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Abstract: In this paper, a distributed extremum seeking control technique is proposed to solve
a class of real-time optimization problems over a network of dynamic agents with unknown
unstable dynamics. Each dynamic agent measures a cost that is shared over a network. A
dynamic average consensus approach is used to provide each agent with an estimate of the
total network cost. The extremum seeking controller uses the local estimate of the total cost
to adjust the value of the local decision variables. The contribution of the proposed technique
is the simultaneous stabilization of the network dynamics and the distributed optimization of
the total network cost. A dynamic network simulation example is presented to demonstrate the
effectiveness of the technique.
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1. INTRODUCTION

Real-Time Optimization (RTO) is a process automation
technology whose objective is to predict the economically
optimal process operating policy in the near term. The
application of RTO requires a considerable expenditure
for manufacturers. It involves the development of a process
model along with implementation of a suitable optimiza-
tion routine that can solve the optimization problem in
real-time. To circumvent these limitations, a number of
alternative techniques have been proposed to solve steady-
state optimization problems. One such RTO technique
is extremum-seeking control (ESC). ESC has been the
subject of considerable research effort over the last decade.
This approach, which dates back to the 1920s Leblanc
(1922), provides a mechanism by which a system can be
driven to the optimum of a measured variable of interest
Tan et al. (2010). ESC can be viewed as an empirical
RTO implementation in which no exact model descrip-
tion is required, but where the objective function of the
RTO problem is available from process measurements.
ESC provides an effective control system design technique
that can be used to steer an unknown dynamical system
to an equilibrium that optimizes a cost function. When
dealing with complex dynamical systems, it is generally
recognized that overall process objectives are difficult to
achieve due to the computational complexity associated
with centralized approaches. Thus, a decentralized or a
distributed optimization approach is usually favoured in
large-scale RTO systems design to achieve global pro-
cess objectives by solving several local RTO subproblems.
The distributed optimization task can be non-cooperative
where each local RTO achieves its local optimization ob-
jectives. Non-cooperative RTO problems have been tackled
using ESC by several researchers (Ghods et al. (2010),

Stankovic and Stipanovic (2009), Poveda and Quijano
(2013), Frihauf et al. (2012) and Frihauf et al. (2011)).
The distributed optimization task can also be cooperative
when the local RTOs coordinate actions to optimize the
sum of their assigned costs. A particular class of dis-
tributed cooperative optimization has been the subject
several studies (Bertsekas and J.Tsitsiklis (1989),Nedic
and Ozdaglar (2009), Johansson et al. (2009)). For a class
of unconstrained optimization problems, it is shown in
Nedic and Ozdaglar (2009) that it is possible to achieve
overall system objectives by solving local problems and
communicating the optimization results via the network.
For constrained optimization problems, the Alternating
Direct Method of Multipliers (ADMM) can be used to
solve distributed and coordinated optimization problems
(Boyd et al. (2011), Schizas et al. (2008)). Few ESC
techniques have been proposed to solve decentralized and
distributed optimization problems have been proposed (Li
et al. (2011), Kvaternik and Patel (2012)).

This study proposes the design of distributed optimization
of networks of dynamic agents with unknown unstable dy-
namics. A distributed extremum-seeking controller is pro-
posed to solve the optimization problem. Many researchers
have considered various ESC approaches over the last years
(see, Krstic (2000), Tan et al. (2006), Krstic and Wang
(2000), Adetola and Guay (2007) , Guay et al. (2004),
Nesic et al. (2010) ,Moase and Manzie (2012), Ghaffari
et al. (2012), Moase et al. (2010), Guay and Dochain

(2013) ,Zhang and Ordóñez (2009) ,Fu and Özgüner
(2011)). This paper proposes a novel proportional-integral
ESC (PIESC) design technique, initially proposed in Guay
and Dochain (2014), in a distributed environment to de-
sign cooperative systems that solve a distributed optimiza-
tion problem over networks of unknown unstable dynamic
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agents. The agent dynamics implement a PIESC controller
that can solve the real-time optimization without the ex-
plicit need for a two time-scale approach. The main contri-
bution of this paper is to show that the distributed PIESC
can be effectively applied to design real-time optimization
control systems that can stabilize the network of unstable
dynamics to the unknown optimum of the total plant cost.

This paper is organized as follows. The problem is for-
mulated in Section 2. In Section 3, the control system is
presented. A simulation example is presented in Section 4.
We conclude in Section 5.

2. PROBLEM DESCRIPTION

We consider a network of nonlinear systems of the form:

ẋi = fi(x) + gi(x)u (1)

yi = hi(x) (2)

where x = [xT1 , . . . x
T
p ]T ∈ Rn is the vector of state

variables and u is the vector of input variables taking
values in U ⊂ Rp for the entire network. The dynamic
of each agent i = 1, . . . , p is governed by the dynamics
(1) with local cost yi = hi(x). It is assumed that each
agent can only use the local input variable ui. The overall
network cost function is the sum of all the individual costs:

J(x) =

p∑
i=1

hi(x). (3)

It is assumed that the vector fields fi(x) and gi(x) are
unknown smooth vector valued functions of x and that
hi(x) are unknown smooth functions of x.

The objective is to steer the system to the equilibrium x∗

and u∗ that achieves the minimum value of Y = J(x). The
total network dynamics can be written in the form:

ẋ = f(x) +G(x)u (4)

with total cost

Y = J(x) (5)

where
f(x) = [f1(x)T , . . . , fp(x)T ]T ,

G(x) =
[
g1(x)T , . . . , gp(x)T

]T
.

The equilibrium (or steady-state) network map is the
vector x = π(u) that solves the following equation:

f(π(u)) +G(π(u))u = 0.

The corresponding equilibrium cost function is given by:

Y = J(π(u)) = `(u) (6)

At equilibrium, the problem is reduced to finding the
minimizer u∗ of Y = `(u∗). In the following, we let D(u)
represent a neighbourhood of the equilibrium x = π(u).

Some additional assumptions are required concerning the
cost function J(x).

Assumption 1. The total network cost J(x) is such that

(1) ∂J(x∗)
∂x = 0

(2) ∂2J(x)
∂x∂xT > βI, ∀x ∈ D(u)

where β is a strictly positive constant.

Note that, in contrast to standard ESC, convexity of
the cost function J(x) is required. We also require the
following properties for the dynamics:

Assumption 2. For the dynamics (1), the following state-
ments are assumed:

(1) there exists k∗, α > 0 such that J(x) satisfies the
inequality:

∂J

∂x
f(x) +

∂J

∂x
G(x)u

− k∗ ∂J
∂x

G(x)G(x)T
∂JT

∂x
≤ −α‖x− π(u)‖2,

∀x ∈ D(u),
(2) the matrix valued function G(x) is full rank ∀x ∈
D(u),

∀u ∈ U .

Assumption 2 states that h is non-increasing along the vec-

tor field of the closed-loop system f(x)−k∗G(x)G(x)T ∂J
T

∂x
over some neighbourhood of the steady-state manifold x =
π(u) at a fixed value of the input u. It also states that the
cost function is of relative order one in a neighbourhood
of the origin. Finally, the following additional assumption
concerning the steady-state cost function `(u) is required.

Assumption 3. The equilibrium steady-state map `(u) is
such that

∇u`(u)(u− u∗) ≥ αu‖u− u∗‖2

for some positive constant αu ∀u ∈ U .

3. DISTRIBUTED ESC CONTROLLER

3.1 Consensus algorithm

In this study, we consider a consensus estimation approach
that provides each agent with an estimate of the total cost
J using only its local cost measurement and communi-
cation protocol with neighbouring agents. This problem
is handled by using a dynamic average approach where
the objective of each agent is to estimate the mean of the
“inputs” to a system. Here, the use of “inputs” refers to hi,
the measurement of the local cost. By estimating the mean
over all agents, the consensus provides an average cost
estimate of the total cost given by 1

p

∑
hi which provides

an estimate of the average cost 1
pJ . Since the number of

agents is assumed to be fixed, this provides an estimate of
the total cost J . Therefore the consensus algorithm takes
local cost measurements as inputs and produces total cost
estimates as outputs.

In the consensus estimation approach, agent i updates
their estimate using two sources of information: 1) their
measurement of hi and 2) the estimates of 1

pJ from other

agents which are acquired from the network. Graph theory
supplies the machinery necessary to model a network. A
graph is a collection of vertices whereby each vertex is
formed through the meeting of two or more edges. Here,
a vertex represents one agent and an edge represents a
pathway of communication. Three matrices are used to
define a network:

(1) Degree matrix: Let D ∈ Rp×p be a diagonal matrix
where dii is the number of agents which agent i can
communicate with for i = 1, . . . , p.
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(2) Adjacency matrix: Let A ∈ Rp×p where aij = 1 (0) if
information can (cannot) flow from agent i to agent
j and aii = 0 for i, j = 1, . . . , p. A graph is undirected
when A = AT meaning that all agents can both
transmit and receive information.

(3) Laplacian matrix: Let L = D − A. By definition, an
undirected graph has rank(L) = p − 1. If rank(L) <
p − 1, then a graph is directed and some agents can
only transmit or receive information.

The proportional-integral estimator designed by Freeman
et al. (2006) is the preferred technique to solve the con-
sensus problem in the distributed ESC design approach
proposed in this manuscript. It is important to note that
only specific properties of the dynamic consensus are re-
quired for the successful application of the proposed dis-

tributed PIESC. Let Ĵi denote agent i’s estimate of J and

Ĵ = [Ĵ1, . . . , Ĵp]
T . The consensus estimator is given by[

˙̂
J(t)
ẇ(t)

]
=

[
γI − κPL κIL
−κIL 0

] [
Ĵ(t)
w(t)

]
+

[
γI
0

]
h(x) (7)

where [Ĵ w]T ∈ R2p is the internal estimator state and
κP , κI , γ > 0 are user-specified constants. If the γ-
term is large relative to the κ-terms, then more weight
is given to local costs thus the actions of agents are more
selfish in nature. By contrast, larger κ-terms result in more
coordinated actions. The terms, κP and κI , are analogous
to the proportional and integral terms of a PI controller. A
large κP (κI) gives weight to the current (past) estimates
of J which are received from the network.

3.2 Dynamics of agent i

The dynamics of the total cost J are given by:

J̇(t) = LfJ + LGJu (8)

where LfJ and LGJ are the Lie derivatives of J with
respect to f and G. The dynamics of J as seen by each
agent, i, is given by:

J̇

p
=

1

p

(
LfJ +

∂J

∂x
Giui +

∂J

∂x
Gjuj

)
(9)

where j 6= i.

The local cost dynamics (9) are parameterized as follows:

J̇

p
= θ0i(t) + θ1i(t)ui (10)

where

θ1i(t) =
1

p

∂J

∂x
Gi

and

θ0i(t) =
1

p

(
LfJ +

∂J

∂x
Gjuj

)
.

The parameter θ0i(t) measures the local contribution of
the network drift dynamics and the effect of the inputs
of the other local agents. The correct estimation of θ0i(t)
allows one to estimate the term θ1i(t) that measures the
effect of the local input on the global cost.

The distributed ESC approach requires the estimation
of the local parameters θ0i(t) and θ1i(t) for each agent.
This task is performed using a time-varying parameter
estimation approach such as the one proposed in Guay

and Dochain (2014). Since the local agent do not have
access to the total cost, the estimation must rely on the

estimated consensus cost Ĵ .

We first define the regressor vector φi =
[
1, uTi

]T
. The

vector of parameter estimates is given by θ̂i =
[
θ̂0i, θ̂

T
1i

]T
.

Let the estimation error be given by ei = Ĵi − ẑi. The
estimator model of (10) for agent i is given by

˙̂zi = φT θ̂i +Kei(t) + ci(t)
T ˙̂
θi(t), ẑ(0) = ẑ0, (11)

where K > 0 is a user-specified constant. The dynamics of
ci(t) are described by the system:

ċi(t) = −Kci(t) + φi, c(0) = 0. (12)

Let ηi = ei − ci(t)
T θ̂i be an auxiliary variable. The

dynamics of this variable is approximated by
˙̂ηi(t) = −Kη̂i(t) (13)

The parameter estimation update law is given as follows.
We define a scaling matrix Σi ∈ R2×2, with dynamics given
by

Σ̇i(t) = ci(t)c
T
i (t)− kTΣi(t) + δI, Σi(0) = α1I, (14)

where kT , δ, α1 > 0 are user-defined constants.

Equations (11)-(14) form the framework of the parameter
update law presented in Adetola and Guay (2008), namely:

˙̂
θi = proj

{
Σ−1
i ci(ei − η̂i − σθ̂i), θ̂i

}
, θ̂i(0) = θ̂i0 (15)

where proj
{
τ, θ̂
}

denotes a Lipschitz projection operator

Krstic et al. (1995).

The projection operator is designed such that

proj
{
τ, θ̂i

}T
β(t) ≥ τTβ(t) (16)

where θ̂i, β ∈ Θ and Θ is a ball centered on θ̂i(t) with
a finite radius. This ball forms the uncertainty set of the
parameter estimation routine. As a result of (16),

θ̂i0 ∈ Θ =⇒ θ̂i(t) ∈ Θ, ∀t ≥ 0 (17)

We must assume that the cost function undergoes suffi-

cient excitation for θ̂i to converge to its true values. This
idea has been formalized in the following assumption.

Assumption 4. For agent, i, there exist constants, α2 > 0
and T > 0, such that∫ t+T

t

ci(τ)ci(τ)T dτ ≥ α2I, t > 0. (18)

The machinery for the real-time parameter estimation
is now in place. The local extremum seeking control
algorithm can be design. In this study, we propose the
application of a proportional-integral ESC algorithm given
by

u̇i = −kg θ̂1i + ûi + di(t) (19)

˙̂ui = − 1

τI
θ̂1i

where kg > 0 is a user-defined constant called the propor-
tional ESC gain constant and τI > is a positive constant
called the integral ESC gain constant. The dither signal,
di(t), is designed such that ||di(t)|| ≤ D ∀t ≥ 0, where
D > 0 is a constant.
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Theorem 1. Let Assumptions 1 to 4 hold. Consider the
distributed extremum-seeking controller (19), the param-
eter estimation algorithm (14) and (15) and the dynamic
average consensus algorithm (7). Then there exists con-
troller gains kg, kT , K, σ and τ∗I and dynamic consensus
gains γ, κP and κI such that, for all τI > τ∗I , the system
converges exponentially to anO(D/kg),O(kg/kT ),O(σzθ)
neighbourhood of the minimizer x∗ of the measured cost
function y.

Proof: The proof is omitted due space restriction. It
follows the same lines as the results of (Guay and Dochain
(2014)) and using the properties of the proposed consensus
algorithm stated in (Freeman et al. (2006)).

4. SIMULATION EXAMPLE

Consider a system with 5 states, 5 inputs and linear
dynamics given by:

ẋ =


0.1108 1 0 0 0

0 0.1367 1 0 0
0 0 0.0548 1 0
0 0 0 0.1172 1
0 0 0 0 0.1000

x+ u

This system has poles at 0.1108, 0.1367, 0.0548, 0.1172 and
0.1000 and which are all slow, unstable poles. This system
will be controlled by 5 agents. The ith agent measures a
local cost yi and manipulates the input ui. The local costs
are quadratic functions of the states:

y1 = (x1 − 1)2 + 2(x2 − 2)2, y2 = (x2 − 2)2 + 2(x3 − 4)2

y3 = (x3 − 3)2 + 2(x4 − 6)2, y4 = (x4 − 4)2 + 2(x5 − 8)2

y5 = (x5 − 5)2 + 2x21
The total cost is the sum of the local costs: J(x) =∑5
i=1 yi. Each agent estimates the total cost using its local

cost and information received from neighbouring agents.
The Laplacian matrix used in this simulation is:

L =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2


The tuning parameters used in this simulation were: γ =
1× 104, σ = 1× 10−6, κP = 1× 104, kT = 50, κI =
1× 104, kg = 0.5, K = 50, τi = 1, δ = 5× 10−7. The
dither signals used were: d(t) = 10[ sin(123t), sin(155t),
sin(187t), sin(219t), sin(251t) ]T . The optimal cost, state
and input can be computed to be: J∗ = 9.833, x∗ = [
0.5000, 2.0000, 3.6667, 5.3333, 7.0000 ]T and u∗ = [ -
2.0554, -3.9400, -5.5344, -7.6253, -0.7000 ]T . The control
system was simulated starting at the following initial
conditions: xi(t0) = 0, Ĵi(t0) = yi(t0), wi(t0) = 0, ẑi(t0) =

yi(t0), ci(t0) = [0, 0]T , Σi(t0) =

[
1 0
0 1

]
, θ̂i(t0) = [1e −

4, 0]T , ûi(t0) = 0.

The simulation results (Figures 1, 2, and 3) show that the
distributed extremum-seeking controller is able to stabilize
the unstable system and find the minimum of the total cost
function. Initially, some oscillatory transient behaviour is

observed as the parameter estimates, θ̂i are still far from

the true values of the parameters, θ̂i. However, once the
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Fig. 1. State trajectories for the system controlled and
stabilized by PIESC with consensus
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Fig. 2. Input bias trajectories for the system controlled
and stabilized by PIESC with consensus

algorithm has been running for a short period of time, the
controllers have accurate estimates of the gradient and can
then move in the appropriate direction. All 5 input biases
converge, ûi, converge to the optimal inputs, u∗i . Despite
the instability of the open-loop system, the closed loop
system is stable and so the states, xi converge to their
optimal values, x∗i . At these conditions, the convex cost
function is also minimized.

5. CONCLUSIONS

In this paper, a novel distributed extremum seeking con-
trol technique is proposed to solve a class of real-time
optimization problems over a network of dynamic agents
with unknown dynamics. Using the local estimates of the
total costs, the proposed distributed extremum seeking
controller adjusts the local decision variables for each agent
independently to optimize the total network cost.
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