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Abstract: Industrial scale process modelling and optimization of long chain branched polymer reaction 

network is currently an area of extensive research owing to the advantages and growing popularity of 

branched polymers. The highly complex nature of these reaction networks requires a large set of stiff 

ordinary differential equations to model them mathematically with adequate precision and accuracy. In 

such a scenario, where execution time of model is expensive, the idea of making the online optimization 

and control of these processes seems to be a near impossible task. Catering to these problems in the 

ongoing research, the authors presented a novel work where the kinetic model of long chain branched 

poly vinyl acetate has been utilized to find the optimum processing conditions of operation using Sobol 

sequence based ANN as meta models in a fast and highly efficient manner. The article presents a novel 

generic algorithm, which not only disables the heuristic approach of designing the ANN architecture but 

also allows the computationally expensive first principle model to determine the configuration of the 

ANN which can emulate it with maximum accuracy along with the size of training samples required. The 

use of such a fast and efficient Sobol based ANN as surrogate model obtained by the proposed algorithm 

makes the optimization process 10 times faster as compared to a case where optimization is carried out 

with the expensive first principle model. 

Keywords: Online optimization, Optimum process conditions, Meta models, Sobol, Artificial Neural 

Networks  



1. INTRODUCTION 

Continuous endeavour is there to build mathematical models 

for reaction mechanisms describing the polymer kinetics and 

long chain branching (LCB) in polymers, so that the 

operation can be optimized and controlled to harness the 

maximum benefit out of the system. Optimization of such 

models requires large simulation time due to the complexity 

involved in the mathematical models pertaining to the 

reaction network of branched polymers. Kipparisides et al 

(1998) have reported a method where, on applying the 

numerical fractionation technique, the overall molecular 

weight distribution (MWD) can be obtained using the leading 

moments derived from moment based modelling. This 

method, which is currently the most promising and efficient 

technique to obtain the overall MWD of the live and dead 

polymer, remains to be computationally exorbitant 

(Mogalicharla et al, 2014).  

On the other hand, the optimization of such models for 

finding the optimum operating conditions makes space for 

multi-objective optimization formulations owing to the 

conflict involved in the objective functions. In spite of 

robustness and high efficiency, in order to generate a wide 

spread trade-off in the solution set, called the Pareto optimal 

(PO) solutions, these evolutionary optimization techniques 

require a large set of population called the candidate solutions 

(Nain and Deb 2002). In order to generate these candidate 

solutions for optimizer, it is required to solve the 

computationally expensive model repeatedly and thus this 

approach increases the computational burden rendering the 

optimization exercise to be an offline one. In such a scenario, 

online optimization of computationally expensive models 

might remain a forlorn as the multiple runs of those models 

necessarily cannot be avoided because any decrease in the 

population number may not actually lead to a high quality 

wide spread Pareto optimal front (Nain and Deb, 2002). 

Meta-models, which can emulate the computationally 

expensive models accurately using a small and limited set of 

sampling data originated from the time expensive first 

principle based model, can be of great assistance to make the 

optimization process faster. The most widely used meta-

models are function approximation models which make use 

of popular techniques such as response surface methodology 

(RSM), artificial neural networks (ANN) and Kriging 

interpolators to emulate the computationally expensive 

physics driven models . ANNs are mathematical models, 

which try to mimic the functioning of biological neural 

network of human brain. They are widely acknowledged for 

their immense applications in pattern recognition problems 

and image processing. The parameters, in terms of weights 

and biases for each neuron in a layer of the architecture, 

allow a wide range of access to accurately predict the 

behaviour of highly nonlinear systems.  

The process of designing the optimal configuration of the 

network architecture of ANN really turns out to be 
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computationally laborious and often involves a method of hit 

and trial. Nuchitprasittichai and Cremaschi (2012) developed 

a novel algorithm to determine the sample size of a given 

network architecture using the critically acclaimed statistical 

model evaluation technique called the K-Fold cross 

validation (Nuchitprasittichai and Cremaschi, 2012). Their 

work has delved upon the idea that when a fixed network 

topology gets trained with different number of sample points, 

it results in altogether a new set of parameters and thereby a 

different model. They then applied the K-Fold cross 

validation technique to evaluate each model in terms of mean 

of absolute deviations from each fold. The sample size 

increment was obtained by using a novel approach of 

incremental Latin Hypercube Sampling (i-LHS). The 

increment in sample size was terminated when the K-Fold 

error was minimized to an acceptable tolerance value with 

respect to sample size. Although this method of determining 

the sample size for training a network is novel and efficient, 

the i-LHS way of incrementing the data set demands addition 

and deletion of sampling points already present in the data set 

to ensure the newly emerged sampling set conforms the latin 

hypercube structure. Despite fixing a network topology, this 

work, therefore, does not reduce the computational burden 

involved in determining the sample size for training.  Many 

other researchers tried to train the weights by using the 

genetic algorithm to ensure an optimum hybrid ANN. 

However, almost no work has been found in the literature that 

addresses the concern of determining the best ANN 

architecture along with the sample size required by it which 

can predict results accurately with less computational burden. 

Chakraborty et al (2013) have reported a procedure where a 

multi-objective optimization problem has been formulated 

while coming up with an ANN topology in course of training 

the ANN to a given data set. In search of parsimonious 

models, the complexity of the network evaluated by AIC/BIC 

criteria is minimized while maximizing the accuracy 

simultaneously. However, they restricted their study to a 

single layered fixed network topology and optimal data size 

required to train a model has also not been considered in this 

work. Although it has been customary to start with a single 

layered topology due to the assumption that single layered 

networks with sufficient nodes can predict almost all the 

nonlinearity present in a data set, one should not fix the 

number of layers of the architecture based on the sampling 

data available (Roy et al,2008).  

In this article, the authors have tried to cater the 

aforementioned needs by proposing a novel, computationally 

economical algorithm wherein a multi-objective optimization 

approach has been adopted to (i) optimally design the 

architecture of a parsimonious ANN by considering multiple 

layers, and (ii) determine the size of sample points required 

for training that best ANN model to predict results with 

maximum accuracy. The network, thus obtained, is then used 

as surrogate in optimizing the process conditions to obtain 

desired LCB in polyvinyl acetate (PVAc) polymer using non-

dominated sorting genetic algorithm (NSGA II). The data for 

surrogate building is procured from a first principle based 

model capable of predicting the overall MWD of PVAc. The 

algorithm developed is independent of the physics based 

expensive model and it allows the model to select the 

network which best emulates it in the most generic way and 

thereby preventing the over-fitting. The organization of the 

paper is as follows: the kinetic model of branched PVAc, the 

optimization problem and the proposed ANN technique for 

surrogate building are described in section 2. The results of 

optimization problem with newly developed surrogate are 

described in section 3. Finally the concluding remarks are 

provided followed by the references. 

2. FORMULATION 

2.1 PVAc KINETIC MODEL AND OPTIMIZATION 

 

The reaction network for PVAc model has been obtained 

from the work of Butte et al (1999) and is presented in Table 

1. The net rate of production of live polymer, dead polymer, 

monomer and initiator can be obtained from the scheme 

presented in Table 1. To avoid the complication involved in 

solving a large number of time consuming ordinary 

differential equation – initial value problems (ODE-IVPs) to 

describe such a reaction scheme, the approach of moment 

based modelling was taken up for each class of branched 

polymer where the 0th, 1st and 2nd ordered moments for live 

and dead polymers of each class are derived (Mogalicharla et 

al 2014). To avoid the drawback of method of moments to 

construct overall MWDs from individual moments, the 

number of classes for constructing the moments was carefully 

chosen ensuring the criteria that the summation of first 

moments of each class remains equivalent to the overall first 

moment of polymer. This ensured the complete construction 

of overall MWD from MWD of individual moments, but 

resulted in a large number of classes since the polymer was 

highly branched. The resulting model, having large number 

of highly nonlinear ODE-IVPs (say 285), demanded large 

time for simulating a single run using the differential 

algebraic equation (DAE) solver LIMEX. The equations 1 to 

4 define the polymer properties such as number average 

molecular weight (Mn), weight average molecular weight 

(Mw), Poly dispersity index (PDI) and Branching index (Bn), 

respectively, in terms of moments obtained by solving the 

aforementioned set of ODEs. With these equations in place, if 

the batch monomer concentration (M), amount of initiator (I) 

and temperature of the isothermal batch polymerization 

process (T) are given as inputs, the model can be solved to 

obtain Mn, Mw, Bn and PDI as outputs after a batch 

polymerization time of tpoly.  

The current industrial scenario demands the production of 

high molecular weight, branched and cross linked polymer 

within the least time of operation to minimize the cost of 

operations and maximize the profits earned by the advantages 

of branched polymers. It is, therefore, desired to find the 

optimum values of M, I, T which results in maximum Mw, 

Bn, and minimum tpoly (Table 2).  The upper and lower 

bounds for the decision variables M, I and T are obtained 

from the experimental study (Thomas, 1998). The 

phenomenological constraints are in place for the Mw and 

PDI. Population based NSGA II framework has been used as 

optimization algorithm to solve this multi-objective 

optimization problem (MOOP-1). 

Since the reaction network is highly complicated, it required 

as good as 285 ODE-IVPs to mathematically model it which 
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consumed an overwhelming amount of time. Thus the target 

was to replace the original first principle model with a fast 

and accurate Sobol based ANN model in optimization 

algorithm and study the advantages and disadvantages that 

surrogate based optimization gives in terms of computational 

time and accuracy. 

 

Table 1: Kinetic Scheme for PVAc polymerization 

 

  

 

                                                         (1)      

 

                                                          (2)                

 

                                                                   (3)  

 

                                         (4) 

  

Table 2: Optimization formulation for PVAc model  

                                                                 

Objective 

functions 

Constraints Decision Variables 

Maximize 

Mw 

Mw ≥ (Mw) 
min 14M(mol/lit) 10   

Maximize 

Bn 

PDI ≤ (PDI)max 

 0.00015

I(mol/lit) 0.00003




 

Minimize 

tpoly 

C ≤ 0.97 Cgel (T)  352KTK333   

 

2.2 SOBOL BASED ARTIFICIAL NEURAL NETWORK 

2.2.1 Construction of ANN code 

The PVAc LCB reaction network model is a 3 input, 4 output 

system. This first principle model is run to generate the 

samples required for training and validation of the neural 

network. A generic ANN code was then developed which 

takes the architecture, training set and validation set as the 

input and returns the accuracy of predictions as the output. 

The code was constructed to serve a multiple input single 

output (MISO) formulation to capture nonlinearity involved 

in the functional relationship between input and output data 

better. The MISO code was then run simultaneously to 

determine the ANN models to emulate all the four outputs. 

The ANN was trained by back propagation and Levenberg-

Marquardt method was used to estimate the weights and 

biases. The bipolar sigmoidal (tansig) activation function was 

implemented in the hidden layers and linear activation 

function was implemented in the output layer. The sampling 

technique used is Sobol set which is based on highly 

converging Sobol sequence. It gives sampling points for any 

number of dimensions normalised between 0 and 1. To 

determine the optimal size of data that a particular ANN 

topology might require, the above ANN model is trained 

initially with a smaller data set generated by Sobol sequence 

and the data size is incremented until the change in cross-

validation error with respect to the change in data size meets 

the tolerance limit specified. The advantage with Sobol set is 

that it always maintains the same sequence of numbers even 

if the sample size is varied which indeed was not the case 

with i-LHS suggested by Nuchitprasittichai and Cremaschi 

(2012). 

 

2.2.2 Formulation of the Algorithm 

Looking at a general structure of neural network, it is 

perceptible that as the number of nodes in the neural network 

increases, its ability to interpolate with accuracy also 

increases. This can be primarily speculated to the increase in 

number of parameters that aid in capturing the nonlinear 

behaviour of the system. However, this increase in accuracy 

comes at the cost of obtaining large sampling data and time 

for training the increased number of parameters in the 

network. It is also worthwhile to mention that the data greedy 

neural networks suffer from the problem of over fitting, when 

provided with large sample set for training. Thus the goal 

while designing a neural network can be finding of a simple 

ANN structure that can fit a given set of data with maximum 

accuracy. This very conflicting nature of objectives leads the 

authors to formulate a multi-objective optimization problem 

(MOOP-2), where the aim was to maximize the accuracy of 

the network while simultaneously minimize the total number 

of nodes in the architecture. The optimization formulation is 

presented in Table 3.  

 

Table 3: Optimization Formulation for finding the generic 

architecture of ANN with minimum complexity and 

maximum accuracy. 

 

Objective 

functions 

Constraints 

(optional) 

Decision 

variables 

 

Maximize R2. 

Minimize N 

 

R2 ≤ 0.98 

N ≥ 4 

1 ≤ n1 ≤ 16 

0 ≤ n2 ≤ 15 

0 ≤ n3 ≤ 15 

 

Since the accuracy of any surrogate model mainly depends on 

the sample size used for training, the authors ensured that 

every network in the population is allowed to attain 

Step 

No 

Steps in the 

Mechanism 

Corresponding Reactions 

1 Decomposition of 

Initiator  

2 Chain reaction 
 

3 Chain 

Propagation  

4 Chain transfer to 

monomer  

5 Chain transfer to 

solvent  

6 Chain transfer to 

polymer  

7 Termination by 

combination  

8 Termination by 

disproportionation  
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corresponding maximum accuracy by providing them with 

sufficient number of training points. This step was 

implemented in the algorithm using the sample determination 

technique proposed by Nuchitprasittichai and Cremaschi 

(2012) where their proposal of using i-LHS as sampling plan 

has been replaced with more computationally efficient Sobol 

based sampling plan. Once the network was trained with the 

sampling data of size estimated in the previous step, the 

accuracy of its interpolation was evaluated using a 

completely unknown validation test set of size nt obtained 

using Latin Hypercube Sampling (LHS). The original output 

in the validation set was compared with the corresponding set 

of predictions made by the surrogate ANN model, ŷ . The 

accuracy of predictions was determined in terms of statistical 

measure R2, correlation coefficient, which is given by the 

following equation:  

                                          … (5) 

where the covariance and variance are defined as follows:  

 

 
 

The second objective being complexity of the network is 

evaluated in terms of total number of nodes in the network 

(N). The conventional assumption of considering only one 

hidden layer in the network topology was eliminated by 

considering the number of layers and nodes in each layer (ni) 

as the decision variables in the MOOP formulation (see Table 

3). The minimum number of hidden layers was kept 1 while 

the maximum was ensured at 3 due to the amount of 

complexity involved and time consumed for training a 

network with much higher number of layers. Although for the 

current formulation the maximum number of layers 

considered was fixed at 3, this number is arbitrary and can 

always be increased as per the requirement of the physics 

based model. The number of nodes in each of these layers 

can be varied between the limits as shown in Table 5. Binary 

coded NSGA II optimizer was run for 200 generations with a 

population set of 100 to converge at a wide spread Pareto 

optimal (PO) front. The candidate solutions in the PO front 

were then evaluated using K-Fold cross validation criteria to 

obtain the most parsimonious model with least cross 

validation error, out of all possible solutions. The proposed 

algorithm and the algorithm for sample size determination are 

depicted in figures 1 and 2, respectively.  

The binary NSGA II framework provides an architecture in 

terms of number of nodes in each layer. Since the upper and 

lower bounds are taken as 1 and 16 for first layer and 0 and 

15 for the second and third layers, the binary GA framework 

compels the decision variables to be integer values lying 

between the stipulated upper and lower bounds. This can be 

easily implemented by assuming each of these decision 

variables as a 4 bit long binary strings, which upon decoding 

leads to decoded values from 0 to 15. If any value of n2 or n3 

is assigned to 0, it implies that the architecture ends at one 

layer ahead and the remaining layers are not considered in the 

architecture. This ensures the GA to provide with candidate 

solutions from single layered to multi layered architectures. 

The size of the training set, which can yield maximum 

accuracy from the given architecture, is then determined from 

the sample determination algorithm, where the increment in 

sample size using Sobol set is allowed until the change in 

cross validation error with respect to change in sample size is 

found to be satisfying a tolerance criteria. The ANN network 

is then trained with that sample set and validated with a 

completely unknown validation data. The objective functions, 

R2 value and the total number of nodes, are thus evaluated 

and returned back to NSGA II. The architecture along with 

the corresponding values of objective functions are also 

stored in a database to check redundancy in computation and 

thereby saving a significant amount of simulation time. 

 

Figure 1: Proposed Algorithm 

 

Figure 2: Sample determination algorithm 

3. RESULTS AND DISCUSSION 

The PVAc LCB model considered in the current work is 

validated with the experimental data found from Thomas et 

al. (1998). The architectures of ANN models obtained from 

the proposed algorithm were used as surrogates in the 

optimization of the validated PVAc LCB model. The results 

of the optimization problem and the discussion pertaining to 

the performance of the proposed algorithm form the rest of 

the paper. 

The PO solutions obtained from the proposed multi-objective 

optimization formulation (MOOP2) to design the best 

network topology for the tpoly as output is shown in figure 3. 

A total of 9 architectures and the sample size requirement to 

attain the corresponding maximum accuracies for each of 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1172



 

 

     

 

those candidate solutions in the PO front are listed in Table 4. 

When it comes to the selection of one architecture out of all 

these non-dominating solutions, it finally depends on the user 

to select a model based on their higher order information. 

Three approaches, which could serve as higher order 

information to finalize a model out of the PO solutions are 

reported here. The first approach is to utilize the values of K-

Fold cross validation errors of each of the architectures while 

the second approach is to measure the complexity of the 

network by using AIC/BIC (Chakraborti et al, 2013) 

formulation. The third approach could be providing 

altogether a totally new unseen data set to evaluate all the 

models in terms of accuracy of their predictions and selecting 

a model that shows a good balance between two of the 

objectives i.e. accuracy and complexity. The results of all 

three approaches to select an architecture out of the PO 

solutions are reported in Table 5. 

 

 
 

Figure 3: Pareto Optimal Front for output tpoly. 

 

Table 4: Candidate solutions in the final PO front 

 

 

Nodes 

in 

Layer 

1 (n1) 

 

Nodes 

in 

Layer 

2 (n2) 

 

Nodes 

in 

Layer 

3 (n3) 

 

Objective 1 : 

Accuracy of 

prediction 

R2 

 

Objective 

2 : Total 

number of 

nodes 

1 0 0 0.959029 1 

5 1 0 0.999392 6 

2 0 0 0.993624 2 

3 1 0 0.998914 4 

3 0 0 0.997036 3 

2 2 1 0.999239 5 

2 6 1 0.999657 9 

2 2 3 0.999434 7 

2 4 2 0.999544 8 

 

Although any of these methods can be applied to select the 

best model out of the set of PO solutions based on the 

applicability of the end user, the authors, however, have 

selected a model here by the third approach only for the 

reason of maintaining an unbiased balance between the two 

considered objectives. The architecture thus selected, in the 

case of tpoly as output came out to be the network with 

configuration [3 5 1 1] (read as 3 inputs, 5 nodes in first 

hidden layer, 1 node in the second hidden layer and 1 node in 

output layer) with the R2 of 0.9993 and the requirement of 

training 28 parameters (weights + biases). The sample size 

determined from the sample determination algorithm for 

training this configuration is 70 while the capability of this 

architecture in terms of accuracy can be seen in figure 4. 

Although the binary NSGA II framework was run for 200 

generations with a population size of 100, the emergence of 

this PO front was very early, at generation number 30. The 

optimally designed code which included the database for 

storing the NSGA II runs, helped in checking the redundancy 

in calculations. With the database in place, it was found that, 

the number of architectures tested were only 580. This clearly 

shows the speed of the developed algorithm to converge at 

the solution, all possibly because of the symphony between 

multi objective optimization formulation and the efficient 

usage of the database in the developed code. The stochastic 

nature of Genetic Algorithm is governed by a random seed, 

the changes in which would lead to variations in the final 

results. In order to confirm that the results obtained converge 

hopefully to the global PO front, several GA simulations 

were carried out with different random seeds and it was 

found that the final PO fronts for all runs were similar. A 

constraint at the level of optimization formulation restricting 

the total number of nodes to be greater than a certain 

threshold (say 4) and R2 to be less than a corresponding 

value (say 0.98) revealed the local PO fronts. 

  

Table 5: Higher order analysis for each of the architectures 

 

 
 

Figure 4: A plot of predicted output versus original output for 

selected architecture 3-5-1-1  

 

n1 

 

n2 

 

n3 

Size 

of  

Data 

set 

 

K-fold  

CV 

error 

 

AIC 

measure 

R2 for 

totally 

unseen 

data 

1 0 0 60 0.454886 -176.744 0.95597 

5 1 0 70 1.76467 -384.313 0.999257 

2 0 0 60 0.359945 -265.258 0.993765 

3 1 0 60 0.298216 -326.996 0.999118 

3 0 0 60 0.336309 -291.2 0.997115 

2 2 1 60 0.297238 -331.507 0.999283 

2 6 1 70 0.329588 -381.889 0.999535 

2 2 3 60 0.293778 -317.461 0.999309 

2 4 2 60 0.315538 -309.371 0.999467 
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Although the maximum number up to which the value of 

nodes per layer was varied is 16 (and thereby taking the 

maximum possible number of total nodes to 48), it is evident 

from the results of final PO front for the case of tpoly  that the 

number of nodes per layer required to give accurate results 

has never crossed 6. These observations certainly put some 

light over the fact that for the data set from the current PVAc 

model, higher accuracy can be achieved by providing more 

number of layers rather than more number of nodes in a 

single layer. It can also be observed from Table 5 that almost 

67 % of the candidate solutions which belong to the global 

PO front are multi-layered architectures. Thus these results 

clearly show that if the ANN model was designed with the 

assumption of considering a single hidden layer, the necessity 

of considering additional layers probably might not have 

surfaced out. Amongst one, two and three layers, the 

emergence of a two layered network as the most 

parsimonious model with a high accuracy as reported, shows 

the validity of the point raised earlier in the paper about the 

requirement of more than one layer which geometrically is a 

hyper-plane for classifying the sampling data in situations 

where the data are not linearly separable. The candidate 

solutions selected from the Pareto plots for finding best 

architectures to emulate the rest of outputs for PVAc model, 

their accuracy of predictions and the sample size requirement 

of each solution are listed in Table 6.  

 

Table 6: Final surrogate models for emulating PVAc model 

 

Output Architecture N R2 Size 

tpoly 3-5-1-1 6 0.99939 70 

Mw 3-3-3-8-1 14 0.99799 50 

Bn 3-2-1 2 0.99813 60 

PDI 3-2-1 2 0.99791 80 

 

The results, shown in Table 6 were then placed as surrogate 

models in the optimization algorithm aiming to find the 

optimum processing conditions for operating the batch PVAc 

reactor. Figure 5 compares the two PO fronts, one obtained 

using the ANN surrogate model while the other obtained 

without using any surrogate model. The quantification of this 

comparison of the two PO fronts was also obtained by 

finding the R2 measure when the PO points obtained without 

surrogate were predicted by the developed ANN model. It 

was found that the developed ANN surrogate model is 

predicting the original PO points with an average R2 measure 

of 0.979. The optimization of PVAc model without surrogate 

model in place revealed that the optimizer has called the 

expensive PVAc model approximately 70 (population) × 40 

(generation) i.e. 2800 times to converge into the PO solutions 

while with ANN surrogate model in place, PVAc model was 

called only for a maximum of 280 times (80 training and 200 

validation in case of time as output). These results clearly 

show the advantage of using the ANN surrogate model in the 

optimization procedure as it reduced the function calls by 90 

%. These results support the fidelity of the proposed 

algorithm, which allows the sample data to select the 

configuration of ANN which best emulates them without 

being specific to the considered model. 

4. CONCLUSION 

The design of ANN for enabling it to emulate a time 

expensive model has been revised with proposing a novel, 

efficient and fast generic algorithm which provides the most 

parsimonious model along with the sample size required for 

training the model. The algorithm is tested for determining 

the best surrogate model for PVAc optimization involving 

long chain branching and the results indicate that 10 times 

reduction in function evaluation is possible by adopting this 

approach. 

Figure 5: Comparison of PO fronts obtained for optimization 

of PVAc model with ANN surrogate and original model. 

                      5. REFERENCES 

Butte´ A, A. Ghielmi, G. Storti and M. Morbidelli. (1999) 

Calculation of molecular weight distributions in free-radical 

polymerization with chain branching.MTS., 8  498-512. 

Chakraborti Nirupam  Brijesh Kumar Giri , Frank Pettersson 

& Henrik Saxn (2013) Genetic Programming Evolved 

through Bi-Objective Genetic Algorithms Applied to a Blast 

Furnace, MMP, 28:7, 776-782, 

Kiparissides C and P. Pladis. (1998) A comprehensive model 

for the calculation of molecular weight-long-chain branching 

distribution in free-radical polymerizations, Chem. Eng Sci., 

53 3315 

Mogilicharla, A.; Chugh, T.; Majumdar, S.; Mitra, K. (2014,) 

Multi-objective Optimization of Bulk Vinyl Acetate 

Polymerization with Branching. Materials and 

Manufacturing Processes 29, 210-217 

Nain, P.; Deb, K. (2002) A computationally effective multi-

objective search and optimization techniques using coarse-to-

fine grain modeling. In Proceedings of the PPSN Workshop 

on Evolutionary Multiobjective Optimization 

Nuchitprasittichai Aroonsri and Selen Cremaschi (2012) An 

algorithm to determine sample sizes for optimization with 

artificial neural networks AIChE Volume 59 Issue 3 Pages 

805 – 812 

Roy Nilay K., Walter D. Potter, and David P. Landau,(2008) 

Polymer property prediction and optimization using neural 

networks IEEE Transactions on neural networks, VOL. 17, 

NO. 4. 

Thomas S(1998) Measurement and modelling of long chain 

branching of polymers. PhD Thesis McMaster University 

Canada. 

 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1174


