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Abstract: The necessity is greater than ever for a methodology to both diagnose at early stage and evaluate 

the progression of Parkinson Disease (PD). In this paper, we propose an interesting and innovative 

methodology for pattern recognition based automated individual-level clinical diagnosis of PD. It makes 

use of a unique combination of machine learning tools and statistical tools. The methodology comprises of 

three major steps. First, pre-processed brain Magnetic Resonance Images (MRI) are modelled using Self-

Organizing Map (SOM) for feature generation. Second, Fisher-Discriminant Ratio (FDR) is used to reveal 

distinctive feature(s). Third, Least Squares Support Vector Machine (LS-SVM) is used for Individual-level 

patient classification. The applicability of the proposed methodology has been demonstrated using 831 T1-

weighted MRIs obtained from Parkinson's Progression Markers Initiative (PPMI) database. We have 

achieved classification accuracy of up to 97% for differential diagnosis of PD with confidence interval of 

99.9%. This method is particularly suited for diagnosing patients in early stages of the disease, i.e., patients 

in age of 31- 60 years. In the present landscape, Brain MRI is routinely performed to assist PD diagnosis 

in clinical settings. Thus, the induction of the proposed methodology as a decision support system could 

make a significant impact on treatment strategies especially by aiding early-stage disease diagnosis. 

Keywords: Artificial Intelligence. Automatic recognition. Computer aided diagnosis. Decision Support 

systems. Image analysis. Machine Learning. Parkinson Disease. SOM Modelling. LSSVM

 

1. INTRODUCTION 

 

Parkinson’s disease (PD) is a progressive neurodegenerative 

condition associated with nigrostriatal dysfunction leading to 

abnormal motor and non-motor functions. It has currently 

affected over 10 million people worldwide. The prevalence of 

this disease is especially on rise in developed nations like 

America and Singapore where as many as 1 and 0.3 million 

people respectively, live with PD.  This is more than the 

number of people identified with Amyotrophic lateral sclerosis 

(ALS), multiple sclerosis (MS), and muscular dystrophy (MD) 

combined together. As per the statistical estimates in America, 

each year about 60,000 new PD cases are recorded and in 

addition to this number, thousands of cases go undetected. It is 

also expected that this number will further rise in countries 

with ageing population (such as Singapore and America) as the 

incidence of Parkinson’s increases with age (Tan et al. 2004). 

Currently, there is no definitive test for diagnosis of PD. 

Clinical diagnosis is mainly based on manual assessment of 

patient’s history and valuation of his/her observable signs and 

symptoms.  In early PD, clinical assessment is challenging as 

all the clinical signs and symptoms may not yet be manifested 

(Hughes et al. 2002). Further, distinguishing early PD from 

other similar conditions such as Scans without evidence for 

dopaminergic deficit (SWEDD) subjects is not only 

challenging but also important to prevent improper drug 

diagnosis. Histological examination of substantia nigra region 

in the brain for lewy body accumulation is the only method for 

confirmative diagnosis of PD, which is clearly impractical 

during life.  

Neuroimaging literature suggests that greater precision can be 

achieved by incorporating the use of neuroimaging for PD 

diagnosis. As the focus shifts from studying brain regions at 

group-level to Individual-level patient classification, 

multivariate analysis tools such as machine learning tools are 

increasingly being employed for analysing neuroimaging data. 

In a typical MRI, anatomical alterations due to degeneration of 

cells in the brain appear as areas with intensity variation. New 

algorithms, by combining different machine learning 

algorithms, are increasingly being developed to extract 

information about specific brain structure(s) that become 

consistently affected in a given disease to assist in automated 

subject classification (Dyrba et al. 2013; Padilla et al. 2012; 

Salvatore et al. 2014).  

In this study, we propose an innovative and effective approach 

for monitoring disease progression and clinical diagnosis of 

PD which is based on combination of two machine learning 

algorithms viz., (1) An unsupervised, Self-Organising Map 

(SOM) and (2) A supervised learning based Least Squares 

Support Vector Machine (LSSVM).   
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2. MATERIALS AND METHODS 

2.1 Study Participants 

We obtained morphological T1-weighted Magnetic 

Resonance Images (MRIs) of SWEDD, PD and Healthy 

Control (HC) subjects from PPMI database. PPMI is a five 

year observational, international, multi-centre study aimed at 

understanding disease etiology by identifying PD progression 

biomarkers (Parkinson Progression Marker 2011). Clinical 

information on severity of the PD symptoms was assessed by 

Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and 

the Hoehn and Yahr Scale. The Montreal Cognitive 

Assessment (MoCA) test was used for cognitive assessment of 

the subjects. Table 1 shows the demographic and clinical 

details of the subjects that comprise the dataset used in this 

work.  For latest information, see www.ppmi-info.org. 

 

Table 1: Demographic and clinical details of subjects. 

Variables HC PD SWEDD 

N 245 518 68 

M/F 155/90 346/172 48/20 

Age 60.09 ± 11.35 61.79 ± 9.58 61.53 ± 10.59 

Education 15.96 ± 2.87 15.43 ± 2.94 14.85 ± 3.88 

MoCA 27.65 ± 1.51 26.62 ± 2.35 26.37 ± 2.32 

H&Y - 1.71 ± 0.39 1.35 ± 0.60 

MDS-UPDRS - 37.37 ± 13.41 28.93 ± 18.18 

Note: Data are presented as Mean ± Standard Deviation. 

MoCA, Montreal Cognitive Assessment; H&Y, Hoehn and 

Yahr scale; MDS-UPDRS, Movement Disorder Society-

Unified Parkinson's Disease Rating Scale. 

2.2 Study Design 

Initially, entire dataset was divided into 6 Age-Unrelated 

Groups (AUG) based on clinically identified disease classes 

and brain matter i.e. WM and GM, see Appendix A. For each 

classification group, 80 % of the images were used for 

preparing training dataset and rest 20 % were used during the 

testing phase. By using all the images from training dataset for 

a chosen classification group, an image representing voxel 

intensity changes (VIC) was created by subtracting the mean 

images two classes under consideration. 
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Here, μi denotes the ith class mean image. N refers to the 

number of images and 
i

kI refers to kth image in the ith class. 

 

baI  Dab      (2) 

Here, DabI  is VIC image corresponding to classification group 

formed by subtracting mean images, a and b  of subject 

class a and b respectively. Here a can be HC/PD and b can be 

PD/SWEDD. 

But, Progression of PD occurs in an age dependent manner. 

We intended to divide entire ensemble of images for each class 

of patients into Age-Related Subgroups (ARS) such that each 

subgroup represents patients of similar age and at a 

comparable stage of the disease. A total of 32 age-related 

subgroups were created by considering an age-range of 10 

years (For example, patients aged 30-40, 40-50 years and so 

on), see Figure 1. (Please note: There were no SWEDD 

patients of age > 80.) For these classification groups, as the 

subjects should be at comparable stage of disease, we expected 

that the accuracy of classification should be better in 

comparison to that obtained on applying the devised 

methodology on AUG. The results obtained upon using AUG 

have been compared with those using ARS approach in 

Section 3.3. We have made tissue-by-tissue comparison 

between Healthy Control, PD and SWEDD subjects. For each 

run dataset was randomly divided into 10 folds. Out of this, 80 

percent of the images were used for training the classifier 

model and the rest 20 percent were only used for testing the 

classification accuracy.  

2.3 Image Pre-processing 

All the steps concerning image pre-processing and 

segmentation of Brain MRI were performed using VBM8 

toolbox for SPM8 on Brain MRI dataset obtained from PPMI 

database. Pre-processing involved skull-stripping and spatial 

normalization of images. Thereafter all the images were co-

registered to ICBM template before they were segmented into 

Grey matter (GM) and White Matter (WM). The whole 

procedure was performed using ‘Estimate and Write’ option in 

the VBM8 toolbox (Kurth et al. 2010) for Statistical 

Parametric Mapping (SPM) (Friston 2003) software v8. 

2.4 Feature Extraction  

Self-Organizing Map (SOM) has been used for vector 

quantization and feature extraction from pre-processed VIC 

image for each classification group. SOM is a biologically 

inspired non-parametric unsupervised clustering algorithm 

based on competitive learning. It has a unique advantage of 

generating spatially organized representation along with 

vector quantization of input data.  In this algorithm, number of 

neurons in the input layer is equal to the dimensionality of the 

input data (vectors in feature space) whereas output layer 

contains automatically selected or user-defined number of 

neurons arranged in a topographical grid. A high-dimensional 

input feature space can be quantized to low dimensional map 

points known as best matching units (BMUs) in an output 

space while still preserving the topographical relations present 

in the input data. SOM training algorithm has 2 steps  

1. Competition amongst the neurons in output layer to 

determine BMUs (also called the winning neuron). This is also 

referred to as vector quantization of input data vectors that is 

based on similarity and squared Euclidean distance amongst 

the prototype vector and input data instance.  

 

ǁ xn- mcǁ = min ǁ x- mi ǁ    (3) 
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2. Neurons in the output layer are topographically related 

subsets that are updated after every input data instance based 

on lateral interaction between them. 

 

mi (t+1) = mi (t) + hci (t) [xn (t) – mi (t)]   (4) 
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Where xn is nth sample from input space, mc is the reference 

vector closest to xn , mi is ith reference vector from output 

space, hci is the kernal function that defines the neighborhood 

around BMU (here mc).  

These steps are carried out iteratively resulting in an ordered 

organization of data in the output space even from disordered 

data in the input space, aptly called self-organizing map. 

Beside its robustness to deal with high dimensional datasets, it 

also allows simultaneous visualization and clustering based on 

the topological pattern of input space. This results into a 

representation of the input space to discrete low dimensional 

map points known as best matching units (BMUs) in an output 

space while still preserving the topographical relations present 

in the input data. 

Pre-processed images contained 121x145x121 voxels. It was 

aimed to study differences between PD, SWEDD, normal 

subjects. For classification, it is required to choose voxels 

according to a specific discriminative criterion, which can be 

used as classifiers. To rank voxels as per their statistical 

significance Fisher Discriminant Ratio (FDR) criterion was 

used. This ratio is useful to reveal discriminant variables 

between classes. For two-class case, it is defined as follows: 
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Here, IFDR image is created for a pth classification group. μi and 

σi denote the ith class mean (See Eq. 1) and variance images 

calculated as follows 
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Here, N refers to the number of images and 𝐼𝑘
𝑖  refers to kth 

image in the ith training set. 

2.5 Feature selection 

A total of 38 VIC Images were created by subtracting mean 

images of different classes to incorporate information about 

intensity into feature space for SOM training. (A total of 32 

VICs for ARS approach and 6 VICs for AUG approach). For 

each VIC image, we created vectors that form feature space for 

Self-Organizing Map (SOM) based vector quantization. These 

vectors contained information about 3-D coordinates, intensity 

difference and FDR score for each image voxel. 
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Here, Xn is nth sample from input feature space X, (i, j, k) are 

the coordinates of the voxel corresponding to VIC image with 

voxel intensity IDab and IFDR.  

Thereafter, we normalized each column of this feature space 

vector. The range of the first three columns representing the 

coordinates of the voxel was restricted within [0, 1]. For 4th 

and 5th column, z-score based normalization was applied. We 

chose a Gaussian kernel function and a cylindrical shape of 

output map. A sequential SOM training algorithm was applied 

to input feature space to obtain an output map containing 500 

neurons. After SOM training, the first 3 columns were again 

de-normalized to visualize the exact location of the generated 

ROIs.  

SOM toolbox v2.0 for MATLAB was obtained from 

Laboratory of Computer and Information Science (CIS). For 

more details, see (http://www.cis.hut.fi/projects/somtoolbox). 

Thereafter, features in every image in a classification group 

were ranked according to information obtained from BMUs 

for corresponding VIC image and FDR score at each voxel as 

follows  
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Here, m

pROI  refers to Regions of Interest and ),,( kji  are the 

coordinates at voxel corresponding to mth image belonging to 

pth classification group.  

Thus, every image was reduced to a vector containing 500 

ROIs. The feature that is most representative of the difference 

between two chosen classes will be ranked highest and vice-

versa. 

 

2.6 Individual-level Patient Classification   

 

A decision support system for differential diagnosis must be 

able to categorically label an unseen MRI into predefined 

groups based on patterns learned from training data. Ranked 

data points obtained after feature selection were directly used 

to obtain training and test vectors. We created an n-

dimensional vector consisting of n X 500 data points, where n 

represents number of subjects. We present here the results 

obtained using Least Square Support Vector Machine 

(LSSVM) to determine the accuracy of patient classification.  

Least squares Support Vector Machine (LSSVM) based 

classification decodes discriminative patterns by distinctive 

feature selection and optimal hyper-plane interpretation 

(Suykens & Vandewalle 1999). Theoretically, LSSVM is a 

kernel based supervised learning method that allows 

categorization of data by non-linear mapping of the input 

vectors (SOM trained maps) to a very high dimensional feature 

space to create a linear separation surface that can separate the 

input vector classes.  

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

3.1 Visual analysis for regional differences in GM and WM  

 

To evaluate regional differences between different classes, we 

started by creating VIC image for each classification group. 

Figure 2 show the VIC images of GM and WM for HC v/s PD 
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subjects using AUG approach. These VIC images were 

modelled using our methodology to generate ROIs and then 

subjected to feature selection. As each ROI represents a voxel 

volume, we backtracked corresponding 3D projection for each 

ROI by using BMUs information contained in the SOM model. 

Figure 2 shows the reconstructed 3D volume for GM and WM 

for HC v/s PD subjects just below the VIC image. Most 

important ROIs marked are labelled and shown separately. 

We found that the areas marked as most important regions, 

using Talairach Client (Lancaster et al. 2000), correctly 

correspond to relevant brain areas for PD pathology as 

reported in literature such as Putamen (Griffiths et al. 1994; 

Kordower et al. 2013), Medial Dorsal Nucleus (Henderson et 

al. 2000; Planetta et al. 2013), Pulvinar (Diederich et al. 2014), 

Posterior cingulate cortex (Brodmann area 23) (van Eimeren 

et al. 2009), Retrosplenial cortex (Brodmann area 29) 

(Nagano-Saito et al. 2004) for GM and Corpus Callosum 

(Galantucci et al. 2014), Limbic cortex (Hilker et al. 2004) for 

WM, See Figure 2G and 2H. Further, the present methodology 

effectively distinguishes between areas that have been 

reported to become up regulated for dopamine synthesis, such 

as Brodmann area 23 and 29 indicated in blue, from those 

where neuronal loss leads to atrophy, such as Corpus 

Callosum, Pulvinar etc., as compared to HC subjects. Similar 

experiments were performed using both AUG and ARS 

approach for differentiating HC v/s SWEDD and PD v/s 

SWEDD. Classification results for individual-level differential 

diagnosis using both the approaches have been discussed in the 

Section 3.3. 

 

3.2 Evaluation of Results  

 

In addition to accuracy of prediction, four other statistical 

measures have been used to quantify the performance of the 

methodology used for patient classification. They are (1) 

Sensitivity or True Positive Rate (TPR) (2) Specificity or True 

Negative Rate (TNR) (3) Positive Predictive Value (PPV) (4) 

Negative Predictive Value (NPV). Table 2 shows the results 

for average classification accuracy with confidence interval at 

99.9 %, obtained for both ARS and AUG approach, using 

proposed methodology. We performed multiple runs on these 

classification groups to check for consistency of classification 

accuracy. For every run, all the images belonging to a class 

were randomly selected for Training and Test sets. 

 

3.3 Discussion and comparison with other methods 

 

In the past, some efforts have been made to develop clinical 

decision support system by combining machine learning tools 

and statistical tools. Table 2 shows a comparison between 

accuracy for studies investigating the diagnostic potential of 

these methods for neuroimaging data. As per knowledge of the 

authors, using our methodology, highest accuracy of 

classification between HC v/s PD, PD v/s SWEDD and HC v/s 

SWEDD has been achieved. Initially, we applied this 

methodology to AUG approach. We achieved classification 

accuracy of 87.42±1.19, 96.43±1.18, 94.63±0.58 for HC v/s 

PD, HC v/s SWEDD, PD v/s SWEDD respectively. 

As we expected, on changing our approach to ARS, higher 

classification accuracy of 97.22±1.06, 99.35±0.82, 98.92±0.66 

was obtained for HC v/s PD, HC v/s SWEDD, PD v/s SWEDD 

respectively.  

Differentiating PD and SWEDD is particularly challenging 

due to similarity in clinical features. Inclusion of SWEDD 

subjects as probable PD patients may result in unwanted side-

effects from potentially harmful therapies. On using the 

methodology developed in this paper, we were not only able 

to distinguish these subjects but it is also possible to indicate 

key areas that may qualify as reliable biomarker. 

Also, on comparing the results obtained on using AUG and 

ARS, classification accuracy increased in each case regardless 

of choice of feature selection criterion or feature classification 

algorithm. This further strengthens our postulate that for 

algorithms aimed at computer assisted disease diagnosis, 

Figure 2: A Comparison of HC and PD subjects using 

VIC image and 3D Brain projection of ROIs generated 

using our methodology. We modelled VIC images for 

both GM and WM using SOM and subjected it to feature 

selection using FDR score. Most relevant ROIs were then 

labelled using Talairach Client (Lancaster et al. 2000). We 

found that the areas marked as most important regions 

correctly correspond to relevant brain areas for PD 

pathology as reported in literature. Using BMUs 

information contained in SOM volume, we backtracked 

the corresponding 3D projection for each ROI for each 

brain tissue. 
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changes in brain in the case of neurodegenerative diseases, 

such as PD, should be studied in terms of changes that happen 

with age of the subject (or depending upon the availability of 

information, duration of disease) rather than studying 

symptoms observed in all age groups at once. It is worth 

mentioning here that for age group corresponding to 31-50 

years, i.e. early PD, averaged classification accuracy was 

99.35%, See Appendix B. Presently in clinical settings, 

diagnosing PD at prodromal stages is rarely possible. This 

reemphasizes that the current methodology can be the ideal 

choice to be used as decision support system in clinical 

practice.   

The main contributions from this study are mentioned as 

follows 

1. Early-stage PD diagnosis is particularly challenging either 

due to complete absence or similarity in clinically 

observable signs and symptoms. In this regard, the present 

methodology has successfully achieved high 

classification accuracy (~99%) for patients in early stages 

of the disease, i.e., patients in age of 31- 50 years. 

2. As per authors, this is the first study concerning PD where 

the applied methodology has achieved average 

classification accuracy of up to 97.22 % with 98.9 % 

specificity and 93.4 % Sensitivity. Also, this study makes 

the first attempt to distinguish SWEDD subjects from HC 

and PD. 

3. Upon using this methodology for determining regions of 

interest, areas that are automatically labelled, are in 

accordance with brain regions affected in case of PD and 

SWEDD  

 

These results highlight the efficiency of this methodology to 

select discriminative ROIs for classification of subjects using 

structural MRI. The applicability if this methodology is not 

restricted to PD or SWEDD only but can be easily extended to 

include other neurodegenerative diseases such as Alzheimer’s 

disease (AD), Mild Cognitive Impairment (MCI), Progressive 

supranuclear palsy (PSP) etc. Due emphasis should also be laid 

on the effectiveness and the applicability of this method for 

differential diagnosis in early stages of these disease. 

 

4. CONCLUSION 

 

Neurodegenerative diseases like PD and AD are beginning to 

become a substantive economic burden. Recently, the 

medicine and engineering communities have recognized the 

urgent need to understand this class of brain diseases. Various 

tools and methods from different fields are being brought 

together to build reliable disease progression models to expand 

knowledge about etiology of these disease. In this work, we 

present a novel methodology using machine learning tools, 

viz. SOM, LSSVM and FDR as statistical measure for 

determining most discriminative feature for differential 

diagnosis of PD and SWEDD   

We have tested the developed methodology on T1-weighted 

images obtained from PPMI clinical repository. An average 

classification accuracy of 99.93±0.26 % has been achieved to 

distinguish HC, PD, and SWEDD subjects. As per authors’ 

knowledge, this is the highest reported accuracy for a PD 

diagnosis till date.  Moreover, most relevant ROIs computed 

using this method are in agreement with areas that appear in 

literature as representative regions of PD.  

This methodology could not only aid in diagnosing early PD 

but also be used for exploratory research corresponding to 

labelled ROIs yet not found in literature. 

In this landscape, the present methodology could speed the 

evolution of evidence based prognosis within routine 

consultations for mitigating these diseases. 
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