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Abstract: The objective of this paper is to address the problem of state estimation in an Anaerobic
Digestion Reactor (ADR) with unknown inputs - typically some influent concentrations, and to compare
two different state and input estimation schemes. The first one is the classical Extended Kalman Filter
(EKF) based on an augmented system that considers a slowly varying input (approach that has been
already applied to this system and reported in the literature), whereas the second one is a recently
proposed Unknown Input Observer (UIO), formulated in the spirit of a Kalman Filter, for continuous
estimation with discrete measurements. The two filters are evaluated in simulation, demonstrating the
superiority of the UIO.

Keywords: State estimation; Input estimation; Robust estimation; Biotechnology.

1. INTRODUCTION

Anaerobic digestion (AD) of organic waste and wastewater is
increasingly applied as it is an important source of renewable
energy in the form of biogas (a mixture of mostly carbon diox-
ide and methane), and can be used combined to other process
units in biorefineries. However, the AD process has complex
dynamics, is quite sensitive to input fluctuations, and requires
tight control. Unfortunately, the development of efficient con-
trollers is hampered by the lack of on-line measurements of
some key component concentrations. The missing information
has therefore to be reconstructed by means of state estimation
schemes, the so-called software sensors, which blend the infor-
mation of a process model and of some available on-line probes.
The state estimation problem has usually to be formulated in the
presence of unknown inputs, i.e. unknown component concen-
trations in the process influent.

The problem of state estimation in AD process has usually
been dealt with in two ways [1]: (a) the asymptotic observer
which allows to reconstruct the process state despite the lack of
knowledge of the kinetics - however, the asymptotic observer is
very sensitive to unknown process inputs, (b) interval observers,
which allows to predict intervals of variations for the state
variables based on intervals for the process parameters and
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inputs - however these intervals can be delicate to exploit for
control.

In this study, attention is focused on the design of unknown
input observers for monitoring the AD process. Unknown Input
Observers (UIO) are dynamical systems that estimate the state
variables of a system robustly with respect to the disturbances
or unknown inputs that affect the system. For example, in a
recent paper [9], the authors have proposed the design of an
UIO consisting of three parts, i.e., two supertwisting observers
and an asymptotic observer for estimating two biomass and two
inlet substrate concentrations in a AD process described by a
two-step reaction model.

In the present study, attention is focused on filters, optimal
in a minimum-variance unbiased sense. On the one hand, we
implement the classical Extended Kalman Filter (EKF) applied
to a two-step reaction model supplemented by an exosystem
assuming that the unknown input concentration varies slowly.
This approach is similar to the proposal of [5], where an Un-
scented Kalman Filter (UKF) is designed instead. This latter
study shows satisfactory results for some of the state variables,
with the exception of the biomass concentrations which cannot
be measured and therefore do not allow a full validation of
the estimation approach. This observation motivates the use of
alternative techniques, and we consider an UIO filter proposed
in [3], and extended to nonlinear continuous-time models asso-
ciated to discrete-time (and often rare) measurements in [8].

This paper is organized as follows. The next section presents the
AD process model under consideration and the state estimation
problem. A global observability assessment is given in section
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3 in accordance with the available measurements. In section 4,
some background material about state and input estimation is
discussed, while the main results about the evaluation of the
performance of the two filters are presented in section 5. Fi-
nally, some conclusions are drawn and future work commented
in section 6.

2. ANAEROBIC DIGESTION MODEL

Several two-step reaction models have been proposed in the last
decades, including the model of Hill [6], and the nowadays very
popular AM2 model developed in [2].

In the present study, inspired by the work of Haugen, et al. [4]
where the model of Hill is prefered, we also adopt the latter.
This model consists of four mass balance ordinary differential
equations

Ṡbvs = (Sbvsin − Sbvs)
Ffeed

V
− µ (Sbvs) k1Xacid

Ṡvfa = (Svfain
− Svfa)

Ffeed

V
+ µ (Sbvs) k2Xacid−

−µc (Svfa) k3Xmeth

Ẋacid =

(

µ (Sbvs)−Kd −
Ffeed/b

V

)

Xacid

Ẋmeth =

(

µc (Svfa)−Kdc −
Ffeed/b

V

)

Xmeth

(1)
whereSbvs is the concentration of organic substrate (biodegrad-
able volatile solids) in [gBV S/L], Svfa is the concentra-
tion of volatile fatty acids in [gV FA/L], Xacid represents
the acidogenic bacteria in [g acidogens/L], and Xmeth the
methanogenic bacteria in [g methanogens/L]. The factor
Ffeed

V
represents the dilution rate in [(LCH4/d)/L], and

k1, k2, k3 are the stoichiometric coefficients.

As in [4], it is considered that

Sbvsin =B0Svsin

Svfain
=AfSbvsin = AfB0Svsin

The first equation defines the portion of the raw waste which
can serve as substrate (biodegradable part) and the second one
defines the portion of that biodegradable material which is
initially in the acid form. Parameters B0 and Af are considered
in the original Hill model [6] and obtained from laboratory test
in [4]. In this way, both concentration inputs depend on Svsin ,
which is then considered as the unknown input.

The measurable output is the methane gas flow rate (gas pro-
duction) in [LCH4/d] given by

Fmeth = V µc (Svfa) k5Xmeth (2)

The reaction rate functions are of Monod type

µ (Sbvs) = µm

Sbvs

Ks + Sbvs

µc (Svfa) = µmc

Svfa

Ksc + Svfa

(3)

The maximum reaction rates µm, µmc are functions of the
reactor temperature as in the original Hill model [6]

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (4)

for 20[◦C] < Treac < 60[◦C].

The considered values of the model parameters are the same as
in [4], and correspond to a real-life pilot plant.

Af = 0.69 [(gV FA/L)/(gBV S/L)]
B0 = 0.25 [(gBV S/L)/(gV S/L)]
b = 2.90 [d/d]
k1 = 3.89 [gBV S/(g acidogens/L)]
k2 = 1.76 [gV FA/(g acidogens/L)]
k3 = 31.7 [gV FA/(g methanogens/L)]
k5 = 26.3 [L/g methanogens]
Kd = 0.02 [d−1]
Kdc = 0.02 [d−1]
Ks = 15.5 [gBV S/L]
Ksc = 3 [gV FA/L]
V = 250 [L]
Treac = 35 [◦C]

3. OBSERVABILITY ANALYSIS

In the classical observability concept, all inputs are assumed to
be known. When some inputs are unknown, a stricter property
must be proved, that is a robust observability or observability
with unknown inputs. Such a property can be tested using
the method described in [7], which is based on the analysis
of solutions of an error dynamics. This method can also be
understood as an analysis of distinguishability of states under
the assumption that the output y and the control inputs u are
perfectly known.

In this case, one can define a copy of system (1) that re-
names the state vector s = [Sbvs, Svfa, Xacid, Xmeth], the
unknown input w = Svsin and the output y = Fmeth as
x = [x1, x2, x3, x4], w̄ and yx, respectively. That is

ẋ1 = (B0w̄ − x1)u− µ (x1) k1x3

ẋ2 = (AfB0w̄ − x2)u+ µ (x1) k2x3 − µc (x2) k3x4

ẋ3 =
(

µ (x1)−Kd −
u

b

)

x3

ẋ4 =
(

µc (x2)−Kdc −
u

b

)

x4

yx = V µc (x2) k5x4

(5)

where u = D =
Ffeed

V
.

An error between the states of the original system and those
of the copy can be defined as ǫ = x − s. Then the state error
dynamics with the same known input u =

Ffeed

V
is

ǫ̇1 =B0u (w − w̄)− uǫ1 − µmk1φ1 (x1, x3, ǫ1, ǫ3)

ǫ̇2 =AfB0u (w − w̄)− uǫ2 − µmk2φ1 (x1, x3, ǫ1, ǫ3)−

−µmck3φ2 (x2, x4, ǫ2, ǫ4)

ǫ̇3 =−
(

Kd +
u

b

)

ǫ3 − µmφ1 (x1, x3, ǫ1, ǫ3)

ǫ̇4 =−
(

Kdc +
u

b

)

ǫ4 + µmcφ2 (x2, x4, ǫ2, ǫ4)

where
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φ1 (x1, x3, ǫ1, ǫ3) =
x1x3

Ks + x1
−

(x1 − ǫ1) (x3 − ǫ3)

Ks + (x1 − ǫ1)

φ2 (x2, x4, ǫ2, ǫ4) =
x2x4

Ksc + x2
−

(x2 − ǫ2) (x4 − ǫ4)

Ksc + (x2 − ǫ2)

The output error e = yx − y is

e = V k5µmcφ2 (x2, x4, ǫ2, ǫ4)

The test of insdistinguishability is based on this error system: if
for each known pair u, y (which implies e = 0, i.e. y = yx) the
only solution is ǫ = 0, during some interval of time, there exists
distinguishability of the states and the system is observable.
If there are solutions different from zero, it should occur that
ǫ → 0 in order to have detectability with unknown inputs. If in
addition, the only solution for the inputs is that w = w̄ there
exists distinguishability of the inputs, so the unknown input of
the system can be estimated.

In the case of ADR, if e = 0, then φ2 (·) = 0 since
V, k5, µmc > 0 and ǫ̇4 reduces to −

(

Kdc +
u
b

)

ǫ4. It is evident
that ǫ4 → 0 since Kdc > 0. At this point it is just required that
u ≥ 0. From the definition of φ2 (·) one can prove that if ǫ4 → 0
then ǫ2 → 0.

In addition, one can define ǫA = ǫ2 −Af ǫ1, and the rest of the
system can be written as

ǫ̇A =−uǫA + (µmk2 + µmk1Af )φ1 (ǫA, ǫ2, ǫ3)

ǫ̇3 =−
(

Kd +
u

b

)

ǫ3 + µmφ1 (ǫA, ǫ2, ǫ3) (6)

As can be seen from the first equation of (6), one necessary
condition for the convergence is that u > 0.

This system can be solved numerically using the model pa-
rameter values listed in section 2 and Ffeed = 55 in order to
assess the convergence to zero. Four trajectories (one for each
quadrant) are presented in Fig. 1 .

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

e
A

e 3

Fig. 1. Phase portrait for four initial conditions (red squares).
The origin is marked as a black circle.

Since all errors converge to zero, one can conclude that this
system is locally detectable with unknown inputs. Due to space
constraints, the complete and detailed proof is not presented
here.

4. STATE AND INPUT ESTIMATION

We consider the nonlinear continuous-time model with discrete-
time measurements (7a)-(7b)

ẋ= f (x, u, w) (7a)

y[k] =Cx[k] + v[k] (7b)

where x ∈ Rn is the state vector, u ∈ Rp is the nonmeasurable
input vector, y ∈ Rm is the output (measurement) vector. We
assume that w and v[k] are stationary zero-mean white noise
processes with covariance matrices Q and R. In addition, we
assume that x0, w and v[k] are uncorrelated.

Auxiliar computations are the linearized model

δẋ=A (t) δx+ B (t) δu,

whereA (t) = ∂f
∂x

(

x (t) , u[k|k]

)

andB (t) = ∂f
∂u

(

x (t) , u[k|k]

)

,
and its discretized version

δx[k+1] =A[k]δx[k] +B[k]δu[k]

4.1 EKF for augmented system

A traditional formulation of an Extended Kalman Filter (EKF)
[10] is the following

• Time Update (TU)
˙̂x= f (x̂, u)

Ṗ =A (t)P + PAT (t) +Q

• Measurement Update (MU)

x̂[k+1|k+1] = x̂[k+1|k] + L[k+1]

(

y[k+1] − Cx̂[k+1|k]

)

L[k+1] = P[k+1|k]C
TR

P[k+1|k+1] = P[k+1|k] − P[k+1|k]C
TRCP[k+1|k]

where R =
(

CP[k+1|k]C
T +R

)−1

When it is not possible to measure the input u, a conventional
KF (or EKF) can be proposed to an augmented system where
a new state is defined xn+1 = u, where slow variant inputs
are assumed and affected by a random disturbance so that
ẋn+1 = wn+1 [5].

4.2 Continuous-discrete UIO

An UIO algorithm for this system has been proposed in [8],
where the prediction is made using the original nonlinear
model, starting from the last corrected state and, since u is
unknown on the prediction interval, the last estimated value of
this input is used instead. The propagation of the covariance
matrix P , is the same as in the standard EKF.

The extended continuous-discrete UIO is given by the follow-
ing equations

• Time Update
˙̂x= f

(

x̂, u[k|k]

)

Ṗ =A (t)P + PAT (t) +Q

with A (t) = ∂f
∂x

(

x̂ (t) , u[k|k]

)

.

x̂[k+1|k] = x̂ ((k + 1)T )
P[k+1|k] = P ((k + 1)T )

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 131



• Estimation of the Unknown Input

R̄[k+1] =CP̄[k+1|k]C
T +R

M̄[k+1] =
(

FT
[k]R̄

−1
[k+1]F[k]

)−1

FT
[k]R̄

−1
[k+1]

δû[k|k+1] = M̄[k+1]

(

y[k+1] − C ˆ̄x[k+1|k]

)

Pu[k|k+1] =
(

FT
[k]R̄

−1
[k+1]F[k]

)−1

• Measurement update

ˆ̄x[k+1|k+1] = ˆ̄x[k+1|k] +B[k]δû[k|k+1]

L̄[k+1] = P̄[k+1|k]C
T R̄−1

[k+1]

P̄[k+1|k+1] = P̄[k+1|k] +B[k]Pu[k|k+1]B
T
[k] −

−B[k]Pu[k|k+1]F
T
[k]L̄

T
[k+1] − L̄[k+1]F[k]Pu[k|k+1]B

T
[k]

x̂[k+1|k+1] = ˆ̄x[k+1|k+1] + L̄[k+1]

(

y[k+1] − C ˆ̄x[k+1|k+1]

)

P[k+1|k+1] = P̄[k+1|k+1] −

−L̄[k+1]

(

R̄[k+1] − F[k]Pu[k|k+1]F
T
[k]

)

L̄T
[k+1]

û[k+1|k+1] = û[k|k] + δû[k|k+1] (8)

where F[k] = CB[k].

In this application, the measurement Fmeth is a nonlinear
combination of states Svfa and Xmeth. Therefore, in order to
perform the Estimation of the Unknown Input and the Mea-
surement Update, a linearization must be achieved in order to
express it as in (7b). Previous applications of this algorithm
considered just the case where some states were measured.

5. COMPARISON OF ESTIMATION STRATEGIES FOR
THE ADR

Nonlinear model (1) is considered with the numerical values of
the parameters reported in [4].

Output Fmeth (methane flow rate) is assumed to be measured
once a day (T = 1) with a measurement error of 1.2 [LCH4/d].

True initial conditions are defined as Sbvs(0) = 5.2155,
Svfa(0) = 1.0094, Xacid(0) = 1.3128, Xmeth(0) = 0.3635.

Known input Ffeed is also defined as a constant of 55.

Unknown input Svsin is defined as a step-wise function where

Svsin =

{

30.2 0 ≤ t ≤ 70
40 70 < t ≤ 110
50 110 < t ≤ 200

5.1 EKF for augmented system

The design parameters of the estimator are those of [5]:

• Matrix P0 is defined such that P0i,i = [0.01x̂i(0|0)]
2

• Matrix R is defined as the measurement variance
R = var (Fmeth) = 1.44

• Matrix Q is defined such that Qi,i = [0.0005mix̂i(0|0)]
2,

with {mi} = {10, 1, 1, 1, 10}.

The initial estimated state vector is

x̂i(0|0) =
[

Ŝbvs(0), Ŝvfa(0), X̂acid(0), X̂meth(0), Ŝvsin(0)
]

since for this case, the unknown input is part of the estimated
states.

Initial values are then Ŝbvs(0) = 5.9978, Ŝvfa(0) = 1.1608,
X̂acid(0) = 1.5097, X̂meth(0) = 0.4180, Ŝvsin(0) = 34.73,
i.e. 15% error with respect to the true initial values.

0 50 100 150 200
0

5

10

S
bv

s [g
 B

V
S

/L
]

0 50 100 150 200
0

0.5

1

1.5

2

2.5

S
vf

a [g
 V

F
A

/L
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Fig. 2. Evolution of the real and estimated states Sbvs, Svfa.
Red dashed line: true values. Blue line: estimation.
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Fig. 3. Evolution of the real and estimated states Xacid, Xmeth.
Red dashed line: true values. Blue line: estimation.

Results are shown in Figures 2, 3 and 4, where the estimates are
presented as blue solid lines and compared with the real value
(red dashed lines).

As can be seen, the estimation error is relatively small for state
Sbvs; the estimation of state Svfa is almost perfect, but for
states Xacid and Xmeth the estimation error is large.

For the unknown input Svsin , the estimate follows the evolution
of the process input, but never reaches it. In fact, the relative
estimation error is around 30%.

5.2 Continuous-discrete UIO

In this case the initial estimated state vector is

x̂i(0|0) =
[

Ŝbvs(0), Ŝvfa(0), X̂acid(0), X̂meth(0)
]
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Fig. 4. Evolution of the real and estimated input Svsin . Red
dashed line: true values. Blue line: estimation.

where initial conditions are set with 50% error in all the states,
that is Ŝbvs(0) = 7.8233,
Ŝvfa(0) = 1.5141, X̂acid(0) = 1.9692, X̂meth(0) = 0.5453.

The initial condition for the estimation of the input is
Ŝvsin(0) = 45.3, as well 50% error with respect to the true
value.

The design parameters of the estimator are P0 = I4, where I4
represents an identity matrix of dimension 4 × 4, Q = 1 ×
10−4I3, matrix R is defined as R = 1.44.

In Figures 5 and 6, the state estimates are shown as blue solid
lines and are compared with the real values of each variable (red
dashed lines).
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Fig. 5. Evolution of the real and estimated states Sbvs, Svfa.
Red dashed lines: true values. Blue line: estimation. Green
lines: confidence intervals

In Figure 7, the input estimate is shown as a solid blue line
and is compared with the real value (red dashed line). The
estimation error for the unknown input is shown in Figure 8.

The filter convergence is fast and the general performance is
quite satisfactory. 95 % confidence intervals are also drawn
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Fig. 6. Evolution of the real and estimated states Xacid, Xmeth.
Red dashed lines: true values. Blue line: estimation. Green
lines: confidence intervals
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Fig. 7. Evolution of the real and estimated input Svsin . Red
dashed lines: true values. Blue line: estimation. Green
lines: confidence intervals

0 50 100 150 200
−30

−25

−20

−15

−10

−5

0

5

10

15

Time [day]

In
pu

t e
st

im
at

io
n 

er
ro

r 
[g

 V
S

/L
]

Fig. 8. Evolution of the estimation error of input Svsin
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(green lines) using the information provided by the matrices
P and Pu showing the reliability of the estimates.

Even tough the UIO test is more severe (the initial conditions
of the UIO are further away from the true values, as compared
to the test of the EKF), the estimation of all states is more
satisfactory than in the case of the EKF estimator. The most
valuable result is that states Xacid and Xmeth are clearly better
estimated.

For the unknown input, one can see that after 30 days, the
estimation error is less than ±1.5 [gV S/L]. Only when the
value of Svsin changes the estimation error becomes transiently
larger. In Figure 7 ,one can see a detail of the input estimation
from 70 to 110 days; a small overshoot is observed in the
transition between Svsin values, but after 10 days the estimation
has almost reached the true value.

The average relative estimation error is 3.14%, which is signif-
icantly less than the 30% obtained with the EKF.

The general performance is better in the case of the UIO with-
out great changes in the programming, that is, both algorithms
are Kalman-filter like. By including a part of the algorithm
specialized in the estimation of the input and then using its
update value in the update estimation of the states, the results
become clearly better. In the case of the EKF the unknown input
receives no special treatment, one just imposes null dynamics
for it. That is why one can then expect that for other kind of
inputs (that varies faster), the performance of the UIO will be
even better. An open question is how fast can be the unknown
inputs, since there are linearization procedures throughout the
whole algorithm that can affect the estimation.

6. CONCLUSIONS AND FUTURE WORK

In this study, attention is focused on the design of unknown
input observers for monitoring the AD process, and in particular
filters optimal in a minimum-variance unbiased sense. In the
AD process, the measurement is a nonlinear combination of two
states, which was not the case of previous applications of this
algorithm and therefore considered as a challenge to test it.

The inherent robustness properties of the unknown input filter is
clearly apparent in our numerical tests, which demonstrate the
performance superiority over the classical EKF implemented
for an augmented system, without making the algorithm too
complex.

As future work, both algorithms will be tested with experimen-
tal data in order to have a complete comparison between the
two estimation schemes.

REFERENCES

[1] V. Alcaraz-Gonzalez, V. Gonzalez-Alvarez. Robust non-
linear observers for bioprocesses: Application to wastew-
ater treatment. Dynamics and Control of Chemical and
Bioplogical Processes, H.O. Mendez-Acosta, R. Femat, V.
Gonzalez-Alvarez, eds, Springer LNCIS 361, 2007, pp.
119-164.

[2] O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi, J.-
P. Steyer. Dynamical model development and parameter
identification for anaerobic wastewater treatment process.
Biotechnology and Bioengineering 75 , 2001, pp. 424-
438.

[3] S. Gillijns, B. De Moor. Unbiased minimum-variance
input and state estimation for linear discrete-time systems.
Automatica, 43, 2007, pages 111-116.

[4] F. Haugen, R. Bakke, B. Lie. Adapting Dynamic Math-
ematical Models to a Pilot Anaerobic Digestion Reactor.
Modeling, Identification and Control 34N (2), 2013, pp.
35-54. ISSN 1890-1328.

[5] F. Haugen, R. Bakke, B. Lie. State Estimation and Model-
Based Control of a Pilot Anaerobic Digestion Reactor.
Journal of Control Science and Engineering. Hindawi
Publishing Corporation. Volume 2014, Article ID 572621,
19 pages. http://dx.doi.org/10.1155/2014/572621

[6] D.T. Hill. Simplified Monod kinetics of methane fermen-
tation of animal wastes. Agric. Wastes 5, 1983 pp. 1-16.

[7] J. A. Moreno, E. Rocha-Cózatl, A. Vande Wouwer, A
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