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Abstract: A state-space realization approach is presented for the identification of time-delay
dynamic systems. It is proposed an experiment with low complexity input signals such as the
double pulse. The proposed identification method is a generalization of the Ho-Kalman-Kung
technique for pulsed input signals. Due to its state-space formulation, it is essentially suitable
to both SISO and MIMO systems.
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1. INTRODUCTION

Time-delay is present in many industrial processes. To-
gether with the increasing expectations of dynamic per-
formance, the time-delay estimation is essential in multi-
ple control techniques. A review of time-delay estimation
methods can be found in Bjorklund and Ljung (2003),
Richard (2003), and Shalchian et al. (2010).

The classical realization problem consists of finding a
state-space representation using information of the system
impulse response, Katayama (2005). This problem has
been studied over the years resulting in some identification
methods like Ho and Kalman (1966). Such methods are
not easily applied in practice because they require knowl-
edge of the system impulse response. Papers such as van
Helmont et al. (1990), Miller and de Callafon (2012), and
Miller and de Callafon (2009) present an evolution of the
technique using the system step response. The state-space
formulation makes those identification methods intrinsi-
cally suitable to SISO and MIMO systems.

In this paper, it is presented a state-space realization
approach to obtain models with explicit time-delay, using
a combination of input pulse signals. Pulse signals are
suitable for modeling a large set of industrial processes.
Simple and fast experiments are essential to avoid pro-
duction losses, as seen in de la Barra et al. (2008) and
references.

A review of the classical Ho-Kalman-Kung method is
shown in Section 3, then a time-delay estimation technique
is presented in Section 4, followed by the proposed identi-
fication algorithm in Section 5. Finally some examples are
shown in Section 6.

2. PRELIMINARIES

Assume a linear, time-invariant, discrete-time system, pre-
sented in a state-space form as

x(t+ 1) = Ax(t) +Bu(t− td) (1)

y(t) = Cx(t) +Du(t− td) + v(t)

in which x(t) ∈ R
n, A ∈ R

n×n, B ∈ R
n, C ∈ R

n, D ∈ R,
v(t) is a measurement noise and td is a time-delay.

The system has also an alternative representation as a
convolution sum

y(t) =

∞
∑

k=0

G(k)u(t− k − td) + v(t) (2)

in which G(k) is the impulse response (Markov Parame-
ters) of the non-delayed system

G(k) =

{

D,

CAk−1B,

k = 0
k > 0

. (3)

The extended observability (Γ) and controllability (Ω)
matrices are defined as

Γ =













C
CA

CA2

...
CAr













(4)

Ω =
[

B AB A2B ... ArB
]

(5)

in which r > n.

Problem statement: Given the input and output data
from simple experiments, with input pulses, the goal is
to extract the time-delay and construct a state-space
representation such as 1.

3. THE HO-KALMAN-KUNG REALIZATION
ALGORITHM (HKK)

The realization problem was proposed by Kalman as the
construction of a state-space model from experimental
impulse response data, Kalman (1963). The Ho-Kalman
algorithm proposes a solution to the realization prob-
lem through the decomposition of the Hankel matrices
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of Markov parameters. The problem was later refined by
Kung (1978) using the SVD (Singular Value Decomposi-
tion) to generate a realization of minimum rank.

For td = 0, the past (up) and future (uf) inputs are related
to the future outputs (yf ) as

yf = Hup + Tuf + v (6)

in which,

up = [u(0) u(−1) u(−2) ...]
T

(7)

uf = [u(1) u(2) u(3) ...]
T

yf = [y(1) y(2) y(3) ...]
T

v = [v(1) v(2) v(3) ...]
T
,

T is a block-Toeplitz matrix and H a block-Hankel matrix
of Markov parameters. In other words, (6) is the equivalent
matrix form of (2)

H =









G(1) G(2) ..
G(2) G(3) ..
G(3) G(4) ..
...

...









=











CB CAB ..

CAB CA2B ..

CA2B CA3B ..
...

...











(8)

T =









G(0) 0 0 ...
G(1) G(0) 0 ...
G(2) G(1) G(0) ...
...

...
...

. . .









. (9)

Properties of Markov parameters matrix H :

• H is the product of extended observability matrix (Γ)
and extended controllability matrix (Ω)

H = ΓΩ =







C
CA

CA2

..







[

B AB A2B ..
]

(10)

•
−→
H is defined shifting one row up or one column to the
left of H −→

H = ΓAΩ. (11)

Assume the system is controllable and observable

rank(Γ) = rank(Ω) = rank(H) = n. (12)

Suppose r + l Markov parameters are known and r +

l ≥ 2n+1, then the Hankel matrices H and
−→
H are defined

as

H =









G(1) G(2) ... G(l)
G(2) G(3) ... G(l + 1)
...

...
...

G(r) G(r + 1) ... G(r + l− 1)









(13)

−→
H =









G(2) G(3) ... G(l + 1)
G(3) G(4) ... G(l + 2)
...

...
...

G(r + 1) G(r + 2) ... G(r + l)









. (14)

The high rank matrix H can be approximated by a
rank n matrix Ĥ defined from the SVD (Singular Value
Decomposition) of H as

H = [Un Us]

[

Σn 0
0 Σs

] [

V T
n

V T
s

]

. (15)

Ĥ is by definition as close as possible to H in a 2-norm
sense, Eckart and Young (1936), in which

Ĥ =
arg min

rank(Ĥ)=n

∥

∥

∥
Ĥ −H

∥

∥

∥

2
(16)

Ĥ = UnΣnV
T
n .

If the model order n is unknown, it can be determined from
searching for a significant drop-off in the singular values
of H , listed on the main diagonal of Σ.

Estimates of the observability and controllability matrices
are given by

Γ̂ = UnΣ
1/2
n Ω̂ = Σ1/2

n V T
n (17)

finally, the state-space realization is calculated using the
relations in table 1.

Table 1. State-Space matrices computation

Â = (Γ̂)†
−→

H (Ω̂)† = Σ
−1/2
n UT

n
−→

HVnΣ
−1/2
n

B̂ = Ω̂(:,1)

Ĉ = Γ̂(1,:)

D̂ = G(0)

The operator (·)† represents the pseudoinverse to the left

and the subscripts in Γ̂ and Ω̂, are the MatlabTM style of
indexing. Further discussion can be found in Kung (1978)
and Juang and Pappa (1985).

4. TIME-DELAY ESTIMATION (HKK-TD)

A time-delay estimate will be extracted from the impulse
response information, embedded in H matrix. The first
column of H , by definition, contains the first r elements of
the system impulse response. If r is chosen as r > td, then
the number of elements close to zero in H(1,:) represents
the system time-delay

H(:,1) =

















G(1)
..

G(td)
−−−
G(td+1)

..
G(r)

















=

















0
..
0

−−−
G(td+1)

..
G(r)

















. (18)

If a time-delayed system (Gd(k)) is represented by its
Markov parameters in a matrix form Hd, then the equiva-
lent system without the time-delay (G0(k)) can be repre-
sented by H0 = Hd(td+1:r,:).

Based on Gd(k + td) = G0(k), H0 is constructed by
the elimination of the td first rows of Hd. Equation (19)
represents the dynamics of the original system without
time-delay

yf(td+1:r) = H(td+1:r,:)up + T(td+1:r,:)uf + v(td+1:r). (19)

The following procedure can be used to generate the state-
space realization plus time-delay model

(1) Assume Hd is known or estimated in a previous step;
(2) Estimate the time-delay from the first column of Hd

and reject td initial rows of Hd to generate H0;
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(3) Use the Ho-Kalman-Kung procedure, on H0, to es-
timate the state-space representation of the system
without time-delay

H0 ⇒
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t)
;

(4) Shift the input of the model obtained in step 3 to
construct the HKK-TD estimate

Hd ⇒
x(t+ 1) = Ax(t) +Bu(t− td)

y(t) = Cx(t) +Du(t− td) + v(t)
.

In order to have a more robust time-delay estimate, the
columns of Hd can be averaged if the estimated Markov
parameters are corrupted by noise.

5. PULSE BASED REALIZATION ALGORITHM
WITH TIME-DELAY

The system impulse response, in many cases, is difficult to
be obtained by a direct experiment. The generalization
of the Ho-Kalman-Kung method for a step signal and
correlation functions are found in Miller and de Callafon
(2009). In this paper, it is proposed an extension to a
sequence of pulsed signals. Pulses of different width and
amplitude can excite the process at desired frequencies
which are relevant for system identification.

5.1 Single pulse based realization algorithm (SPBR-TD)

All pulse based input signals used in this paper are
constructed from a base-pulse signal defined in (20). See
Fig. 1.

uB =

{

u(t) = 0, t < γ
u(t) = β, γ ≤ t < α+ γ

u(t) = 0, t ≥ α+ γ
(20)

Fig. 1. base-pulse definition

Assume the system without time-delay (td = 0). The
Hankel matrices of the output are

Y =









y(1) y(2) ... y(l)
y(2) y(3) ... y(l + 1)
...

...
...

y(r) y(r + 1) ... y(N − 1)









(21)

−→
Y =









y(2) y(3) ... y(l + 1)
y(3) y(4) ... y(l + 2)
...

...
...

y(r + 1) y(r + 2) ... y(N)









.

The equation (6) is directly extended to a block-Hankel
form as

Y = HUp + TU + V (22)

−→
Y =

−→
HUp +

−→
T U +

−→
V (23)

in which T and
−→
T are block-Toeplitz matrices, U ∈

R(r)×(l) is the Hankel matrix of the input, Y ∈ R(r)×(l)

is the Hankel matrix of the output and Up ∈ R(l)×(l) is a
upper triangular matrix.

T =









G(0)
G(1) G(0)
...

...
. . .

G(r − 1) G(r − 2) ... G(0)









(24)

−→
T =











G(1) G(0)

G(2) G(1)
. . .

...
...

. . . G(0)
G(r) G(r − 1) ... G(1)











(25)

Up =









u(0) u(1) ... u(l − 1)
0 u(0) ... u(l − 2)
...

...
. . .

...
0 0 ... u(0)









(26)

The goal here is to find an estimate of H and apply the
Ho-Kalman-Kung algorithm. The single pulse input is not
persistent, rank(U) 6= n, so it can not be used to create a
projector that separates H and T , as is done in traditional
subspaces identification mechanisms.

Consider the input as a base-pulse signal. It is possible to
explicitly calculate an approximation of the term TU on
(22), then compute an estimate of H . If r < α and r < γ,
then the Hankel input matrix UB can be written in 3 parts

UB = [UB∆ | UBΦ | UBΨ] (27)

UB∆ =











0 .. 0 0 0
0 .. 0 0 β
0 .. 0 β β
.. .. .. .. ..
0 .. β β β











UBΦ =











β .. β
β .. β
β .. β
.. .. ..
β .. β











UBΨ =











β β β
β β 0
β 0 0
.. .. ..
0 0 0











in which UB∆ ∈ R(r)×(γ), UBΦ ∈ R(r)×(α−r) and UBΨ ∈
R(r)×(r−1).

By ignoring the noise v and replacing (25) and (27),

TUB = [∆ Φ Ψ]

∆ = β















0 0 0 .. 0
0 0 0 .. G0

0 0 0 .. G0 +G1

.. .. .. .. ..
0 0 G0 .. G0 +G1..+Gr−3

0 G0 G0 +G1 .. G0 +G1..+Gr−2















Φ = β















G0 .. G0

G0 +G1 .. G0 +G1

G0 +G1 +G2 .. G0 +G1 +G2

.. .. ..
G0 +G1..+Gr−2 .. G0 +G1..+Gr−2

G0 +G1..+Gr−1 .. G0 +G1..+Gr−1















Ψ = β















G0 G0 .. G0

G0 +G1 G0 +G1 .. G1

G0 +G1 +G2 G0 +G1 +G2 .. G2

.. .. .. ..
G0 +G1..+Gr−2 G1 +G2..+Gr−2 .. Gr−2

G1 +G2..+Gr−1 G2 +G3..+Gr−1 .. Gr−1















IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 256



It’s known that

y(t) =

∞
∑

k=0

G(k)u(t− k)

the matrix TUB can be rewritten only as a function of the
output signal y

∆ =















0 0 0 .. 0
0 0 0 .. yγ
0 0 0 .. yγ+1

.. .. .. .. ..
0 0 yγ .. yγ+r−2

0 yγ yγ+1 .. yγ+r−3















Φ =















yγ .. yγ
yγ+1 .. yγ+1

yγ+2 .. yγ+2

.. .. ..
yγ+r−2 .. yγ+r−2

yγ+r−1 .. yγ+r−1















Ψ =















yγ yγ .. yγ
yγ+1 yγ+1 .. yγ+1 − yγ
yγ+2 yγ+2 .. yγ+2 − yγ+1

.. .. .. ..
yγ+r−2 yγ+r−2 − yγ .. yγ+r−2 − yγ+r−3

yγ+r−1 − yγ yγ+r−1 − yγ+1 .. yγ+r−1 − yγ+r−2















in which ∆ ∈ R(r)×(γ), Φ ∈ R(r)×(α−r) and Ψ ∈
R(r)×(r−1).

So H and
−→
H are computed as

H ≈ (Y − TUB)U
†
p (28)

−→
H ≈

−→
(Y −

−−→
TUB)U

†
p .

Once an approximation of H is calculated, the concepts
of Section 4 are used to extract the time-delay, then the
state-space realization is computed as in Section 3.

5.2 Multiple pulse based realization algorithm (MPBR-TD)

Richer excitation signals can be generated by the combi-
nation of different base-pulse signals. The double pulse is
the simplest one. It is an easy to generate signal, suitable
for many industrial processes, that gives information of
both rising and falling dynamics. Two configurations are
illustrated in Fig. 2 and 3.

Fig. 2. Double Pulse (case 1)

Fig. 3. Double Pulse (case 2)

The MPBR-TD method is a direct extension of SPBR-
TD. Defining a multi-pulse signal as a concatenation of n
base-pulse signals, then

U = [UB1 UB2 .. UBn] .

TUB1, TUB2 and TUBn are computed individually as in
the Section 5.1

TU = [TUB1 TUB2 .. TUBn] . (29)

Once TU is defined, H is calculated using (28) and
finally the state-space realization is generated by HKK-
TD algorithm. Note the following restriction have to be
made to both base-pulse signals r < αn and r < γn.

6. RESULTS

To evaluate the proposed method, one simulated example
and one pilot-scale application are shown.

6.1 Simulation example

Assume the true system is given by

y(t) = G(q)u(t) + e(t) (30)

G(q) =
0, 4q−8

(q − 0, 6)(q − 0, 3)
(31)

in which e(t) is a white noise, E{e(t)} = 0, σ = 0, 05 and
sample-time Ts = 0.001s.

It was applied a double pulse input with different width
and amplitude. The identification data is illustrated on
Fig. 4.

0 20 40 60 80 100 120 140 160 180 200

−1.5

−1

−0.5

0

0.5

1

1.5

Samples

 

 

Input
Output

Fig. 4. Input and output signals

Three identification methods were used

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 257



MPBR-TD model

A =

[

0.860 0.248 0.040
−0.269 0.291 0.562
−0.163 −0.398 −0.509

]

B =

[

−0.481
−0.168
0.089

]

C = [−0.518 0.470 −0.052] D = [−0.023]
td = 8

ARX model

G(k)ARX =
−0.005q−8 − 0.009q−9 + 0.444q−10

1− 0.724q−1 − 0.012q−2 + 0.044q−3

N4sid model

A =







0.93 −0.10 −0.00 0.02
0.17 0.91 −0.30 −0.14
−0.03 0.29 0.61 0.85
−0.03 −0.08 −0.58 0.61






B =







0.01
−0.01
−0.10
0.07







C = [8.10 2.11 0.65 −0.24] D = [0]

0 20 40 60 80 100 120 140
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Samples

 

 
Input
True output
ARX output
MPBR−TD output
N4sid output

Fig. 5. Validation input-output data

The ARX and N4sid models were identified using the
System Identification Toolbox of Matlab. The model order
and the delay estimation, of those two models, were chosen
by the toolbox algorithm. Note the ARX and MPBR-
TD models have lower order because of the time-delay
estimation. On the other hand, the N4sid model has a
higher order and a more oscillatory response.

Table 2. Simulation results

Method Model order Time-delay (samples) RMSD
ARX 3 8 62 ∗ 10−4

N4sid 4 0 38 ∗ 10−4

MPBR-TD 3 8 19 ∗ 10−4

It was applied a single pulse to the system, as a validation
signal. The output of the identified models are displayed
on Fig. 5. It is shown in table 2 that the proposed method
has the smallest RMSD (Root Mean Square Deviation)

6.2 Pilot-Scale Application

The pilot-scale flow plant represented by Fig. 6 and 7 was
used in the experimental application. The plant input was
chosen as the pump frequency (0 − 3200RPM) and the
output is the water flow (0 − 10l/min). Both ranges are
normalized to 0 − 100%. The operating point is input =
60% and output = 40% with sampling period Ts = 0.2s.

Fig. 6. Plant photo

Fig. 7. Plant layout

A double pulse signal was applied to the system, followed
by a single pulse used at the validation of the identified
models. It is shown in Fig. 8 and table 3, that the proposed
model has lower order and lower RMSD compared to the
ARX estimate.

0 50 100 150 200 250
−2

0

2

4

6

8

10

12

14

Samples

F
lo

w
 (

%
)

 

 
Input
True output
ARX
MPBR−TD

Fig. 8. Identification input-output data
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0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

12

14

Samples

F
lo

w
 (

%
)

 

 
Input
True output
ARK
MPBR−TD

Fig. 9. Validation input-output data

Table 3. Pilot scale results

Method M. order T. Delay (s) RMSD
ARX 5 1 0.63

MPBR-TD 4 2 0.43

Two models were obtained

MPBR-TD model

A =







−0.96 0.03 −0.34 −0.02
0.02 0.69 0.02 −0.28
0.34 0.01 −0.92 −0.10
−0.03 −0.28 0.10 −0.74






B =







−0.01
−0.56
−0.00
−0.15







C = [−0.01 −0.56 −0.01 −0.15] D = [0]
td = 2

ARX model

G(k)ARX =
0.01q−1 + 0.01q−2 + 0.18q−3 + 0.07q−4 + 0.12q−5

1− 0.35q−1
− 0.30q−2

− 0.14q−3 + 0.19q−4
− 0.07q−5

7. CONCLUSIONS

It was shown an algorithm to generate state-space realiza-
tions of a time-delay system, based on the Ho-Kalman-
Kung method. This technique is mostly suitable to in-
dustrial processes due the fact it uses simple excitation
signals as the double pulse, in contrast to a richer signal of
a subspace approach. The proposed method, including the
time-delay estimation step, is also applicable to SISO or
MIMO systems. In the example section the algorithm was
successfully applied to both simulated and experimental
plants.
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