optimal value.

5. DISCUSSION AND CONCLUSION

It is worth pointing out that the NE control updates
can be beneficial up to some noise level, in which there
would be no gain compared to the open-loop strategy. This
threshold, however, depends on the size of the disturbance
∆ d, but it can be analytically computed as shown in Gros
et al. (2009). The intuition is that we need to be able to
detect the effect of the process disturbance in the noisy
measurements ym. For a fixed level of noise, the relative
efficiency (with respect to the open-loop policy) of the NE
approaches improves with an increase in the magnitude of
∆d.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 702



0 20 40 60 80 100
0.05

0.06

0.07

c A
a
n
d
c B

,[
m
ol
,l
]

0 20 40 60 80 100

0.6

0.8

u
,[
l/
m
in
]

0 20 40 60 80 100
0.995

1

Iteration #

N
or
m
a
li
z
ed

J

(a) Case 4 with 10% standard deviation Gaussian noise
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(b) Case 4 with 20% standard deviation Gaussian noise

Fig. 4. Comparison of the different approaches for two different measurement noise levels. The red lines are given by
the NE controller (50) that was designed without taking noise in consideration. The green lines are the result of
the proposed NE controller (49). Note that the new method is considerably less sensitive to noise.

Table 2. Disturbance cases

Case Disturbance Optimal inputs

case 1 k1 = k1,nom + 20% qA = 0.57
k2 = k2,nom + 20% qB = 0.78

case 2 k1 = k1,nom − 20% qA = 0.54
k2 = k2,nom − 20% qB = 0.75

case 3 k1 = k1,nom + 20% qA = 0.57
k2 = k2,nom − 20% qB = 0.79

case 4 k1 = k1,nom − 20% qA = 0.53
k2 = k2,nom + 20% qB = 0.74

Both NE control methods are based on linearization of
the problem around some operation point. For this reason
we restricted our simulations to a local neighbourhood
of the nominal case. Due to the inherent nonlinearity of
real processes, little can be said about the performance
NE controllers for excessively large parameter variations.
Nonetheless, in our proposed method we are able to define
the range of expected disturbances and find the best option
for the given range.

Our design approach is based on two steps: first we find
the optimal static estimator and then we combine it with
the optimal sensitivities to obtain the NE gains Ku and
Ky. An interesting question that arises is whether we can
compute the optimal gains in one step, that is, can we
directly find gains Ku and Ky that minimizes the average
loss? It is not perfectly clear that the solution to this
problem is equivalent to the solution obtained with the two
step approach. More in depth analysis of these questions
will be presented in a future paper.
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Fig. 5. Comparison of control strategies with different disturbances affecting the system. The results represent an average
over 1000 runs considering different levels of measurement noise.
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